Putnam Practice, 9 Nov 2012 Matrix Algebra Problems

I. DISCUSSION

Determinant:

- If A, B are $n \times n$ matrices, then det $AB = \det A \det B$. Also det I = 1, so det $A^{-1} = 1/\det A$.
- Expansion by minors: if $A = (a_{ij}), i, j = 1, ..., n$, then for any $j \in \{1, ..., n\}$,

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij},$$

and likewise for any $i \in \{1, \ldots, n\}$,

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij},$$

where A_{ij} , called the *ij minor*, is the $(n-1) \times (n-1)$ submatrix of A obtained by deleting row *i* and column *j*.

• If $\{\lambda_i : i = 1, ..., n\}$ is the set of eigenvalues of A, with multiplicities, then det $A = \prod_{i=1} \lambda_i$.

Trace: for $A = (a_{ij}), i, j = 1, ..., n$, define tr $A = \sum_{i=1}^{n} a_{ii}$.

- If A, B are $n \times n$ matrices, then $\operatorname{tr} A + B = \operatorname{tr} A + \operatorname{tr} B$. Also $\operatorname{tr} I = n$ and $\operatorname{tr} 0 = 0$.
- Commutators: $\operatorname{tr} AB = \operatorname{tr} BA$, so $\operatorname{tr} AB BA = 0$.
- If $\{\lambda_i : i = 1, ..., n\}$ is the set of eigenvalues of A, with multiplicities, then tr $A = \sum_{i=1}^{n} \lambda_i$.
- If A, S are $n \times n$ matrices and S is invertible, then tr $S^{-1}AS = \text{tr } A$.
- If $A \neq 0$, then $\operatorname{tr} AA^T = \sum_{i,j} a_{ij}^2 > 0$.

Orthogonal matrix: an $n \times n$ matrix satisfying $AA^T = I$.

- If A is an orthogonal matrix, then so is A^T .
- The rows of an orthogonal $n \times n$ matrix form an orthonormal basis for \mathbb{R}^n .

• The columns of an orthogonal $n \times n$ matrix, which are the rows of its transpose, also form an orthonormal basis for \mathbf{R}^n .

Upper triangular matrix: an $n \times n$ matrix $A = (a_{ij})$ satisfying $i > j \implies a_{ij} = 0$. Lower triangular means $i < j \implies a_{ij} = 0$.

- If A and B are upper triangular, then so is AB. If lower triangular, then AB is lower triangular.
- If $A = (a_{ij})$ is upper triangular or lower triangular, then det $A = \prod_{i} a_{ii}$.

Functions of a matrix:

- Polynomial $p(z) = c_0 + c_1 z + \dots + c_d z^d$ of degree d defines $p(A) = c_0 I + c_1 A + \dots + c_d A^d$.
- Characteristic polynomial: let p(z) = det(A zI) for n × n matrix A and n × n identity matrix I. This is a polynomial of degree n in the complex variable z whose roots are the eigenvalues of A. Then p(0) = det A, and the coefficient of zⁿ⁻¹ is tr A.
- Cayley-Hamilton theorem: if p(z) = det(A − zI) is the characteristic polynomial for n × n matrix A, then p(A) = 0.
- Taylor series $f(z) = \sum_{k=0}^{\infty} c_k z^k$ may be evaluated on a matrix A as $f(A) = c_0 I + \sum_{k=1}^{\infty} c_k A^k$, whenever ||A|| is less than the radius of convergence of f. Here ||A|| is any matrix norm.
- $\exp A = I + A + \frac{1}{2}A^2 + \dots + \frac{1}{n!}A^n + \dots$ converges for any matrix A.

Diagonalization: an $n \times n$ matrix $A = (a_{ij})$ is diagonal if $i \neq j \implies a_{ij} = 0$.

- A is a diagonal matrices iff A is both upper triangular and lower triangular. Hence, if A and B are diagonal matrices, then so is AB
- If A = (a_{ii}) is diagonal, and f is any function, then f(A) = (f(a_{ii})) is the diagonal matrix obtained by applying f to the elements a_{ii} of A.
- Spectral theorem: if $A = A^T$ is a symmetric matrix, then there is an orthogonal matrix S and a diagonal matrix D such that $A = SDS^T$. The columns of S are eigenvectors for A and the diagonal elements of D are eigenvalues for A.
- Simultaneous diagonalization: If A and B are symmetric matrices and AB = BA, then there is an orthogonal matrix S such that $S^T AS$ is diagonal and $S^T BS$ is diagonal.

II. PROBLEMS

Arranged easier to harder, roughly speaking.

