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Abstract

Recent studies have demonstrated that Monte Carlo (MC) denoising

techniques can reduceMC radiotherapy dose computation time signicantly by

preferentially eliminating statistical uctuations (‘noise’) through smoothing.

In this study, we compare new and previously published approaches to MC

denoising, including 3D wavelet threshold denoising with sub-band adaptive

thresholding, content adaptive mean–median-hybrid (CAMH) ltering, locally

adaptive Savitzky–Golay curve-tting (LASG), anisotropic diffusion (AD) and

an iterative reduction of noise (IRON) method formulated as an optimization

problem. Several challenging phantom and computed-tomography-based MC

dose distributions with varying levels of noise formed the test set. Denoising

effectiveness was measured in three ways: by improvements in the mean-

square-error (MSE) with respect to a reference (low noise) dose distribution; by

the maximum difference from the reference distribution and by the ‘Van Dyk’

pass/fail criteria of either adequate agreement with the reference image in low-

gradient regions (within 2% in our case) or, in high-gradient regions, a distance-

to-agreement-within-2% of less than 2 mm. Results varied signicantly based

on the dose test case: greater reductions inMSEwere observed for the relatively

smoother phantom-based dose distribution (up to a factor of 16 for the LASG

algorithm); smaller reductions were seen for an intensity modulated radiation

therapy (IMRT) head and neck case (typically, factors of 2–4). Although

several algorithms reduced statistical noise for all test geometries, the LASG

method had the best MSE reduction for three of the four test geometries, and

performed the best for the Van Dyk criteria. However, the wavelet thresholding
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method performed better for the head and neck IMRT geometry and also

decreased the maximum error more effectively than LASG. In almost all cases,

the evaluated methods provided acceleration of MC results towards statistically

more accurate results.

1. Introduction

Accurate radiotherapy dose calculations are increasingly more important because treatment

margins in conformal therapy or intensity modulated radiation therapy (IMRT) are often

reduced or steep gradients are used near important normal tissue structures and target volumes.

Most simplied dose calculation algorithms have reduced accuracy in the presence of air

cavities, bones or complex lung density variations (Ahnesjo and Aspradakis 1999). Monte

Carlo (MC) methods, in their combination of underlying simplicity and delity to basic

physics, appear to be a reliable technique for advanced radiotherapy treatment planning

(Ma et al 2000, 2002, Li et al 2001, Jones et al 2003). Calculation times, however, are

typically longer compared to more approximate methods. Recently, a technique for reducing

MC dose computation time many-fold was proposed (Deasy 2000), based on the idea that

MC results could be modelled as the sum of the ‘true’ dose distribution (i.e., the result for an

innite number of source particles) and a noise source (due to statistics of particle counting).

Analogous to image restoration problems in the eld of image processing, an improved

estimate of the true image can then be produced by ‘smoothing’ or ‘denoising’ the raw MC

result, produced with fewer source particles than needed without denoising, resulting in an

accelerated approach to the true dose distribution7. The goal of MC denoising algorithms is

to be as aggressive as possible in locally smoothing the raw MC result while attempting to

avoid the introduction of systematic error (‘bias’), especially near sharp features such as beam

edges.

Although there is a wide agreement that some form of post-processing denoising

is benecial (Deasy 2000, Deasy et al 2002, Kawrakow 2002, Fippel and Nusslin 2003,

Miao et al 2003), the methods which have been reported to accomplish this are extremely

varied. More recent reports have focused onmethods which adapt to the local dose distribution

characteristics. There is extreme variety even among this category, which is unsurprising.

There are many known methods from the image restoration eld which apply to this problem

(Jahne 1997, Lim 1990). Some of the proposed MC denoising techniques were inspired by

image processing methods (e.g., convolution ltering, wavelets, anisotropic diffusion (AD),

adaptive median ltering), whereas other methods do not have obvious counterparts in the

image processing literature (e.g., Kawrakow’s locally adaptive method, Fippel and Nusslin’s

formulation of denoising as a global optimization problem). All the methods reviewed here

go well beyond standard image-processing/image-restoration techniques. In this paper, we

compare the performance of several previously proposed denoising methods when applied to

a variety of MC datasets. The goal here is not to examine all aspects of MC denoising, but

to make a fair comparison of proposed denoising methods in terms of statistical accuracy and

computational speed.

