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Abstract—Duchenne muscular dystrophy (DMD) is an X-
linked genetic disease characterized by progressive weakness 
and wasting of skeletal and cardiac muscle; boys present with 
weakness by the age of 5 years and, if left untreated, are un-
able to walk without assistance by the age of 10 years. Ther-
apy for DMD has been primarily palliative, with oral steroids 
emerging as a first-line approach even though this treatment 
has serious side-effects. Consequently, low-cost imaging tech-
nology suitable for improved diagnosis and treatment moni-
toring of DMD would be of great value, especially in remote 
and underserved areas. Previously, we reported use of the 
logarithm of the signal energy, log [Ef ], and a new method for 
ultrasound signal characterization using entropy, Hf, to moni-
tor prednisolone treatment of skeletal muscle in a dystrophin-
deficient mouse model. Three groups were studied: mdx mice 
treated with prednisolone, a control group of mdx mice treated 
with saline, and a control group of wild-type mice treated with 
saline. It was found that both log [Ef ] and Hf were required 
to statistically differentiate the three groups. In the current 
study, we show that preprocessing of the raw ultrasound using 
optimal smoothing splines before computation of either log [Ef ] 
or a rapidly computable variant of Hf, denoted If,∞, permits 
delineation of all three groups by either metric alone. This 
opens the way to the ultimate goal of this study, which is iden-
tification and implementation of new diagnostically sensitive 
algorithms on the new generation of low-cost hand-held clinical 
ultrasonic imaging systems.

I. Introduction and Literature

In earlier studies, we reported on the application of sev-
eral entropies: Shannon entropy, HS [1]; a continuous 

analog of HS, denoted Hf [2]–[7]; a generalization of Hf, 
the Renyi entropy, If (r), which is defined for all r < 2 (r is 
roughly a reciprocal temperature) [8]; and a limiting form 
of If (r → 2), If,∞ [9], for the detection of changes in back-

scattered RF ultrasound waveform, f (t). In all of these 
studies, the sensitivities of entropic measures, or signal 
receivers, to changes in backscattered RF signal were com-
pared with the sensitivity of a conventional signal receiver: 
either the signal energy Ef or, more typically, its loga-
rithm, log [Ef ]; the entropic measures had greater sensitiv-
ity in all studies but one [10]. Many of these investigations 
were based on molecular targeting of perfluorocarbon 
nanoparticle ultrasound contrast agents to neovasculature 
in tumors. A description of the physical properties of these 
nanoparticles has been published elsewhere [11]. It was 
found that detection of targeted nanoparticles in the an-
giogenic bed, which is highly nonplanar and has sparsely 
distributed target sites, presented challenges that might 
require the application of novel types of signal processing 
[4]–[9]. We were able to show that signal processing based 
on a moving window entropy analysis using (4) could de-
tect accumulation of tissue-targeted nanoparticles within 
15 min of nanoparticle injection. The most notable feature 
of later studies is that If,∞ is computable using an algo-
rithm having a lower operation count than that required 
to produce B-Mode grayscale images and may thus be 
computed in real-time [9], [12].

Analysis based on the entropy If (1) = −Hf, has also 
been successfully applied to characterization of diseased 
and normal smooth muscle [10]. In that study, it was 
shown that Hf images could be used to distinguish normal 
and prednisolone-treated tissue from untreated dystrophic 
tissue, and thus, that entropic images could be used to 
monitor the impact of prednisolone therapy in a dystro-
phic animal model. However, the time required to execute 
an Hf analysis was quite lengthy, on the order of tens 
of hours, and it was unable to distinguish prednisolone-
treated mdx mice and normal mice. These groups could 
be distinguished by log [Ef ], but not the mdx-treated and 
untreated groups.

The purpose of the current study is twofold. The im-
mediate goal is to show that the results of [10] may be 
improved in both speed and sensitivity by preprocessing 
of the RF data with two steps (followed by either entropy, 
If,∞, or energy, log [Ef ], analysis). The first step is the ap-
plication of band-pass filtering in the frequency domain 
to exclude all frequencies outside of the effective band-
width of the transducer, which was 0 to 36 MHz for our 
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data. The second step is fitting of an optimal smoothing 
spline to reduce the impact of noise on the computa-
tion of derivatives needed for computation of If,∞. The 
resulting algorithms run in minutes, rather than the 
hours required for Hf analysis, and both have operation 
counts that are low enough to make real-time opera-
tion feasible with further development. Both steps are 
required to achieve the results presented subsequently, 
which will demonstrate that the two algorithms are 
clinically efficacious and have sufficiently low operation 
count that they are reasonable candidates for clinical 
implementation.

