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Introduction

I Having taught Financial Mathematics from a disturbingly
theorem-less textbook, I was motivated to find some actual
Mathematics behind the jargon and heuristics.

I Much computational machinery has been applied to modeling
financial markets. In this talk, I will survey some of the results
that depend on linear algebra, cones, and convexity in Rn.

I My goal is to give two versions of the “Fundamental Theorem
on Asset Pricing,” for the case of discrete financial models.



Assets and Portfolios

I An asset a : T × Ω→ R is a stochastic process, a
time-varying random variable on a probability space Ω.

I a(t, ω) is the price of the asset at time t in state ω.

I T contains time t = 0, the present, and a(0, ω)
def
= a(0) is

independent of ω.

I A riskless asset is independent of ω at all times t ∈ T . All
other assets are risky.

I A portfolio is a weighted sum of assets
∑

i xiai (t, ω), usually
written as the vector x = (xi ) of weights.



Discrete Financial Models

The simplest choices for T and Ω are the finite sets T = {0, 1}
and Ω = {1, 2, . . . , n}. Then calculations are performed using just
pairs and vectors of prices:

I The spot price ai (0), of asset ai , assumed constant in all
states at time t = 0.

I The payoff ai (1, j), of asset ai , at future time t = 1, in state
ω = j .

The payoff vector ai = (ai (1, 1), . . . , ai (1, j), . . . , ai (1, n)) lists all
the modeled future prices for the asset.



Market Matrices

Using T = {0, 1} and Ω = {1, 2, . . . , n}, a market with m assets is
modeled by q and A, namely:

I Vector q
def
= (ai (0)) of spot prices, and

I Matrix of payoffs

A
def
=


1
a1
...
am

 ,=


1 . . . 1

a1(1, 1) . . . a1(1, n)
...

. . .
...

am(1, 1) . . . am(1, n)

 ,

where ai (1, j) is the payoff of asset i in state j .

NOTE: The top row of A is the numeraire, also called cash, a
unit of which has constant payoff 1 in all states j = 1, . . . , n.



Spot Prices and Payoffs

In the discrete financial model q,A, any portfolio
∑

i xiai (t, ω)
represented by the vector of weights x has

I spot price xTq, and

I payoff vector xTA.

Note: For the linear algebra computations, payoff vectors will be
row vectors while spot price vectors, portfolio weight vectors, and
probability mass functions will be column vectors. Unfortunately,
this is only one of the several conventions in use.



Arbitrage and Positivity

An arbitrage is a portfolio x that yields profit without risk.
There are various kinds of arbitrage, some deterministic and some
probabilistic. They may be defined using componentwise positivity
or nonnegativity.
For v = (v1, . . . , vn) ∈ Rn, and so on,

I Write v > 0, and say that v is positive, if (∀j) vj > 0.

I Write v ≥ 0, and say that v is nonnegative, if (∀j) vj ≥ 0.

I Write v > w to mean v −w > 0.

I Write v ≥ w to mean v −w ≥ 0.

Such positivity is a property of orthants, which are special cases of
convex cones.



Convexity and Cones

I A set S ⊂ Rn is convex iff

x, y ∈ S =⇒ (∀λ ∈ [0, 1]) λx + (1− λ)y ∈ S .

Any subspace is convex.

I Set S ⊂ Rn is a cone iff

x ∈ S =⇒ (∀λ > 0)λx ∈ S .

Any subspace is a cone.



Open, Pointless, and Closed Orthants

I The closed orthant of vectors with nonnegative coordinates,

K
def
= {y ∈ Rn : y ≥ 0},

is a closed convex cone.

I Remove the point 0 to get the pointless orthant

K \ 0 = {y ∈ Rn : y ≥ 0, (∃j) yj > 0}.

This is also a convex cone but is neither open nor closed.

I The interior of K is an open convex cone:

K o def
= {y ∈ Rn : (∀j) yj > 0} = {y ∈ Rn : y > 0}.



Dual Cones

Let S ⊂ Rn be any set.

I The dual cone of S is

S ′
def
= {x ∈ Rn : (∀y ∈ S) xTy ≥ 0}.

I If S is a subspace, then S ′ = S⊥ is its orthogonal complement.

I The strict dual cone of S is

S∗
def
= {x ∈ Rn : (∀y ∈ S) xTy > 0}.

I If 0 ∈ S , then S∗ = ∅. Thus if S is a subspace, then S∗ = ∅.
For any set S ⊂ Rn, both S ′ and S∗ are convex cones.



Self-Duality and Double Duality

Some useful facts:

I K ′ = K , that is, the nonnegative orthant is a self-dual cone.

I (K o)′ = K and (K o)∗ = K \ 0.

I (K \ 0)′ = K and (K \ 0)∗ = K o .

I ((K o)∗)∗ = K o , that is, the open positive orthant is its own
strict double dual cone.