7 The term ‘denoising’ is preferable to ‘smoothing’ as there are often nonsmooth features in the dose distribution.

Here the term ‘true’ dose distribution merely means the digital dose distribution produced in the limit of an innite

number of digital source particles.
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2. Methods

2.1. Denoising methods

2.1.1. Locally adaptive Savitzky–Golay ltering. In Kawrakow (2002), a three-dimensional

generalization of a Savitzky–Golay lter8 was proposed with an adaptive window size

(independent x, y and z widths), selected based on a chi-square comparison between the local

ltered voxel value and the raw MC value to limit the effect of systematic bias. Essentially,

the size of the local linear-quadratic curve-tting region is made as large as possible while

still not introducing bias detectable according to the local chi-square test. Moreover, it was

demonstrated that this technique could be applied in multi-batch mode to provide further

improvements: the individual batch processed locally adaptive Savitzky–Golay (LASG)

results (typically from one of four divided batches) are combined, voxel-by-voxel, according

to estimated uncertainties of the batch results.

For these tests, the maximum window size for the 1D ltering phase was seven voxels;

for the 3D phase it was ve. The maximum accepted chi-square value was set to 1 (except

in one case when the output of DOSXYZ was known to underestimate uncertainties and the

chi-square cutoff was set to 1.7). The implementation was that described in Kawrakow (2002).

2.1.2. Content adaptive median hybrid lters (CAMH). In a new approach, linear lters were

combined with the median operation to produce hybrid median lters. This technique is more

fully described in a conference proceeding (El Naqa et al 2003), but is briey described here.

The lter is a weighted sum of a local linear lter and the median operation. This can be done

in a xed way (linear median-hybrid ltering) or in a way which depends on the local image

(dose) characteristics (content-adaptive median hybrid (CAMH) ltering). The basic idea is

that in regions with strong second derivative features, the median operator is used (although

based on a set of mean values computed along sampled directions); in smoother regions the

mean operator is preferred. Generally, median lters outperform the moving average and other

linear lters in removal of impulsive noise (outliers) and preservation of edges, but they fail to

provide the same degree of smoothness in homogeneous regions, thus motivating an adaptive

combination with mean value (linear) lters. Here, the motivation is purely the preservation

of sharp features in high second derivative regions. However, CAMH does not make use of

uncertainty information.

For these tests, spatial derivatives were computed after smoothing with Gaussian kernels

of widths (σ ) 0.1 and 1 andwindow sizes of 3 and 5 voxels, for the derivative and the smoothing

kernels, respectively. The window widths were 3 or 5 voxels.

2.1.3. Wavelet threshold denoising (WTD). Deasy et al (2002) studied wavelet denoising

using the computationally efcient 9,7-biorthogonal basis. 3D dose distributions were

transformed into wavelet space on a slice-by-slice basis; then wavelet coefcients below

a selected threshold were set to zero (‘threshold denoising’), and smoothed dose images were

reconstructed from the remaining coefcients. The wavelet code used here, however, is a fully

3D realization of the same fast biorthogonal 9,7-transform. ‘Spin cycling,’ the averaging

of wavelet results for all possible one-voxel (nearest-neighbour) shifts, is applied. The

threshold values were derived by minimizing Stein’s unbiased risk estimate (SURE) in each

sub-band (wavelet decomposition support size) (Donoho and Johnstone 1995). Essentially,

SURE attempts to tune the wavelet denoising threshold automatically to achieve estimated

8 Savitzky–Golay lters are equivalent to tting a windowed region to a polynomial in x, y, and z. See Deasy (2000)

or Kawrakow (2002) for further description.



912 I El Naqa et al

minimum mean-square-error (MSE) for each wavelet sub-band. The statistics of the noise

were determined using the median absolute deviation (Fodor and Kamath 2001).

2.1.4. Anisotropic diffusion (AD). An adaptive denoising method based on anisotropic

diffusion was proposed by the University of Wisconsin-Madison group (Miao et al 2003).

The ‘true’ dose distribution is modelled analogous to heat transport, but with a diffusivity

which varies as a function of position and transport direction. Thus, diffusion can be lowered

in directions across edges (reducing smoothing) and increased in directions parallel to an edge

(thus preserving the edge). In the implementation of Miao et al, the diffusivity was also a

function of the MC noise level.