The results thus support the ultimate goal of this 
study, which is identification and implementation of new 
diagnostically sensitive algorithms on the new generation 
of low-cost hand-held clinical ultrasonic imaging systems. 
Accordingly, we have focused our efforts on either dis-
covery of new algorithms, e.g., If,∞, or simple and fast 
preprocessing techniques. The aim of this study is not 
development of sophisticated denoising techniques or sig-
nal models, for which there is a vast body of literature 
[13]–[19].

II. Materials and Methods

A. Entropy-Based Image Formation

All results in this study were obtained using the den-
sity function wf (y) of the continuous function y = f (t), 
assumed to underlie the sampled RF data. Subsequently, 
wf (y) was used to compute the entropy If (r) which deter-
mined a single pixel value in an entropy image. When ap-
plied in this manner, each pixel corresponds to a different 
wf (y). As described in previous studies, wf (y) corresponds 
mathematically to the density functions used in statisti-
cal signal processing [8]; however, its physical meaning is 
very different from its meaning in that context, where it is 
typically one of a family of well-known distributions, e.g., 
that in [13]–[19]. On the other hand, we assume that the 
noise levels in our apparatus are low enough so that with 
sufficient signal averaging, noise may be eliminated, or at 
least reduced to a low enough level that derivatives of f (t) 
may be accurately computed. From these derivatives, the 
density function wf (y) may be directly computed from the 
random variable f (t) [8], which then facilitates calculation 
of the quantities typically discussed in statistical signal 
processing, e.g., mean values, variances, and covariances 
[20]–[22]. However, in typical statistical signal processing 
computations, the density function is usually assumed to 
be continuous, infinitely differentiable, and to approach 
zero at infinity. In our case, wf (y) is not well-behaved and 
has integrable singularities. Although this renders calcula-
tion of the density function more difficult, applications of 
entropy imaging based on wf (y) have shown the cost to be 
justified in terms of increased sensitivity to subtle changes 
in scattering architecture that are often undetected by 
more conventional imaging.

We use the same conventions as in previous studies so 
that

	 w y g yf
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where N is the number of laps, i.e., regions of monotonic-
ity of f (t), gk(y) is the inverse of f (t) in the kth lap, and if 
y is not in the range of f (t) in the kth lap, ′g yk( ) is taken to 
be 0. We also assume that all experimental waveforms f (t) 
have a Taylor series expansion that is valid in the domain: 
[0, 1].

The mathematical characteristics of the singularities of 
wf (y) are important to guarantee the existence of the fol-
lowing expression on which we base our analysis of signals 
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which is obtained by an asymptotic analysis of
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as r → 2−. If (r), known as the Renyi entropy [23], [24], 
is similar to the partition function in statistical mechan-
ics, with the parameter r playing the role of an artifi-
cial reciprocal temperature [8], [25], which is unrelated to 
the actual physical temperature in the scattering region. 
Moreover, If (r) → −Hf as r → 1, using L’Hôpital’s rule, so 
that If is a generalization of Hf :

	 H w y w y yf
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f
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d∫ log 	 (4)

Previous studies have shown that all three quantities: If,∞, 
If (r), and Hf, can be more sensitive to subtle changes in 
scattering architecture than are more commonly used en-
ergy-based measures [7]–[9]. We base our current study 
exclusively on If,∞ because this quantity is calculable in 
real-time [9].

