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Motivations _

« H?(D), the standard Hardy space on D.
« P: L?(T) — H?(D) be the orthogonal projection.
« A Toeplitz operator with symbol ¢ is the following map from
H%(D) — H?*(D):
To(f) =P (f) -

» An important question raised by Sarason is the following:

Obtain necessary and sufficient (testable (%)) conditions so that one
can tell if T, TE is bounded on H?(D) by evaluating these conditions.

Possible to rephrase this question as one about the two-weight
boundedness of the Hilbert transform. Deep work by Nazarov,
Treil, Volberg, and then subsequent work by Lacey, Sawyer, Shen,
Uriarte-Tuero allow for an answer in terms of the Hilbert
transform.
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Motivations _

. L? = I*(R);
o D is the standard grid of dyadic intervals on R;
« Define the Haar function h} and averaging function h} by

1
W=h=— (-1 +1;) I€D

1
hio,1y (@)
« {h1};ep is an orthonormal basis of L2
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Motivations _

Given a function b and f it is possible to study their pointwise product
by expanding in their Haar series:

bf

(Z (b, hr) g2 hl) (Z (fyhr) 2 hJ)
IeD JeD
> (b hr)pe (fy ) g2 hihy

1,JeD
(Z+Z+Z) (b ha) gz (fs hy) g2 by
= IcJ JCI
> (b hr) o o) pp b + D (b, hr) g <f’ h}>L2 fu
1eD 1eD
+ D0 bkt ), (b b
1eD

B. D. Wick (Georgia Tech)  [COmpoSition e Hear Pariprodic B



Motivations _

Given a symbol sequence b = {br} ;. and a pair (o, 3) € {0, 1}%,
define the dyadic paraproduct acting on a function f by

PEO =3 b (1. 0]) b

IeD

. . a,B
The index (a, ) is referred to as the type of Pg ),

For each choice of pairs (o, B), (¢,8) € {0,1}2, obtain necessary and
sufficient conditions on symbols b and d so that

o

L2—L?
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Motivations _

07B
) o PO

When there are internal zeros the behavior of Pga’o reduces to

the behavior of P((la’ﬁ ) for a special symbol a. For f, g € L?, let
f® g: L?> = L? be the map given by

fegh)=f{g,h)z-

Then:

P%a,O) . Pgo,ﬂ) — (Z brh$ ® h[) (Z djhy ® hﬁ)

1eD JeD

= N brdrh§ @ b
IeD
8
PP,
Here b o d is the Schur product of the symbols, i.e., (bo d); = brds.
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Motivations _

For a sequence a = {as}ep define the following quantities:

lallge = suplarl;
IeD
laloyr = |sup 7 D lasl®
oM 1D 1| %

Associate to {as};ep two additional sequences indexed by D:

<Zajh§,h1> ={Zajh},(1)} :
JeD 2 ) 1ep JCI IeD
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Motivations _

The following characterizations are true:

[PRO| . = Nl
0,1 1,0 -~
POD| . . = |PLY . .~ lallon -
(1,1 _ (1,0) (0,1) ((X0)
Pa P?(a) t P?(a) T FEQ) -

The operator norm Pgl’l) of Pgl’l) on L? satisfies

L2—L2

Pgl,l)

~
~

L2—L? )g(a)HcM + [ E(a)l]gos -
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Motivations

It is easy to see for paraproducts of type (0,0) that:

e

oo = lalle

= sup [P n
€

2’

Moreover,

i)

- |

~ |lall gy

sop [P

L2—1L? L2—L?

Q

2’

These observations suggest seeking a characterization for the other
compositions in terms of testing conditions on classes of functions.
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Motivations _

For a sequence a, and interval I € D let Qra =} ;- ajh;.

The composition Pgo’l) o PS’O) is bounded on L? if and only if both

VAN

—\ |12
|QPP VY O (Qid) |, < cRllQudli. vIeD;

QPP VP (@)

z 2 2
' < clabll vieD.

Moreover, the norm of Pgo’l) o Pfil’o) on L? satisfies

Hpgo,n o p(LO)

~ O+ G

L2112

where C1 and Co are the best constants appearing above.
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Motivations _

We want to rephrase the testing conditions on Q;d and Q;b:
0,1) 5(1,0 =\ |12

PP (@rd) |,
0,1) (1,0 =\ [|2

|@rpa P (i),

A

C%||Q;d|3. VIeD;

< C2||Qsb|3, VIeD.