A more subtle fact:

Theorem (Double Dual Cone)

If Q is a closed convex cone, then (Q ′)′ = Q.



Double Dual Cone Proof

First note that Q ⊂ (Q ′)′:

q ∈ Q =⇒ (∀z ∈ Q ′)qTz ≥ 0 =⇒ q ∈ (Q ′)′.

Now suppose toward contradiction that b ∈ (Q ′)′ but b /∈ Q.
Then there is a nonzero vector x and a constant γ defining a

separating hyperplane by the function f (y)
def
= xTy − γ where

f (b) < 0, but (∀q ∈ Q) f (q) > 0.

Since Q is a closed cone it contains 0, so f (0) = −γ > 0, so γ < 0.
Also, fix q ∈ Q and let λ→∞ while noting that λq ∈ Q, so

xTq = lim
λ→∞

(
xTq− γ

λ

)
= lim

λ→∞

1

λ
f (λq) ≥ 0.

Thus x ∈ Q ′. But then b ∈ (Q ′)′ gives the contradiction
f (b) = xTb− γ ≥ −γ > 0.



Deterministic Arbitrages

These are portfolios x, in a market A with spot prices q, that do
not depend on the probability mass function on Ω.

I Type one arbitrage, or immediate arbitrage, leaves a surplus
as it is assembled but has nonnegative payoff in any future
state:

IA1: xTq < 0.
IA2: xTA ≥ 0. Equivalently, xTA ∈ K .

I Type two arbitrage, or arbitrage opportunity, costs nothing to
assemble and cannot lose value, but has a positive payoff in
some future state:

AO1: xTq ≤ 0.
AO2: xTA ≥ 0, and (∃j) xTA(j) > 0. Equivalently, xTA ∈ K \ 0.



Arbitrage and Martingales

I An arbitrage expectation, which is not deterministic, costs
nothing to assemble but has positive expected payoff:

AE1: xTq ≤ 0
AE2: xTAy > 0, where y is the probability mass function on the

states 1, . . . , n in Ω.

I An asset a(t, ω) is a martingale stochastic process if

xTAy = E(a(t)) = E(a(0)) = a(0) = xTq.

Thus no arbitrage expectations can exist in any financial
model that assumes assets are martingales.



Profitable Portfolios

Let A be a market matrix.

I A profitable portfolio p is one that has nonnegative payoff in
all states: pTA ≥ 0. Equivalently, pTA ∈ K .

I The set P of profitable portfolios is a dual cone: P = (AK )′.

I A strictly profitable portfolio s also has a positive payoff in
some state: (∃j) sTA(j) > 0. Equivalently, sTA ∈ K \ 0.

I Equivalently, (∀k ∈ K o) sTAk > 0.

I Equivalently, sTA ∈ (K o)∗.

I The set S of strictly profitable portfolios is a strict dual cone:
S = (AK o)∗



The Usefulness of Cash

I A matrix of assets without a numeraire might have no
profitable portfolios. For example,

A =
(
−1 1

)
is a one-asset matrix with two states.

I A market with a numeraire, or cash, as its zero row, allows the
all-cash portfolio x = (1, 0, . . . , 0). Since this satisfies
xTA(j) = 1 for all j , it is both profitable and strictly profitable.

I More generally, if there is any riskless asset such that
(∀ω) a(1, ω) = a(1) 6= 0, then P 6= ∅ and S 6= ∅.



Arbitrage Axioms

An immediate arbitrage is an arbitrage opportunity is an arbitrage
expectation:

∃ IA =⇒ ∃ AO =⇒ ∃ AE . (1)

The universal desire for profit creates unlimited demand for
arbitrages so it is assumed that if assets are freely traded, then
prices will adjust instantly to consume any supply. This may be
stated as an axiom:

Axiom 1 There are no arbitrages.

The chain of implications for no arbitrages is the reverse of (1):

@ AE =⇒ @ AO =⇒ @ IA. (2)



No Arbitrages

The absence of arbitrages in a market may be stated using
orthants:

Definition (No IA)

A market A with prices q is immediate arbitrage free iff any
profitable portfolio must have a nonnegative price:

xTA ∈ K =⇒ xTq ≥ 0.

Definition (No AO)

A market A with prices q is arbitrage opportunity free iff any
strictly profitable portfolio must have a positive price:

xTA ∈ K \ 0 =⇒ xTq > 0.



Fundamental Theorem on Asset Pricing

In an arbitrage free market, the price vector q is a weighted
average of the payoffs in the states of Ω:

Theorem (FT from No IA)

Market A with spot prices q is immediate arbitrage free if and only
if there is a vector k ∈ K such that

q = Ak.