As stated previously, the literature on statistical pro-
cessing of ultrasonic signals is vast and it is not possible 
in the space of a research article to provide a complete 
comparison between our approach and more established 
techniques. However, a limited comparison of our ap-
proach with more established methods in statistical signal 
processing of ultrasonic signals [13]–[19] is shown in Fig. 
1. In the top panel, the backscattered RF signal from the 
biceps of one of the mice used in our study is shown. 
A rectangle is also drawn to indicate a selection of RF 
subsegments that will be subjected to statistical analysis. 
In many approaches to statistical ultrasonic signal pro-
cessing, it is assumed that the distribution of values in 
the ensemble has a Gaussian distribution, e.g., see [13, 
Sec. III, Fig. 5A]. The top panel of Fig. 1 shows several 
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sampled RF segments, each 128 points long, correspond-
ing to 0.128 μs. The histogram determined by the val-
ues of all RF segments in the yellow box is shown at the 
right-hand side of the top panel, and it appears that it is 
indeed approximately Gaussian. This condition permits 
further, and sophisticated, frequency domain analysis of 
the spectra of the RF segments, the goal of which is to 
establish performance bounds and confidence estimates of 
spectral parameters and tissue features [13]. The bottom 
panel illustrates our approach in graphical form. The same 
representative RF segments are shown, but to these are fit 
optimal splines, which are continuous functions. Thus, the 
RF segments are thought of as truly continuous functions 
and, thus, they may be used to compute a density, wf (y). 
We note that the individual density functions, wf (y), are 
dominated by singularities, which correspond to local ex-
trema in the continuous RF waveforms. These are then 
used as described previously to compute entropy, as in (3). 
Thus, in the conventional approach, a PDF is assumed 
for an ensemble or class of waveforms, e.g., backscatter 
from liver or prostrate tissue, which then serves as the 
basis for subsequent analysis. This often takes place in 
the frequency domain. In our approach, there is a unique 
PDF for every RF segment and all analysis takes place in 
the time domain. The relation between our approach and 
the more established statistical analyses is similar to that 
between complexity theory of classes of functions based 
on ε-entropy, e.g., the set of analytic functions of one vari-
able or the class of continuous functions on one hand and 
algorithmic information on the other [26], [27].

B. Log Energy-Based Image Formation

By analogy with the expression for the kinetic energy 
for a mass-spring system, the signal energy of a waveform, 
f (t), measured over the unit interval is usually defined as

	 E f t tf = ( ) .
0

1
2∫ d 	 (5)

This function may also be computed as the second mo-
ment of the density, wf (y), as described elsewhere [10].

C. Moving Window Analysis

In the current investigation, both energy-based, log [Ef ], 
and entropy-based, If,∞, receiver operators were applied 
as sliding boxcar, or moving window, filters to 0.128-μs 
segments of the individual RF backscatter A-lines. The 
moving window was moved in 0.016-μs steps to produce 
either log [Ef ] or If,∞ images. These were then used in a re-
gion of interest (ROI) analysis to compare and assess the 
complementary nature of the two metrics to differentiate 
among normal, untreated dystrophic, and steroid-treated 
dystrophic muscles.

D. Animal Model and Therapy

The study was performed according to an approved 
animal protocol and in compliance with guidelines of the 

Fig. 1. A comparison of (top) established statistical signal processing 
techniques with (bottom) the approach employed in this study. Compari-
son of the two techniques shows that the probability density functions 
have completely different physical origins.
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Washington University institutional animal care and use 
committee.

The mdx mouse possesses a genetic mutation that re-
sults in the absence of dystrophin in the muscles, and is 
considered to be a valid model of human Duchenne mus-
cular dystrophy (DMD) [28], [29]. Dystrophic mdx mice 
(C57BL/10ScSn-DM Dmdx) and appropriately matched 
normal controls (C57BL/10ScSn-J) were acquired from 
the Jackson Laboratory (Bar Harbor, ME) at 8 weeks of 
age. A total of 8 mdx positive- and 5 negative-control mice 
were employed for this study. All mice were housed in the 
same animal facility and cared for within the guidelines 
set forth by the University’s animal care committee. Food 
and water were provided ad libitum.

At an age of 12 months, the 8 mdx dystrophic mice 
were blocked randomly into two groups: 4 receiving ste-
roid treatment, and 4 positive controls. The treated block 
of animals received daily subcutaneous injections of pred-
nisolone sodium succinate, trade name Solu-Delta-Cortef 
(Pfizer Animal Health, Groton, CT), prepared at a dilu-
tion of 1 mg/mL of saline and dosed at 1 mL of solu-
tion/1 kg of body mass, e.g., 30 μL for a 30-g mouse. The 
positive-control block of mdx mice received subcutaneous 
injections of an equivalent volume of saline, specifically 1 
mL/1 kg of body mass. All injections were performed on a 
daily basis for 14 consecutive days, followed by ultrasonic 
imaging and data acquisition on day 15 following the start 
of treatment.

