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Abstract

Manifold learning has become a vital tool in data driven
methods for interpretation of video, motion capture, and
handwritten character data when they lie on a low dimen-
sional, non-linear manifold. This work extends manifold
learning to classify and parameterize unlabeled data which
lie on multiple, intersecting manifolds. This approach sig-
nificantly increases the domain to which manifold learn-
ing methods can be applied, allowing parameterization of
example manifolds such as figure eights and intersecting
paths which are quite common in natural data sets. This
approach introduces several technical contributions which
may be of broader interest, including node-weighted multi-
dimensional scaling and a fast algorithm for weighted low-
rank approximation for rank-one weight matrices. We show
examples for intersecting manifolds of mixed topology and
dimension and demonstrations on human motion capture
data.

1. Introduction

Data-driven modeling is a powerful approach for non-
rigid motion analysis. Manifold learning approaches have
been applied to automatically parameterize image data sets
including head pose, facial expressions, bird flight, MR im-
agery, and handwritten characters. Each of these data sets
lies on low-dimensional manifolds that are not linear sub-
spaces of the (high-dimensional) input data space. Manifold
learning approaches seek to explicitly or implicitly define
a low-dimensional embedding of the data points that pre-
serves some properties (such as geodesic distance or local
relationships) of the high-dimensional point set.

When the input data points are drawn from multiple
(low-dimensional) manifolds, many manifold learning ap-
proaches suffer. In the case where the multiple mani-
folds are separated by a gap, techniques such as isomet-
ric feature mapping (Isomap) [15] may discover the dif-

Figure 1. For high-dimensional data points
which lie on intersecting low-dimensional
manifolds, manifold embedding techniques
benefit from first separating points into dis-
tinct classes. These toy problems illustrate
relevant cases. (left) The spirals data set,
which can be embedded in two dimensions
with minimal error, can also be embedded
as two one-dimensional manifolds. (right)
The circle-plane data set includes component
manifolds of different dimension. The seg-
mentations shown here by the different sym-
bols are automatically determined by the ap-
proach developed in this paper.

ferent manifolds as different connected components in the
local neighborhood graph, and spectral clustering tech-
niques may identify and cluster each manifold based on
the optimization of certain objective functions. However,
if there is significant overlap in the manifolds, prior meth-
ods fail in one of two ways: either, in the case of Isomap,
from the non-existence of a low-dimensional embedding
which exactly (or nearly) preserves properties of the high-
dimensional manifold, or, in the case of Locally Linear Em-
bedding (LLE) [13] or Semidefinite Embedding (SDE) [16],
from the fact that additional work is necessary to interpret
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the coordinates of the low-dimensional embedding.
In the next section, we review methods for non-linear

dimensionality reduction and discuss the limitations of ex-
isting algorithms on datasets where the points come from
multiple, intersecting manifolds. In section 3, we present
our algorithm for manifold clustering and highlight two
novel technical contributions: node-weighted multidimen-
sional scaling and a fast algorithm for weighted low-rank
approximation for rank-one weight matrices. In section 4
we show results of our algorithm on artificially generated
data and human motion capture data of actors performing
different activities. Finally, we conclude in section 5 with a
brief discussion.

2. Related Work

Classical dimensionality reduction techniques for a im-
age sets rely on Principle Component Analysis (PCA) [9]
and Independent Component Analysis (ICA) [8]. These
seek to represent data as linear combinations of a small
number of basis vectors. However, many natural image data
sets have an intrinsic dimensionality that is much less than
the number of basis images required to linearly reconstruct
them.

This has led to a number of methods seeking to parame-
terize low-dimensional, non-linear manifolds. These meth-
ods measure local distances or approximate geodesic dis-
tances between points in the original data set, and seek
low-dimensional embeddings that preserve these proper-
ties. Isomap [15] extends classic multidimensional scaling
(MDS) by substituting an estimate of the geodesic distance
along the image manifold for the inter-image Euclidean dis-
tance as input. LLE [13] attempts to represent the image
manifold locally by reconstructing each image as weighted
combination of its neighbors. SDE [16] applies semidef-
inite programming to learn kernel matrices which can be
used to create isometric embeddings. Isomap performs well
for image sets sampled from convex manifolds. LLE and
SDE do not fail in the case of non-convexity, but do not cor-
rectly work to parameterize a sphere (i.e., give points on a
sphere two coordinates instead of 3), such as [12]. These
algorithms, and others [6, 4, 2] have been used in various
applications, including classification, recognition, tracking.