For these tests, and based on trial runs, algorithm parameters were set as follows (see

Miao et al, for denitions): the threshold K was set to 1.75 times the estimated uncertainty9

of the noise; the integration constant t was set to 0.15; the number of iterations was chosen

between 4 and 7 to achieve the best trade-off between blurring/biasing and noise suppression.

The implementation (in heavily-vectorized Matlab code) was by the Washington University

group.

2.1.5. Noise reduction as an optimization problem: the iterative reduction of noise method

(IRON). Fippel and Nusslin (2003) proposed a denoising method in which denoising is

formulated as a minimization problem with a smoothing term related to the local curvature

(greater smoothing where there is less curvature) and a restoration penalty term designed to

control the introduction of bias. The Tuebingen implementation was used for all tests reported

here. The weighting factor parameter was of the order of 1% and only values larger than 5%

of the maximum dose were denoised.

2.2. Denoising metrics

It has been shown that the statistical variance can be written as

σ
2(d) = d

C

N
, (1)

where d is the mean dose in that voxel, N is the number of source histories and C is a

proportionality constant which depends on the voxel material (Sempau and Bielajew 2000).

Applying a pre-denoising square-root transformation reduces the local dependence of the noise

level on the dose level (Deasy 2000). However, experience showed that the transform was

quantitatively unimportant and is therefore not applied here.

We dene a mean-square-error improvement ratio (IR) as

IR =

MSE(dref − di)

MSE(dref − d̂ i )
, (2)

where ‘MSE’ is the mean-square error with respect to the benchmark (high density) MC result

(dref), d
i is a noisy (low density) sample realization and d̂ i is the result of denoising di . This

improvement factor was computed only for voxels with dose values equal to or greater than

50% of the maximum dose in the benchmark image. This was done to numerically emphasize

the effect of denoising on the higher dose regions, where the accuracy of the dose distribution

features is more likely to impact treatment plan review. The selection of 50% as the threshold

is unimportant; we expect similar results for thresholds which are between 10% and 90%.

9 The term ‘uncertainty’ here means the estimated repeat-run standard deviation of dose values in the high dose

region.
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If denoising is fast relative to the MC compute time (usually the case), the IR serves as an

estimate of how much longer the MC simulation would need to be run to achieve the same

MSE compared to starting with a noisy realization and denoising. However, if denoising

computation time is signicant compared to the MC simulation time, it should be included

explicitly in the calculation of an efciency improvement ratio (Kawrakow 2002).

Other criteria besides improvements in the MSE can also be applied (Kawrakow 2002).

In addition to MSE improvement, we also examined the smoothness of isodose lines, the

behaviour of the maximum dose variation from the reference and the fraction of points failing

the Van Dyk criteria (Van Dyk et al 1993). In areas of low gradient, a voxel passes the

test if it is within a given percentage of the reference dose (%); in areas of high gradient

(taken here as a maximum slope greater than 30◦), a voxel may also pass the test if any point

(not just a voxel) within a distance y agrees with the reference dose to within%. In practice,

we interpolated points to a 1 mm grid in areas of high gradient.

2.3. Dose distribution test cases

2.3.1. Heterogeneous phantom with electron beam. A highly challenging denoising dataset

used here was originally described byKawrakow (2002). The phantom comprises cubic voxels

of width 2 mm. The mostly water phantom contains an aluminium block and an air cavity

at a depth of 1 cm. The source was 20 MeV monoenergetic electrons. In the resulting dose

distribution, there is a very sharp penumbra at shallow depths, gradually widening towards

the practical range of the electrons. Distributions with uncertainties of 5.1%, 3.2% and 2.2%

were denoised with a benchmark distribution of 0.2% uncertainty.

2.3.2. Intensity modulated radiation therapy head and neck dose distribution. The head and

neck dose distribution was generated using VMC++ (Kawrakow 2001) with ve equi-spaced

coplanar beams, using a 6 MV photon spectrum, and beamlet widths of 0.5 cm × 0.5 cm at

isocentre. The target volume and CT data were accessed using our research treatment planning

system, CERR (‘computational environment for radiotherapy research’, Deasy et al (2003)).

VMC++ has been integrated with CERR, resulting in a convenient system for producing MC-

generated beamlets (Lee et al 2003). Optimization was performed using in-house algorithms.

The calculated total MC dose distributions had uncertainties of 3.3% and 6.6%. A benchmark

was generated with 40 million source photons with a photon splitting factor of 40 (effectively

1.6 billion photons) resulting in a 0.2% uncertainty.