E. Ultrasonic Data Acquisition

To minimize unwanted motion artifact, each mouse 
was anesthetized using a single subcutaneous injection of 
ketamine-xylazine (1:1 mixture, 2 μL per gram of body 
weight) immediately before acquisition of ultrasonic back-
scatter data. Sedated animals were partly submerged in 
a 37°C regulated water bath, with the head above the 
waterline, right forelimb extended and biceps oriented up 
toward the imaging transducer. Each forelimb was imaged 
in transverse cross sections using a Vevo-660 (Visualsonics 
Inc., Toronto, ON, Canada) with a single-element 40-MHz 
wobbler-transducer (model RMV-704, Visualsonics Inc.) 
sweeping back and forth 15 times per second to achieve 
a 30-Hz frame rate. The transduction element was 3 mm 
in diameter and spherically focused to a depth of 6 mm, 
which is equivalent to an f-number of f/2. The focal zone 
spot size was 80 × 1100 μm, determined using the 6-dB 
criterion. The frequency content of the waterpath-only 
transmit pulse was centered at approximately 35 MHz 
with a 40 dB bandwidth ranging from 10 to 60 MHz. The 
actual bandwidth was significantly reduced by tissue at-
tenuation, with the usable bandwidth extending up to 
only 36 dB at the −20-dB point.

To analyze data from the full volume of each biceps 
muscle, a sequence of these transverse sector images was 
acquired from shoulder to elbow, advancing the transduc-
er longitudinally in 100-μm steps using a 4-axis motion 
controller (Unidex 12, Aerotech Inc., Pittsburgh, PA). A 

schematic diagram illustrating the relative placement of 
the transducer, mouse forelimb, and direction of scan has 
been published previously [10]. For completeness, we note 
that the separation between the transducer and the fore-
limb was adjusted to position the 6-mm focal depth in the 
middle of the cross-sectional area of the biceps. At each 
position of the scan, RF data from across the entire sector 
image, 384 RF scan lines, evenly spaced in a 7.8° sector, 
were digitized using a PC-based acquisition card (Compu-
scope CS82G, Gage Applied Technologies, Inc., Montreal, 
QC, Canada). Backscatter data were acquired and stored 
with 8-bit resolution at one Gsample/s for 8192-point re-
cord lengths.

Data were processed to generate three separate co-
registered image representations. First, conventional or 
log of the analytic signal magnitude. Second, integrated 
backscatter, or 128-point boxcar average of the log energy. 
Third, entropy, or 128-point boxcar information theoretic 
receiver, Hf [30]. Representative segments of digitized RF 
data are shown in Fig. 1.

F. Ultrasonic Data Analysis: Band-Pass Filtering

Because the real-time entropy depends on the second 
derivative of the raw data, a potentially noise-enhancing 
process, all RF data were band-pass filtered in the fre-
quency domain as a first step in data analysis. This was 
accomplished by multiplying the Fourier transform by the 
filter function, F( f ),

	
F f a f f

a f

( ) =
1
4 1.0 ( )

1.0 (

( tanh[ ])

( tanh[

+ −

× +

l lower cutoff

u uppe rr cutoff − f )]),
	 (6)

where al = 0.75, au = 0.25, flower cutoff = 0 MHz, and  
fupper cutoff = 36 MHz. These were chosen to correspond to 
the 20-dB point of our apparatus at 36 MHz. This func-
tion, F( f ) has the shape of a smoothed rectangular win-
dow turning on near flower cutoff and turning off near fupper 

cutoff. The coefficients al and au govern the sharpness of 
these transitions. This function was chosen as a gate func-
tion because it is infinitely differentiable.

G. Ultrasonic Data Analysis: Simple Cubic Spline Versus 
Smoothing Spline

After filtering, each of the 384 RF lines in the data was 
fit to one of three types of splines: simple cubic, smooth-
ing cubic spline with smoothing turned off, or smoothing 
cubic spline with optimal smoothing.

1) Simple Cubic Spline: To facilitate comparison with 
previous results [10], a simple cubic spline was fit to the 
data represented by a set of N = 8192 values yi at times 
ti between t1 and tN [31]. This order-N algorithm also pro-
duces the second-derivative values of the fit function [31]. 
Next, a moving window analysis was performed on the 
second-derivative data set, using (2) to compute If,∞, by 
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moving a rectangular window 128 points long, which is 
equivalent to 0.128 μs in 16-point steps, which is equiva-
lent to 0.016-μs steps. This results in 505 window posi-
tions within the output image for each time point in the 
experiment.