It isn’t hard to see that these are equivalent to the following
inequalities on the sequences:

Z| J| |J\ (Z|dL|2)

< C}Y|dg* VIeD;
JcI LcJ LCI
2
> 1dyl? P (Zlbﬁ) < 3y |b)* VIED.

JCI LcJ LCI
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Motivations _

The composition Péo’l) o P&O’O) is bounded on L? if and only if both

|d1|2HP§,0’1)hI‘ < C? VIenD;

2
L2

< C2|Qbl3. VIeD.

|QPPOPOQ| ), <

Moreover, the norm of Pg}o’l) o PSiO’O) on L? satisfies

HPgO,l) o PO0)

L2 2 MO+ G

where Cy and Cy are the best constants appearing above.
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Motivations

Again, it is possible to recast the conditions:

|d1’2HP20’1)h1‘ < C? VIeD;

2
L2

|@P0OP 0|, < cElQbli: vieD

2
Lz -

as expressions depending only on the sequences. In particular, these
are equivalent to the following inequalities:

412
%Zlbﬂz < C? VIeD;
LGl
2
|dJ|2 2 2 2 2
Z 7] Z bk |” — Z bk | < 022|b[,| VI € D.
Jcl KCJy KCJ_ LCI
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Proofs of Main Results _

For I € D set
1
T(I)=1x [%, |I|} (Carleson Tile);
QUI)=Ix][0,|I]] = U T (J) (Carleson Square).
JcIl

« The dyadic lattice D is in correspondence with the Carleson Tiles.

+ Let H denote the upper half plane C1: H = U;ep T (1).

- For a non-negative function o let L?(H; o) denote the functions
that are square integrable with respect to o dA, i.e,

32000y = |12 0() dA(2) < oc.

When o =1, L2(#H;1) = L*(H).
2 T f g g
« For fe L*(H), let f = 200 denote the normalized function.
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Proofs of Main Results _

Let L? (H) C L? (H) be the subspace of functions which are constant
on tiles. Namely, f: D — C

F=> fitra
1€D
Then
LZH) = (f:D=C: ) (DI <o
1€eD
1
IAlZ2e = 527; DI |1*.

Easy to show:
{iT( 1)}I€D is an orthonormal basis of L? (H);

{iQ(D}IeD is an Riesz basis of L? (H).
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Proofs of Main Results _

Let 6P§°’1)0P§1’0) = [GLJ]I,JeD be the Gram matrix of the operator

Pgo’l) o PEll’O) relative to the Haar basis {h;};cp. A simple computation
show that it has entries:

Gy = (PP oPYVhyhr) , = (PO PYON)

= (dyhy,brht)

b[dJIII if JcCI

b[dJIJI if I1cJ
0 it InJ=0.

|ImJ|

= sy =

Idea: Construct T(O’l’l’o) L%(H) — L?(H) that has the same Gram

matrix as Pgo Do Pgl 0), but with respect to the basis {i T( 1)}I€D-
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Proofs of Main Results _

For A € R and a = {a;}ep the multiplication operator M7 is defined
on basis elements 17 by

M1y = ag |K M (e
Define an operator Tg?;ll’l’o) on L? (H) by
(0,1,1,0) _ 0 T 3 =il
Toa =My (Z Lr(x) ® 1Q(K)) Mg
KeD
Then the Gram matrix Q5T(o,1,1,0) [G1,5]; JeD of T(O’l’ 0 relative to
b,d

the basis {IT( 1)}I€D has entries

. (0,1,1,0)% =
Gy = <Tb,d 1T(J)a1T(I)>L2(H)

RINNT) _ 1 [ bidyy i JCI
bidr/2 1] |J? _\/5{ 0 if J¢l
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Proofs of Main Results

Up to an absolute constant, @T(o,l,l,o) matches @P(o,l)op(l,o) in the lower
b,d b d

triangle where J C I. So,

Hpgo,l) . Pg,o)’

(071’170)
22 |l bd

LQ(H)HL2(H)+H 5237171’0)’

L2(H)—L2(H)

The inequality we wish to characterize is

80 ] = T8

e g S Ml 2 -

Define U on L? (H), where
U= > 17 ®Low)-
KeD
For appropriate choice of weights ¢ and w on H the desired estimate is
simply:
U (@Rl 235wy S 11N 222050 -
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Proofs of Main Results _

Let w and o be non-negative weights on H. Then

U(o:): L? (H;0) — L (H; w)

s bounded if and only if the following testing condition holds:

< G [aw

|LenV (o10m)] izm ) = L2(Hi0)

» The proof of this Theorem is a translation of Sawyer’s proof
strategy for two weight inequalities for positive operators

+ Choosing w = > ;cp b7 1pgyand 0 =3 cp ngl;p([) (and
unraveling the definitions) gives the forward testing condition.