2.3.3. Computed-tomography-based lung dose distributions. Two lung CT-based test cases

were used: the ‘lungA’ distribution was computed at Washington University as part of an

ongoing project to recompute archived lung treatment plans with MC methods (uncertainties

5.7%, 1.8%, 0.9%, and 0.2% for the reference image). The ‘lungB’ distribution, provided

by Virginia Commonwealth University, was computed for MC uncertainties of 7.2% and

3.7%, with a reference image uncertainty of 0.4%. Only a single batch was used for the

lungB tests.

3. Results

3.1. Isodose smoothing

Sample isodose contour results at the mid-plane of the electron-beam phantom are shown in

gure 1. It is seen that many of the denoising algorithms produce surprisingly smooth isodose
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NoisyReference

CAMHAD

WTD

IRON

LASG

Figure 1. Denoising and isodose-line smoothing. Examples of isodose contours of a plane from

the 3D heterogeneous phantom with 20 MeV incident source electrons, including a ‘reference

image’ (0.2% uncertainty), a ‘noisy run’ and denoising results. Denoising using various methods

results in a vast improvement in isodose line intelligibility and accuracy. The LASG result is the

closest to the reference image.

line contours given the noisy (3.2% uncertainty) input. However, small hot spots near the

entrance and the heterogeneities are difcult to denoise, and there are signicant variations

between the methods. In particular, the LASG method performs signicantly better than other

methods in this case.

3.2. Greyscale smoothing

As an example of the effect of denoising on greyscale dose display, gure 2 shows the raw

and wavelet denoised results for the lungB dose distribution (3.7% uncertainty). As expected,

the beam boundaries are much sharper and the dose distribution interior regions are much

smoother for the denoised results. Similar improvements would be expected for colourwash

dose displays.

3.3. The introduction of bias

For a test of the introduction of bias by the different denoising techniques, gure 3 shows, for

the IMRT head and neck case, images of the difference between denoised dose distributions
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WTD coronal

Noisy MC transverse Noisy MC coronal

WTD transverse

Figure 2. Denoising and greyscale dose display of the LungB case. Top row: original noisy

treatment distribution (3.7% uncertainty). Left is a transverse data cut and right is a coronal slice.

Bottom row: an example of a denoised greyscale display (WTD).

and the reference MC image. Many beam edges show bias, which is expected due to their

high-frequency characteristics.

3.4. MSE improvement ratios

Figure 4 summarizes MSE improvement ratios for the four different test cases. The different

techniques change ranking depending on the dose distribution. However, the LASG method

always performs well, having the best performance in three out of four geometries and a close

second in the other (the optimized IMRT test).

3.5. The Van Dyk test

Figure 5 summarizes the fraction of voxels which pass the 2% (low gradient) or 2 mm distance-

to-agreement (high gradient) criteria. (Note that 2% is a very low threshold for comparison
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AD CAMH

IRON

LASG

Noisy

WTD

Figure 3. Smoothing versus bias. Difference images of a slice of the denoised IMRT dose

distribution (3% uncertainty) with respect to the reference MC result: (denoised voxel− reference

voxel)/reference voxel. The ‘Noisy’ dose greyscale image is shown for reference. Streaks indicate

that bias is present, typically near beamlet edges.

purposes and is not meant to indicate acceptable accuracy.) Similar to the MSE results, the

only algorithm to distinguish itself was the LASG, which in all tests performed better or nearly

as well than the other algorithms.
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Figure 4. MSE improvement ratios for the four test cases. LASG performs the best in three cases

and nearly the best in the fourth case (WTD performs the best for the IMRT case). MSE ratios

decrease with decreasing uncertainties apparently due to the residual effect of bias in the denoising

MSE term.

3.6. Reduction in maximum error

Figure 6 shows the maximum error, dened as the maximum difference from the reference

image divided by the maximum reference image dose. For this metric, the LASG

underperforms compared to the other methods (except CAMH which performs poorly). This

is apparently due to the fact that the chi-square test will show a lack of t in the local region

when a statistical ‘outlier’ is smoothed; hence smoothing of outliers is inhibited. CAMH has

a poorer performance, and actually makes the maximum error worse as seen in the lung cases,

apparently due to its failure near ‘corners,’ which can result in increased bias.

