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Review of the One-Parameter Theory

Hilbert and Riesz Transforms

The Hilbert Transform is defined by

H(f )(x) :=
1

π

∫
R

f (y)
1

x − y
dy = f ∗

(
1

πy

)
(x).

Which can be viewed on the Fourier Transform side as:

Ĥ(f )(ξ) := −isgn(ξ)f̂ (ξ).

The Riesz Transforms are the n-dimensional generalizations of the
Hilbert Transform. For each 1 ≤ j ≤ n we have

Rj(f )(x) :=
Γ(n+1

2 )

π
n+1
2

∫
Rn

f (y)
xj − yj

|x − y |n+1
dy = f ∗

(
Γ(n+1

2 )

π
n+1
2

yj

|y |n+1

)
(x).

On the frequency side:

R̂j(f )(ξ) = −i
ξj

|ξ|
f̂ (ξ).

B. D. Wick (Vanderbilt University) Riesz Commutators Prairie Analysis 2006 3 / 17



Review of the One-Parameter Theory Haar Wavelets

A Wavelet Basis for L2(Rn)

Let h1(x) := 1[0,1)(x) and let h0(x) := −1[0,1/2)(x) + 1[1/2,1)(x)

h1(x) h0(x)

Let
Dn := {2−k(j + [0, 1)n) : j ∈ Zn, k ∈ Z}

i.e., the usual dyadic grid in Rn.
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Review of the One-Parameter Theory Haar Wavelets

A Wavelet Basis for L2(Rn)

Let Try (f )(x) := f (x − y) and Dilt(f )(x) := t−n/2f ( x
t ).

Define

Sign := {ε = (ε1, . . . , εn) : εi ∈ {0, 1}} \ {(1, . . . , 1)}.

For Q ∈ Dn and ε ∈ Sign set

hε
Q(x) :=

n∏
j=1

Trc(Q)Dil|Q|h
εj (xj).

{hε
Q : Q ∈ Dn, ε ∈ Sign} is the Haar wavelet basis for L2(Rn).
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Review of the One-Parameter Theory BMO

The Space BMO(Rn)

Definition

‖b‖BMO := sup
Q

1

|Q|

∫
Q
|f (x)− fQ |2dx

Theorem (C. Fefferman (1971))

The dual of H1(Rn) is BMO(Rn), i.e.,
(
H1(Rn)

)∗
= BMO(Rn).

Definition (Square Function Characterization)

A function is in (dyadic) BMO(Rn) if and only if for any (dyadic) cube Q ′

we have a constant C such that:

1

|Q ′|
∑

Q⊂Q′

∑
ε∈Sign

|〈b, hε
Q〉|2 ≤ C .
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Review of the One-Parameter Theory BMO

BMO and Riesz Transforms

For each j = 1, . . . , n define the following commutator operator on L2(Rn):

[b,Rj ](f )(x) := b(x)Rj(f )(x)− Rj(bf )(x).

Theorem (Coifman, Rochberg, and Weiss (1976))

Let b ∈ BMO(Rn), then for j = 1, . . . , n

‖[b,Rj ]‖2→2 . ‖b‖BMO(Rn).

If ‖[b,Rj ]‖2→2 < +∞ for j = 1, . . . , n, then

‖b‖BMO(Rn) . max ‖[b,Rj ]‖2→2.

Gives BMO(Rn) as a space of operators on L2(Rn).
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Review of Multi-Parameter Theory

Product Spaces

We are concerned with product spaces:

R~n = Rn1 ⊗ · · · ⊗ Rnt = ⊗t
s=1Rns

D~n := ⊗t
s=1Dns is the tensor product of the usual dyadic grids in Rns .

Any R ∈ D~n is of the form

R = Q1 ⊗ · · · ⊗ Qt

with each Qs a dyadic cube in Rns .
Also, let Sig~n := {~ε = (ε1, . . . , εt) : εs ∈ Signs}
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Review of Multi-Parameter Theory Tensor Products of Wavelets

Tensor Product Wavelet Basis in L2(⊗t
s=1Rns)

Take the Haar wavelet basis described earlier in Rns , i.e.,

{hεs
Qs

: Qs ∈ Dns , εs ∈ Signs}

For each R ∈ D~n and ~ε ∈ Sig~n define the following function:

h~ε
R(x1, . . . , xt) :=

t∏
s=1

hεs
Qs

(xs)

{h~ε
R : R ∈ D~n,~ε ∈ Sig~n} is a wavelet basis for L2(⊗t

s=1Rns ).
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Review of Multi-Parameter Theory BMO in Product Spaces

Product BMO(⊗t
s=1Rns)

A Reasonable Guess:

Product BMO?

A function is in BMO(⊗t
s=1Rns ) if and only if for any rectangle S in

⊗t
s=1Rns there exists a constant C such that:

1

|S |
∑
R⊂S

∑
~ε∈Sig~n

|〈b, h~ε
R〉|2 ≤ C

THIS IS WRONG!!!

Defines a space called “Rectangular” BMO, which is larger than product
BMO(⊗t

s=1Rns ). (Counter-example do to Carleson).
Instead of rectangles, one must use arbitrary open sets in ⊗t

s=1Rns .
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Review of Multi-Parameter Theory BMO in Product Spaces

Product BMO(⊗t
s=1Rns)

Correct Definition:

Definition (Product BMO)

A function b is in BMO(⊗t
s=1Rns ) if and only if for any open set U in

⊗t
s=1Rns with finite measure there exists a constant C such that:

1

|U|
∑
R⊂U

∑
~ε∈Sig~n

|〈b, h~ε
R〉|2 ≤ C .