- 1991,A-2 Let A and B be different $n \times n$ matrices with real entries. If $A^3 = B^3$ and $A^2B = B^2A$, can $A^2 + B^2$ be invertible?
- 1990,B-3 Let S be a set of 2×2 integer matrices whose entries a_{ij} (1) are all squares of integers and, (2) satisfy $a_{ij} \leq 200$. Show that if S has more than 50387 (= $15^4 15^2 15 + 2$) elements, then it has two elements that commute.
- 1986, A–4 A *transversal* of an $n \times n$ matrix A consists of n entries of A, no two in the same row or column. Let f(n) be the number of $n \times n$ matrices A satisfying the following two conditions:
 - (a) Each entry $\alpha_{i,j}$ of A is in the set $\{-1, 0, 1\}$.
 - (b) The sum of the n entries of a transversal is the same for all transversals of A.

An example of such a matrix A is

$$A = \left(\begin{array}{rrr} -1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array} \right).$$

Determine with proof a formula for f(n) of the form

$$f(n) = a_1 b_1^n + a_2 b_2^n + a_3 b_3^n + a_4,$$

where the a_i 's and b_i 's are rational numbers.

- 1994, A-4 Let A and B be 2×2 matrices with integer entries such that A, A+B, A+2B, A+3B, and A+4B are all invertible matrices whose inverses have integer entries. Show that A + 5B is invertible and that its inverse has integer entries.
- 1994,B–4 For $n \ge 1$, let d_n be the greatest common divisor of the entries of $A^n I$, where

$$A = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix} \quad \text{and} \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Show that $\lim_{n\to\infty} d_n = \infty$.

4

1990,A-5 If A and B are square matrices of the same size such that ABAB = 0, does it follow that BABA = 0?

1992,B-5 Let D_n denote the value of the $(n-1) \times (n-1)$ determinant

3	1	1	1		1
1	4	1	1		1
1	1	5	1		1
1	1	1	6		1
:	÷	÷	÷	۰.	:
1	1	1	1		n+1

Is the set $\left\{\frac{D_n}{n!}\right\}_{n\geq 2}$ bounded?

1992,B–6 Let \mathcal{M} be a set of real $n \times n$ matrices such that

(i) $I \in \mathcal{M}$, where I is the $n \times n$ identity matrix;

- (ii) if $A \in \mathcal{M}$ and $B \in \mathcal{M}$, then either $AB \in \mathcal{M}$ or $-AB \in \mathcal{M}$, but not both;
- (iii) if $A \in \mathcal{M}$ and $B \in \mathcal{M}$, then either AB = BA or AB = -BA;
- (iv) if $A \in \mathcal{M}$ and $A \neq I$, there is at least one $B \in \mathcal{M}$ such that AB = -BA.

Prove that \mathcal{M} contains at most n^2 matrices.

1987, B–5 Let O_n be the *n*-dimensional vector $(0, 0, \dots, 0)$. Let M be a $2n \times n$ matrix of complex numbers such that whenever $(z_1, z_2, \dots, z_{2n})M = O_n$, with complex z_i , not all zero, then at least one of the z_i is not real. Prove that for arbitrary real numbers r_1, r_2, \dots, r_{2n} , there are complex numbers w_1, w_2, \dots, w_n such that

$$\operatorname{re}\left[M\left(\begin{array}{c}w_1\\\vdots\\w_n\end{array}\right)\right] = \left(\begin{array}{c}r_1\\\vdots\\r_n\end{array}\right).$$

(Note: if C is a matrix of complex numbers, re(C) is the matrix whose entries are the real parts of the entries of C.)

1988, B–5 For positive integers n, let M_n be the 2n + 1 by 2n + 1 skew-symmetric matrix for which each entry in the first n subdiagonals below the main diagonal is 1 and each of the remaining entries below the main diagonal is -1. Find, with proof, the rank of M_n . (According to one definition, the rank of a matrix is the largest k such that there is a $k \times k$ submatrix with nonzero determinant.)

- 1988, A–6 If a linear transformation A on an n-dimensional vector space has n + 1 eigenvectors such that any n of them are linearly independent, does it follow that A is a scalar multiple of the identity? Prove your answer.
- 1986, B–6 Suppose A, B, C, D are $n \times n$ matrices with entries in a field F, satisfying the conditions that AB^T and CD^T are symmetric and $AD^T - BC^T = I$. Here I is the $n \times n$ identity matrix, and if M is an $n \times n$ matrix, M^T is its transpose. Prove that $A^TD - C^TB = I$.
- 1985, B–6 Let G be a finite set of real $n \times n$ matrices $\{M_i\}$, $1 \le i \le r$, which form a group under matrix multiplication. Suppose that $\sum_{i=1}^{r} \operatorname{tr}(M_i) = 0$, where $\operatorname{tr}(A)$ denotes the trace of the matrix A. Prove that $\sum_{i=1}^{r} M_i$ is the $n \times n$ zero matrix.