3.7. Improvements due to batching

Batched denoising refers to denoising of fractional independent MC runs (batches)

individually, then combining the batch results into a single dose distribution. The process

of applying denoising to batches can be benecial if the algorithm locally smoothes more

aggressively when local noise in that batch happens to be statistically reduced. This effect

is further enhanced if the algorithm combines batch-denoising results weighted relative to

their lter window sizes/estimated uncertainties, rather than straight arithmetic averaging.

Among current denoising techniques, only the Kawrakow method carries along estimated

batch uncertainties. Batching resulted in an improvement factor of 2 in the case of the 3-D

heterogeneous electron-beam phantom but had a negligible effect in the lungA case. For the

other methods, we applied batching by arithmetic mean values, which produced signicant



918 I El Naqa et al

2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Noise std. dev.

F
ra

c
ti
o

n
 f

a
ili

n
g

Hetero. phantom

3 4 5 6 7
0.3

0.4

0.5

0.6

0.7

0.8

Noise std. dev.

F
ra

c
ti
o

n
 f

a
ili

n
g

IMRT plan

AD
LASG
CAMH
IRON
WTD
UND

0 2 4 6
0

0.2

0.4

0.6

0.8

Noise std. dev.

F
ra

c
ti
o

n
 f

a
ili

n
g

lungA

3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Noise std. dev.

F
ra

c
ti
o

n
 f

a
ili

n
g

lungB

Figure 5. Fraction of voxels failing a 2%/2 mm criterion for the four test cases. Relative algorithm

performance is similar to the MSE improvement ratio tests. ‘UND’ refers to the fraction failing in

the undenoised (raw) results.

improvements only in the case of the content adaptive median hybrid lter, which improved

by a factor of 1.1 in the case of 3D electron-beam phantom, and a factor of 1.2 in the lung

case.

3.8. Computation time

The denoising algorithms vary with respect to computational speed. We have attempted to

relate programs running on different hardware platforms (Intel and AMD CPUs), operating

systems (Windows and Linux) and differing clock speeds, to estimate approximate speed of

denoising for a hypothetical dose distribution of size 100× 100× 100 (see table 1). Note that

LASG runs approximately three times faster without batching.

4. Discussion

Wehave not attempted to identify the pre-denoising uncertainty necessary to produce clinically

useable treatment plans, which will require further research. However, based on results

shown here, we judge that pre-denoising uncertainties of greater than 5% are probably too

large. Rather, uncertainties of 2–3% may produce clinically useful post-denoising results.

In that region, the typical improvement ratio in MSE for the CT-based cases was 2.5–3.

Maximum error of denoised distributions can still be large for raw MC uncertainties of

3% (max. error up to about 15%, see gure 6). The Achilles’ heel of MC may be said

to be the time necessary to reduce the maximum error to a low level. Maximum error
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Figure 6. Maximum fractional dose error for the four test cases. Relative algorithm performance

is somewhat different to the other tests: WTD is the best performer in three of four cases. ‘UND’

refers to the maximum dose error in the undenoised (raw) results.

Table 1. Approximate denoising algorithm run-times, estimated for a Pentium IV, 2GHz computer,

in microseconds per voxel, or total time in seconds for a dose distribution of size 100× 100× 100.

The result quoted for IRON includes a typical speed-up factor due to denoising only voxels with

dose greater than 5% of the maximum. The result quoted for LASG is based on using four batches.

The slowness of the CAMH algorithm is due partly to implementation in Matlab for prototyping.

Microsecond per voxel,

or seconds for a size

Method 100 × 100 × 100 dose distribution

WTD 8

AD 10

IRON 20

LASG (one batch) 22

LASG (four batches) 65

CAMH 900

increases slightly slower than logarithmically with the number of voxels (see Kawrakow

(2002)). Fortunately, many treatment planning metrics, such as the mean dose, are relatively

insensitive to moderate errors in a small number of voxels (except, of course, the minimum or

maximum dose metrics). Establishing the correct level of acceptable uncertainty for clinical

MC use would ultimately require consideration of the relevant clinical outcome endpoints and

the corresponding probability models.