Proof:
(⇐= ): Suppose that k ∈ K solves q = Ak and let x be a
profitable portfolio. Then

xTq = xT (Ak) = (xTA)k ≥ 0,

since xTA ∈ K . Thus, by definition, market A with prices q is
immediate arbitrage free.



Proof (continued)

( =⇒ ): Suppose that market A with prices q is IA free. Then:

I AK , for nonnegative orthant K , is a closed convex cone.

I P = (AK )′, namely the set of all profitable portfolios for A is
the dual cone of AK , since

x ∈ P ⇐⇒ xTA ∈ K ⇐⇒ (∀k ∈ K )xTAk ≥ 0.

I q ∈ P ′, since A,q is immediate arbitrage free:

(∀x ∈ P) xTq ≥ 0.

Hence q ∈ ((AK )′)′ = AK , since the double dual of a closed
convex cone is itself.
Conclude that there is some k ∈ K such that q = Ak.



Another Proof via Farkas’s Lemma

This result from 1902 has the Fundamental Theorem as an
immediate consequence:

Theorem (Farkas’s Lemma)

Suppose that A ∈ Rm×n is a matrix and b ∈ Rm is a vector. Then
exactly one of the following must be true:

X: There exists x ∈ Rm such that xTA ≥ 0 and xTb < 0.

Y: There exists y ∈ Rn such that Ay = b and y ≥ 0.

To prove the Fundamental Theorem, let matrix A and spot price
vector b be a discrete financial model. If A,b is immediate
arbitrage free, then Condition X cannot be true. By Condition Y,
there is a vector y ∈ K such that b = Ay.



Proof of Farkas’s Lemma

First observe that X and Y cannot both hold, for then

xTAy = xT (Ay) = xTb < 0,

while also xTAy = (xTA)y ≥ 0, since both (xTA) ≥ 0 and y ≥ 0.
Evidently, Condition Y holds if and only if

b ∈ Q = AK
def
= {Ak : k ∈ K},

so if Y fails to hold it must be that b /∈ Q.
But Q is a nonempty closed convex cone. Thus there exists a
nonzero vector x ∈ Rm and a constant γ ∈ R defining a separating
hyperplane function

f : Rm → R, f (y)
def
= xTy − γ,

such that f (b) < 0 but f (q) > 0 for every q ∈ Q.



Farkas Proof, Part II

Now 0 ∈ Q, since 0 ∈ K , so f (0) = xT0− γ = −γ > 0, and
therefore γ < 0. But then

f (b) = xTb− γ < 0 =⇒ xTb < γ < 0.

On the other hand, f (q) > 0 implies only that xTq > γ. But since
Q is a cone, any q ∈ Q and any λ > 0 result in λq ∈ Q, so

(∀λ > 0) f (λq) = λxTq− γ > 0 =⇒ (∀λ > 0) xTq > γ/λ,

and this can only be true for negative γ if xTq ≥ 0 for all q ∈ Q.
Writing q = Ak gives

(∀k ∈ K ) xTAk ≥ 0,

so xTA is in the dual cone of K . But K is self-dual, so xTA ≥ 0.
Conclude that Condition X holds.



Hyperplane Separation

Farkas’s Lemma, the Double Dual Cone Lemma, and thus the
Fundamental Theorem on Asset Pricing all follow from a purely
geometric fact about closed convex sets:

Theorem (Hyperplane Separation)

Suppose that Q ⊂ Rm is a nonempty closed convex set and
b ∈ Rm is a point not in Q. Then there exist a nonzero vector
x ∈ Rm and a constant γ ∈ R defining a hyperplane as the zeros of
the function

f (y)
def
= xTy − γ,

such that f (b) < 0 but f (q) > 0 for every q ∈ Q.



Proof I: Construct a hyperplane

Define s : Rm → R by s(y)
def
= ‖y − b‖2, continuous and

differentiable with gradient

∇s(y) = 2(y − b) ∈ Rm.

It achieves its minimum at a nearest point q0 ∈ Q to b. Put

f (y)
def
= xTy − γ for

x = q0 − b, γ =
‖q0‖2 − ‖b‖2

2
.

Hyperplane {y : f (y) = 0} is normal to q0 − b and passes through
the midpoint between b and q0.
It remains to show that f separates b from Q.



Proof II: f (b) < 0

Compute f (b) = qT0 b−
‖q0‖2+‖b‖2

2 . The Cauchy-Schwartz
inequality and the arithmetic-geometric mean inequality together
imply

qT0 b ≤ ‖q0‖‖b‖ ≤
‖q0‖2 + ‖b‖2

2
,

with equality only if q0 = b. Conclude that f (b) < 0.



Proof III: f (q) > 0

Take any q ∈ Q and suppose toward contradiction that f (q) ≤ 0.
Then

(q0 − b)Tq ≤ ‖q0‖
2 − ‖b‖2

2
,

so ∇s(q0)T (q− q0) ≤ −‖q0 − b‖2 < 0. Hence there is some
small λ ∈ (0, 1) for which

s(q0 + λ[q− q0]) < s(q0).