2) Smoothing Cubic Spline: In this case, calculation of 
If,∞ via (2) is accomplished by fitting a smoothing spline 
to each set of the 128 points obtained as the moving win-
dow is swept over the experimentally acquired data ar-
ray. The algorithm for this was first described by Reinsch 
in 1967 [32]. Assuming, as described previously, that the 
backscattered RF is represented by a set of (in this case) 
N = 128 values yi at times ti, where i = 1, …, N, the corre-
sponding smoothing spline approximation to those values 
is the function g(t) that minimizes:

	
t

tN
g t t

0

( ) ,2∫ ′′ d 	 (7)

subject to the constraint that
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where, operationally, δyi > 0 is the standard of devia-
tion of the measured data point yi. For this study, we 
have taken this to be δyi = 0.01, which was obtained 
using statistics from the water-only regions of our back-
scattered data. For aesthetic reasons, the smoothing 
parameter Ŝ  is multiplied by the number of points, N, 
to define a new smoothing parameter S = Ŝ  × N. With 
this normalization, S = 0.0, corresponding to no smooth-
ing, the output of the algorithm is identical to a cubic 
spline fit. As S → ∞, the output approaches the best fit 
line to the data. The optimum fit, corresponding to the 
minimum defined by (7) and (8) occurs somewhere near 
S = 1.0.

As discussed by Reinsch, these equations may be com-
bined into the problem of minimizing the functional
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where z is an auxiliary variable, which is needed in addi-
tion to the expected Lagrange multiplier p, because (8) 
is an inequality instead of an equality. Minimization with 
respect to p and z may be performed as described by Re-
insch after writing g(t) as a cubic spline and substituting 
this expression into (9) to obtain an N × N matrix mini-
mization problem that may be solved iteratively. We have 
found, for the data presented in this study, that at most 
10, and on average 9, iterations are required to compute 
the optimal smoothing spline. As is often the case in ma-
trix minimization problems, solution requires the use of 
an algorithm with an operation count of N3 at each itera-
tion. For the Reinsch algorithm, this is Cholesky decom-

position. Consequently, we expect the smoothing spline 
approach to be slower by a factor of N2 than the simple 
cubic spline algorithm. In previous studies [8], upsampling 
of N was required to improve the accuracy of computed 
zeros of the derivatives of f (t). In the current approach, 
this is not necessary, so that N = 128, thus mitigating the 
impact of Cholesky decomposition. The resulting g(t) will 
replace the raw time-domain function f (t) appearing in 
(2) and (5).

The Reinsch algorithm computes the value of g(t), g′(t), 
and g′′(t) at the ti. Thus, it is easy to identify the location 
of critical points by finding zero crossings of the g′(t) ar-
ray and subsequently solving a quadratic equation. This 
is done as described in Press et al. [31, 2nd ed., ch. 5, sec. 
6] to avoid loss of precision in our implementation for 
calculation of the locations of the critical points. Conse-
quently, we obtain more accurate values of the smoothing 
spline, and its first and second derivatives at the critical 
points than was obtained in the algorthim that employed 
unsmoothed splines.

A representative set of these images, which are recon-
structions of a transverse B-scan slice of the biceps, is 
shown Fig. 2. All of the images shown were reconstructed 
from the same raw RF data. In the top row is the con-
ventional gray scale image, which is a limiting form of the 
log [Ef ] image in the limit of smaller and smaller moving 
window length. Several features of the two bottom rows, 
labeled log [Ef ] and If,∞, deserve mention. First, the If,∞ 
image shows roughly the same features as the energy im-
ages above it, but has negative contrast when compared 
with energy images. To achieve a consistent image pre-
sentation, we have therefore shown these images with in-
verted grayscale lookup tables. This relationship between 
energy and entropy images has been observed in previous 
studies [8], [9], [12]. Second, in the If,∞ image obtained 
using optimal smoothing splines, we note the perfectly 
white region between the transducer, which is above the 
mouse, and the white region at deeper, and thus more 
highly attenuated, regions of the image. These correspond 
to regions where the smoothing spline algorithm has re-
turned a masked value indicating that a valid value of If,∞ 
cannot be obtained. Inspection of the If,∞ image shows 
that these correspond to regions where, on experimental 
grounds, we expect the signal to be dominated by noise. 
In fact, the smoothing If,∞ algorithm is written in the C 
programming language so that regions, i.e., moving win-
dow locations, where the second derivative is less than 
DBL_EPSILON are masked. In this case, our algorithm 
returns a masked value chosen to lie outside the range 
of If,∞ values returned at non-noise dominated regions. 
We point out that this masking is automatic in the sense 
that it is obtained without setting of any cutoff level. It is 
imposed by the optimality criterion, the measured noise 
level in the water-only region, and the limitations of the 
digital architecture. Thus, the advantage of this approach 
over the setting of cutoff levels by hand is the economy of 
assumptions it affords and the objectivity with which they 
are implemented.
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H. Image Analysis