Relative performance as measured either by improvements in mean-square error or the

‘2%/2 mm’ criteria tended to behave similarly, though differences were seen. In those tests,

the LASG method was the clear leader, performing well even when it did not yield the best

metric (wavelet threshold denoising (WTD) performed slightly better for the IMRT case).
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However, several other algorithms outperformed LASG in reducing maximum error,

including WTD, iterative reduction of noise (IRON) method and the AD algorithm. In

particular, WTD reduced maximum error the most in three of four test cases. Therefore, it is

difcult to declare a ‘winner’ in the absence of a more denite preference for one metric over

another.

Denoising computation times varied considerably (see table 1). The overall efciency

gain from denoising also depends critically on how long the MC calculation takes to reach

some threshold of acceptably low noise prior to denoising. This varies widely between

different codes and applications. For limited situations, MC run times are currently

signicantly less than 1 min (for example, using VMC++ to simulate electron beams). In that

case, denoising run time could be a signicant fraction of the overall run-time and the fastest

denoising algorithms (such as the wavelet or anisotropic diffusion methods) automatically gain

some advantage. However, for run times longer than a couple of minutes, as currently seen

for photon beam calculations for VMC++ and for other MC codes, denoising computation

time variations are of less signicance (except for the slow prototype CAMH algorithm). In

that case, the improvement in MC run times due to the use of denoising is dominated by

the effectiveness of the denoising. Improvement ratios by themselves are therefore usually a

fair measure of photon MC computation time acceleration with respect to mean-square error.

Of course, as computers become faster, relative computation times will improve for both

denoising algorithms and MC algorithms in the same proportions. Denoising will therefore

retain its overall acceleration factor effect on computation time, but the magnitude of the time

advantage will decrease.

Although we have focused on the mean-square error and the ‘2%/2 mm’ criteria as fair

comparative measures of algorithm performance, isodose line smoothness is also important.

Much of the mean-square error is due to systematic bias (as shown in the normalized error

images in gure 3) which would be unchanged from denoising run to denoising run. This

implies that, with respect to isodose line noise alone, the acceleration is greater than the quoted

mean-square-error improvement ratios (again, see gure 1). This aspect of denoising was also

apparent in Deasy et al (2002), wherein the image roughness of the denoised result (dened as

the square root of the median of the squared Laplacian) was nearly constant and independent

of initial noise smoothness for 2D wavelet denoising.

The denoising algorithms reviewed here use several very different strategies, all based

on some form of local adaptation. Wavelets, which are often thought of as ‘automatically

adapting’ to local smoothness, nevertheless have the weakest local adaptation, due to the

global thresholds selected (although the different wavelet scales have different thresholds).

Clearly, there are many different routes to developing a successful MC denoising algorithm.

Further developments in denoising algorithms could therefore be expected in many ways, for

example, by improving implementation speed or by combining ideas used in the different

algorithms.

The raw MC datasets used for these comparisons are available from the corresponding

author. We hope that they will help facilitate evaluations of future denoising research.

5. Conclusions

Several denoising algorithms have been reviewed which improve MC dose distribution

smoothness and statistical dosimetric accuracy. We compared different MC denoising

approaches on datasets with widely varying characteristics. We conclude that:

1. The effective acceleration achieved by denoising depends signicantly on the

characteristics of the dose distribution. For example, MSE improvement ratios achieved
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for the heterogeneous electron beam phantom (at most 16, using LASG) were much

higher than improvement ratios achieved for the head and neck IMRT treatment plans

(at most 4.5 using WTD). Apparently, much higher improvement ratios are possible

when large volumes of the dose distribution are very smooth, as is the case for the

heterogeneous phantom distribution. The results also indicate the denoising will be more

effective for conformal therapy dose distributions than topologically more complicated

IMRT dose distributions. Nevertheless, even IMRT dose distributions have improvement

ratios greater than 2.

2. Relative algorithm performance depends on the dose characteristics and the ranking

metric. LASG performed well for all the MSE and Van Dyk criteria tests, but less well

in reducing maximum dose error. Overall, several algorithms can be judged to perform

well, including LASG, WTD, AD and IRON. In particular, WTD was the strongest at

reducing maximum error and also was the best performer on the IMRT case for the other

metrics. The wavelet method performed well for all the computed-tomography-based

dose distributions. The CAMH algorithm, in contrast, introduced undesirable increases

in the maximum dose error and had an undistinguished performance in the other tests.

3. Lastly, these tests again support the conclusion that MC denoising is a useful post-

processing step which can be used to improve isodose line smoothness and dosimetric

accuracy. MC denoising is therefore a desirable component of MC treatment planning

systems.
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