But Q is convex, so q0 + λ[q− q0] = (1− λ)q0 + λq ∈ Q, and
this contradicts the extremal property of q0.
Conclude that f (q) > 0.



Fundamental Theorem on Asset Pricing II

In an arbitrage opportunity free market, the weight vector is
strictly positive:

Theorem (FT from No AO)

Market A with spot prices q is arbitrage opportunity free if and
only if there is a vector k ∈ K o such that

q = Ak.

Proof:
(⇐= ): Suppose that k ∈ K o solves q = Ak and let x be a strictly
profitable portfolio. Then

xTq = xT (Ak) = (xTA)k > 0,

since xTA ∈ K \ 0. Thus, by definition, market A with prices q is
arbitrage opportunity free.



Proof (continued)

( =⇒ ): Suppose that market A with prices q is AO free. Then:

I AK o , for open positive orthant K o , is a convex cone.

I S = (AK o)∗, namely the set of all strictly profitable portfolios
for A is the strict dual cone of AK o , since

x ∈ S ⇐⇒ xTA ∈ K \ 0 ⇐⇒ (∀k ∈ K o)xTAk > 0.

I q ∈ S∗, since A,q is arbitrage opportunity free:

(∀x ∈ S) xTq > 0.

Hence q ∈ ((AK o)∗)∗ = AK o .
Conclude that there is some k ∈ K o such that q = Ak.



Strict Duals and Weak Separation

The last step in the FT from No AO Theorem relies on:

Theorem (Strict Double Dual Cone)

If Q is an open convex cone in Rn, then (Q∗)∗ = Q.

That in turn follows from:

Theorem (Weak Hyperplane Separation)

If C ,D ⊂ Rn are disjoint convex sets, then there is a nonzero
vector x ∈ Rn and a constant γ ∈ R defining a hyperplane as the

zeros of f (y)
def
= xTy − γ, satisfying

(∀c ∈ C ) f (c) ≤ 0 and (∀d ∈ D) f (d) ≥ 0



Application to Derivative Pricing

Suppose that payoff matrix A with spot price vector q corresponds
to an arbitrage free market.

I The vector k, which is nonzero if q 6= 0, is called a risk neutral
probability mass function, when normalized to have unit sum.

I Any derivative asset with future payoff vector d has a risk
neutral spot price dTk.

Derivative assets are often contingent claims.



Contingent Claims

These are contracts to pay or collect some amount depending on
the price of underlying assets. Examples are:

Call Option to buy an asset for a stated strike price at or before a
stated expiry time.

Put Option to sell an asset for a strike price at or before expiry.

Swap Exchange one sequence of payments for another with different
terms.

Future Agreement to buy an asset for a stated strike price at a future
date.



Hedges

I Financial institutions that sell contingent claims seek to
hedge, or replicate them, with a portfolio of other assets that
equals or exceeds the cost of the contingent claim in all
modeled states Ω.

I If c is the cost vector of the contingent claim over Ω, namely
the liability of the financial institution that sold it, then a
hedge portfolio h over a market A must satisfy

hTA ≥ c.

I At spot prices q, the cost of the hedge portfolio is hTq.



Complete Markets

I Market A is complete if any contingent claim can be hedged,
namely if the row space of A is all of Rn.

I Since the row space is dependent on the discrete financial
model, this cannot be guaranteed without additional
assumptions.

I Binomial models, where n = 2 and m = 1 so that A is a 2× 2
matrix

A =

(
a0(1, 1) a0(1, 2)
a1(1, 1) a1(1, 2)

)
,

a0(1, 1) = a0(1, 2),
a1(1, 1) 6= a1(1, 2)

with a numeraire (or other riskless asset) a0 6= 0, and a single
risky asset a1, are always complete, so there is a unique hedge
for any contingent claim on the underlying asset a1.



Incomplete Markets

In the general case, when the market is incomplete, the seller of a
contingent claim c constructs a hedge portfolio h by solving

Minimize hTq subject to hTA ≥ c.

Conversely, the buyer of the contingent claim c compares its price
to the alternative portfolio k solving

Maximize kTq subject to kTA ≤ c.

These are both convex optimization problems solvable by linear
programming.



Bid-Ask Spread

If market A with prices q is arbitrage free, then any profitable
portfolio x must have a nonnegative price:

xTA ≥ 0 =⇒ xTq ≥ 0.

Let x = h− k be the difference of the portfolios solving the hedge
optimization problems. Then

xTA = hTA− kTA ≥ c− c = 0,

so we may conclude that hTq ≥ kTq. The nonempty interval

[kTq,hTq]

is the no-arbitrage bid-ask spread for the contingent claim c.
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