Subsequent analyses were performed with these quan-
titative images using the public domain ImageJ software 
[33]. To assist in identifying the boundary of each biceps 
muscle, frames of the conventional image stacks were first 
processed with a 5 × 5 median filter to reduce image 
speckle. We note that this smoothing operation was per-
formed for visualization only, and was not applied to the 
analyzed data. A region of interest (ROI) was then drawn 
to circumscribe the muscle interior on each frame that 
included a biceps cross section, for each image stack. The 
ROIs were drawn in a blinded and randomized fashion 
without knowledge of the animal blocking, and all regions 
were drawn by one operator and reviewed by two others. 
These ROIs were applied subsequently to the appropriate 
frame of the corresponding log [Ef ] and entropy images to 
extract average parameters for each biceps. We note that 
each ROI intersected an average of 80 RF lines on each of 
53 ± 8 frames per mouse biceps.

III. Results

A. If,∞: Simple Cubic Spline

Fig. 3 summarizes the results obtained for all three 
groups if simple cubic splines are used to compute (2). 
These results are statistically equivalent to those that 
were obtained using Hf [(4)] in a previous study of the 
same data: statistical separation of the saline versus pred-
nisolone, and saline versus normal, with no distinction 
observed between prednisolone versus normal groups [10].

It is also possible to execute a smoothing spline analy-
sis with smoothing turned off by setting the smoothing 
parameter S = 0. This analysis has also been performed. 
The results are indistinguishable from those of Fig. 3. This 
fact rules out the use of less accurate, but faster, linear 
interpolation of the second derivative appearing in (2) as a 
major factor preventing differentiation of the prednisolone 
and normal groups which may be obtained if smoothing is 
used (Fig. 3 versus Fig. 4).

B. If,∞: Smoothing Cubic Spline

The corresponding results obtained with optimal 
smoothing (i.e., S = 1) are shown in Fig. 4. The effect of 
smoothing is demonstrated by the statistical separation 
of all groups from each other. This result depends criti-
cally on the elimination of masked pixels from the analysis 
(this is possible in ImageJ). Exclusion of the masked pix-
els is necessary to ensure that significance is not lost. Be-
cause there are measurable clinical differences in size and 
strength between all groups, this result implies greater 
clinical sensitivity and hence utility of the approach based 
on smoothing splines.

C. log[Ef]: Corresponding Results

Smoothing splines may also be used in the computation 
of the logarithm of (5). The results for all three groups 
are shown in Fig. 5. They demonstrate essentially equiva-
lent statistical performance with the If,∞ analysis shown 

Fig. 2. An illustration of representative mdx-saline (positive-control) 
mouse biceps cross sections. The image depicted in the top row is con-
ventional grayscale [i.e., logarithm of the analytic signal magnitude 
(ASM)]. The second row are log [Ef ] images obtained using the same 
RF data using (left) unsmoothed or (right) optimal smoothing splines. 
The bottom row shows the corresponding If,∞ images. The direction of 
insonification is from the top.

Fig. 3. Plot of mean If,∞ for the three groups in this study. Individual 
data points for each member of each group are also shown to give an in-
dication of the scatter in the data. These data were obtained using (2) in 
conjunction with simple (i.e., non-smoothing cubic) splines. As in a pre-
vious study using the same raw RF data, If,∞ operating on unsmoothed 
data are unable to differentiate the prednisolone and normal groups [10].
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in Fig. 4. The corresponding results obtained using un-
smoothed splines are shown in Fig. 6.

