Algebraic Geometry Seminar: "Deformations of singular Fano and Calabi-Yau varieties"

Speaker: Radu Laza, Stony Brook University

Abstract: It is well known that Calabi-Yau manifolds have good deformation theory, which is controlled by Hodge theory. By work of Friedman, Namikawa, M. Gross, Kawamata, Steenbrink and others, some of these results have been extended to Calabi-Yau threefolds with canonical singularities. In this talk, I will report on further extensions in two directions: in dimension 3, we sharpen and clarify some of the existing results, and, secondly, we obtain some higher dimensional analogues. I will also briefly explain the related case of Fano varieties, where stronger results hold. One surprising aspect of our study is the role played by higher du Bois and higher rational singularities, notions that were recently introduced by Mustata, Popa, Saito and their collaborators.

This is joint work with Robert Friedman.

Host: Matt Kerr