How do you check on every open set?

Theorem (S.-Y.A. Chang, R. Fefferman (1980))

The dual of product H1(⊗t
s=1Rns ) is product BMO(⊗t

s=1Rns ), i.e.,(
H1(⊗t

s=1Rns )
)∗

= BMO(⊗t
s=1Rns ).
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Review of Multi-Parameter Theory BMO in Product Spaces

BMO(⊗t
s=1Rns) and Iterated Commutators

Additional cancellation is present in the multi-parameter setting and
this can still be studied via commutators.

We need iterated (nested) commutators:
Let Rs, js denote the js th Riesz transform taken in the s parameter
variable.
For s = 1, . . . , t and for 1 ≤ js ≤ ns we consider the following iterated
(nested) commutators on L2(⊗t

s=1Rns ):

[· · · [b,R1, j1 ],R2, j2 ], · · · ],Rt, jt ](f )(x)

2 Parameter Iterated Commutator in Rn1 ⊗ Rn2

For s = 1, 2 and 1 ≤ js ≤ ns the iterated commutator is:

[[b,R1, j1 ],R2, j2 ](f )(x) := b(x)R1, j1R2, j2(f )(x)− R1, j1(b)(x)R2, j2(f )(x)

−R2, j2(b)(x)R1, j1(f )(x) + R1, j1R2, j2(bf )(x)
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Review of Multi-Parameter Theory BMO in Product Spaces

BMO(⊗t
s=1R) as an Operator Space

Theorem (C. Sadosky and S. Ferguson (2001))

Let b ∈ BMO(⊗t
s=1R), then

‖[· · · [b,H1],H2], · · · ],Ht ]]‖2→2 . ‖b‖BMO(⊗t
s=1R).

Theorem (M. Lacey and S. Ferguson (2002), M. Lacey and E.
Terwilleger (2004))

If ‖[· · · [b,H1],H2], · · · ],Ht ]‖2→2 < +∞, then

‖b‖BMO(⊗t
s=1R) . ‖[· · · [b,H1],H2], · · · ],Ht ]‖2→2.

Restatement of Nehari’s Theorem for little Hankels on the polydisc.
KEY POINT: Provides a useful characterization of BMO(⊗t

s=1R).

B. D. Wick (Vanderbilt University) Riesz Commutators Prairie Analysis 2006 13 / 17



Results and Proofs

Main Result

It is possible to generalize the Coifman, Rochberg, Weiss result to the
product setting, and the Ferguson Lacey, Lacey, Terwilleger results to more
general Euclidean spaces:

Theorem (S. Petermichl, J. Pipher, M. Lacey, BW)

Let b ∈ BMO(⊗t
s=1Rns ), then for s = 1, . . . , t, and all 1 ≤ js ≤ ns

‖[· · · [b,R1, j1 ],R2, j2 ], · · · ],Rt, jt ]‖2→2 . ‖b‖BMO(⊗t
s=1Rns ).

If ‖[· · · [b,R1, j1 ],R2, j2 ], · · · ],Rt, jt ]‖2→2 < +∞ for all s = 1, . . . , t and all
1 ≤ js ≤ ns , then

‖b‖BMO(⊗t
s=1Rns ) . max ‖[· · · [b,R1, j1 ],R2, j2 ], · · · ],Rt, jt ]‖2→2.
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Results and Proofs Proof of the Upper Bound

The Upper Bound

Main Idea: Express the commutator as a sum of paraproducts.

Use the multi-parameter paraproducts of Muscalu, Pipher, Tao and
Thiele.

B(f1, f2) :=
∑

R∈D~n

〈f1ϕ1,R〉
|R|1/2

〈f2, ϕ2,R〉 ϕ3,R .

Key Point:
B : BMO × Lp → Lp

Relatively straightforward, though technical computations and
estimates give the result.
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Results and Proofs Proof of the Lower Bound

The Lower Bound

Again rely upon paraproducts.

Define a space reduced BMO, which plays the role of rectangle BMO.
This space is “related” to product BMO via Journé’s Lemma.

If the commutators are bounded, then we have an initial weak lower
bound in terms of reduced BMO. We want to boot-strap this lower
bound to a lower bound in terms of product BMO.

There are difficulties:

The approach used in Lacey-Ferguson and Lacey-Terwilleger depends
upon the relationship between the Hilbert transform and projections.
We need to do something similar in the Hilbert transform case. To
accomplish this we perform a reduction to deal with “nice” multipliers.
With this reduction it is possible to implement the general scheme
established in the papers Lacey-Ferguson and Lacey-Terwilleger.
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Results and Proofs Future Directions of Research

Other Problems Considered

The theorem also implies a weak factorization result for the product
Hardy space H1(⊗t

s=1Rns ) in terms of L2 functions and Riesz
transforms.

Commutators in One-Parameter have connections to Div-Curl
Lemmas.
Let E be a divergence free vector field, and B be a curl free vector
field, then

E · B ∈ H1(Rn)

Our theorem implies a new Div-Curl Lemma, but one which allows
divergence/curl free vector fields in each variable separately.

Connections with Hankel/Toeplitz operators on weighted Bergman
spaces in several complex variables, and the mapping properties of
little Hankels on different Hardy spaces.
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