« Appropriate choice of w and o will then provide the backward

testing condition when studying T c(lol’,l’l’o).
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Proofs of Main Results _

Let Qipgo,l)opgo,o) = [GLJ]I’JeD be the Gram matrix of the operator

Pg)o’l) o PElO’O) relative to the Haar basis {hs};.p. A simple computation
shows its entries are:

Gy = (PP oPPOhy by = (PP Ry, YV hr)
= (dyhs,biht)

b;alj\/|7
b;dj\/|7

L2

if I1cCJ_
if IcCJ,
if JcIorlIndJ=040.

= Trdsh} () =

Idea: Construct Tg?(’il’o’o) : L2(H) — L%(H) that has the same Gram

matrix as Pgo’l) o Pfio,o)’ but with respect to the basis {i T( I)}IED'
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Proofs of Main Results _

Now consider the operator T(O’l’o 9 defined by

0,1,0,0 1
T% 00 = = Mz (Z Lo (k) ® 1T(K>> M.
KeD

Here
losmy == D lry+ D lray
LCK_ LCKy
A straightforward computation shows

el =
Qi(K) L2(H) 2 )
Milguwy = — 3 all o+ Y an|I* 1z,
LCK_ LCKy
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Proofs of Main Results

The Gram matrix (’5T(o,1,o,0) = [Gr,J]; Jep of Tgo(,il,o,o) relative to the
b,d ’ ’

basis {i ( I)}IeD then has entries given by

_ (0,1,0,0)5 5

Gry = <Tb,d L7, 1T(1)>L2(’H)
“brds|J7E it IcJ.
= V29 By Jr it IcJ,
0 if JCcIlorlIndJ=0.

Thus, up to an absolute constant, QST(O,l,o,o) = Q5P(o,1) p(0:0) 5 and so
b,d b T4

(0717070)

Hpgo,l) © P&o,O)‘ b,d

‘ ‘

L2—[2

L2(H)—L2(H)
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Proofs of Main Results _

The inequality we wish to characterize is:

1
MEUMG |

_ H 0,1,0 O)f’

< .
o0 e 171 234

Where the operator U on L? (H) is defined by
U= ) To.m ® 1o
KeD
One sees that the inequality to be characterized is equivalent to:

U (el 2230y S 91 22345000 »

where the weights p and v are given by

= Z|bl|2|f|_21T(1)
I€D

> |d| 21! 1.

1eD
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Proofs of Main Results |

Suppose that p and v are positive measures on H that are constant on
tiles, i.e., W =3 rep prlery, V = X repvilyry. Then

U(u): L2 (H; ) — L2 (H;v)

if and only if both
| (2rr)
chsz* (Vlczu))

hold for all I € D. Moreover, we have that

oy VH s
=\v(QU

L2(H;v) = G HIT(I

02\

<
L2(Hsp)  —

IV 2y 2300y = C1 + Co
where C; and Cy are the best constants appearing above.
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Conclusion _

» For a weight w, i.e., a positive locally integrable function on R, let
L2 (w) = L2(R; w).

+ A weight belongs to Ay if: [w],, = sup; (w); (w™); < 4o0.

+ The Hilbert transform is the operator: H(f)(z) =p.v. [ ﬁdy.

Let w € Ay. Then [|H|| r2(y)— r2(w) S [W]a,, and the linear growth is
optimal.

Tz = [ My T oo

» H is the average of dyadlc shlfts 1T;

. M 3 IHM 3 can be written as a sum of nine compositions of
paraproducts Some of which are amenable to the Theorems above.

« However, each term can be shown to have norm no worse than
[w]A2~
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Conclusion _

Unfortunately, the methods described do not appear to work to handle
type (0,1,0,1) compositions. However, the following question is of
interest:

For each I € D determine function Fr, By € L? of norm 1 such that
Péo’l) o PElO’l) is bounded on L? if and only if

PPV o PPVE , < o vieD;
[Py oriB| . < G vIeD.
Moreover, we will have
(0,1) | p(0,1) ~
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ORGANIZ]
AATHEMATICS

il ams of cat herde

(Modified from the Original Dr. Fun Comic)

Thanks to Nicola, John, Marco, Stefan, and Maura for Organizing the
Meeting!
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Thank Youl
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