For completeness a statistical summary of these results 
is shown in Tables I and II. Table I summarizes results ob-
tained using If,∞. Results obtained using optimal smooth-
ing are shown immediately above the corresponding re-
sults obtained without smoothing, which are enclosed in 
parentheses. The column labeled σ summarizes standard 
deviations, and the column labeled α summarizes the 
standard errors of the mean. Table II summarizes the cor-
responding results for log [Ef ], using the same format. The 
table shows that the effect of smoothing is to increase 
slightly the differences between the means of the three 
groups, especially the difference between the normal and 
prednisolone-treated groups.

IV. Conclusions

The most significant outcome of this study is the essen-
tially equivalent performance of the energy and entropic 
receivers. In other experimental settings, we have found 

entropic signal receivers to be more sensitive to changes 
in scattering architecture caused by accumulation of tar-
geted nanoparticles, e.g., If,∞ in references [7]–[9], [34], 
[35], and to changes in scattering from hard cylindrical 
scatters, e.g., Shannon entropy and Hf [30]. Consequent-
ly, the results of this study on a very different acoustic 
problem, weak scatterering from long fibers, is interesting 
because it supports our belief that there does not exist a 
signal receiver that is better than all others in all scatter-
ing regimes. In fact, based on this principle, our approach 
has been the continual development and investigation of 
multiple signal reveivers, based not only on signal energy, 
but also on a family of entropic quantities. These permit 
simultaneous evaluation of potential changes in scattering 
architecture by multiple metrics with the goal of provid-
ing more reliable characterization than is possible using a 
single signal receiver.

Preprocessing of ultrasonic backscatter by band-pass 
filtering followed by computation of the optimal smooth-
ing splines has been shown to increase the sensitivity of 

Fig. 4. Plot of mean If,∞ for the three groups in this study. Individual 
data points for each member of each group are also shown to give an 
indication of the scatter in the data. These data were obtained using 
(2) in conjunction with optimal smoothing cubic splines. Unlike Fig. 3, 
If,∞ operating on optimally smoothed data are able to differentiate all 
three groups.

Fig. 5. Plot of mean log [Ef ] for the three groups in this study. Individual 
data points for each member of each group are also shown to give an 
indication of the scatter in the data. These data were obtained using 
(2) in conjunction with optimal smoothing cubic splines. As in Fig. 4, 
log [Ef ] operating on optimally smoothed data are able to differentiate all 
three groups. This result may be compared with that shown in [10, Fig. 
5] that was based on unsmoothed RF. In that case, log [Ef ] was unable to 
differentiate prednisolone-treated from untreated groups [10].

Fig. 6. Plot of mean log [Ef ] for the three groups in this study. Individual 
data points for each member of each group are also shown to give an 
indication of the scatter in the data. These data were obtained using 
(2) in conjunction with optimal smoothing cubic splines. As in Fig. 4, 
log [Ef ] operating on optimally smoothed data are able to differentiate all 
three groups. This result may be compared with that shown in [10, Fig. 
5] that was based on unsmoothed RF. In that case, log [Ef ] was unable to 
differentiate prednisolone-treated from untreated groups [10].

TABLE I. Effect of Smoothing on If,∞. 

Group Mean σ α, N = 4

Saline, S = 1.0 −4.97 0.10 0.05
(Saline, S = 0.0) (−5.25) (0.09) (0.04)
Prednisolone, S = 1.0 −4.71 0.11 0.05
(Prednisolone, S = 0.0) (−5.04) (0.10) (0.05)
Normal, S = 1.0 −4.43 0.17 0.08
(Normal, S = 0.0) (−4.86) (0.12) (0.06)

TABLE II. Effect of Smoothing on log [Ef ]. 

Group Mean σ α, N = 4

Saline, S = 1.0 −1.6 0.11 0.06
(Saline, S = 0.0) (−1.15) (0.08) (0.04)
Prednisolone, S = 1.0 −2.13 0.26 0.13
(Prednisolone, S = 0.0) (−1.57) (0.19) (0.09)
Normal, S = 1.0 −2.59 0.28 0.14
(Normal, S = 0.0) (−1.91) (0.24) (0.12)
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both energy-based analysis, log [Ef ], and entropic analy-
sis, If,∞, for the delineation of treated and untreated dys-
trophic skeletal muscle. Further improvements in speed 
of ultrasonic data analysis or data acquisition, e.g., by 
reducing sampling rate requirements, might be realized 
using this technique and will be studied in future inves-
tigations.
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