There has been some recent work in manifold learning
for datasets whose points do not lie on a single, simple man-
ifold. In [3], a multi-manifold problem is described where
the data, comes from an underlying, possibly large set of
low-dimensional manifolds. The authors exploit common-
alities in the tangent spaces on different parts of the man-
ifold in order to learn manifolds for under-sampled data.
In [17], the multi-class manifold problem is presented. This
considers data sets whose points come from a single, under-
lying low-dimensional manifold; however, this manifold is

sampled in such a way that large “gaps” are introduced and
the data set is fragmented. [17] addresses a failure mode of
Isomap described in [1] where, for data sets with certain
properties, any neighborhood size selected either “short-
circuits” the true manifold or only learns the manifold for a
subset of the data points. The authors demonstrate an algo-
rithm for learning the underlying manifold by differentiat-
ing between intra- and inter- fragment distances. Similarly,
in [7], data sets whose points lie on disjoint manifolds are
embedded on a single coordinate system.

In this work we consider the case where the multiple un-
derlying manifolds are of mixed topology and dimensional-
ity and also not necessarily fragments of a single underlying
manifold. In addition, we focus on the case of intersecting
manifolds.

3. Manifold Clustering

Our goal is to partition an input data set into clus-
ters where each cluster contains data points from a single,
simple low-dimensional manifold. We start by assuming
that the number and dimensionality of the low-dimensional
manifolds are known. Specifically:

Given a set of points {X1, X2, · · · , Xn} derived from
k intersecting non-linear manifolds where Xi ∈ RD for
some dimension D, output the set of labels {c1, c2, · · · , cn}
where ci ∈ 1, 2, . . . , k is an index specifying to which output
manifold a point belongs, and {Y1, Y2, · · · , Yn} where Y ∈
Rd (for d < D) is the low dimensional embedding of a point
on its associated manifold.

Without any priors on the labels of the input data, we
are left to simultaneously learn this labeling and estimate
the parameters of the underlying manifolds. The natu-
ral solution to this class of problems is an Expectation-
Maximization (EM) type algorithm. In figure 2, we provide
a sketch of the algorithm. The remainder of this section de-
scribes the problems that arise and their technical solutions.

Figure 3 shows a plot of our algorithm converging to a
solution on an artificially generated “spiral” data set with
k = 3 clusters. The plot estimates the classification error
using the weighted average of the residuals to each cluster.

3.1. Algorithm Design

The algorithm begins in the same manner as Isomap
(steps 1, 2, and 3), by estimating geodesic distances be-
tween points. The goal is to partition the points so that
within each partition, the geodesic distances are consistent
with the Euclidean distances of low dimensional embed-
ding. This partitioning step is performed with an Expec-
tation Maximization approach.

Classic EM algorithms have two distinct steps: the as-
signment of data points to model(s) of best fit (E-Step) and
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Given: A set of images {X1, X2, · · · , Xn} and a desired
label set size, k

1. Calculate d(i, j) = ||Xi −Xj ||2

2. Create a graph G = (V,E) with a node for each image,
and an edge between pairs of neighboringa images and
set the edge weight to that distance.

3. Compute all pairs shortest path distances on G. Let
d(i, j) be the length of the shortest path between node
i and node j. Define a distance matrix D such that
D(i, j) = d(i, j)2.

4. Initialization: Create a k × n matrix W where wci is
the probability of Xi belonging to manifold c. W can
be initialized randomly unless domain-specific priors
are available.

5. M-Step: For each class, c, supply ~wc and D and use
node-weighted MDS to embed the points in the desired
dimension.

6. E-Step: For each point, estimate the distance to the
manifolds implied by the output of Step 5 and re-
weight accordingly.

7. Go to Step 5 until convergence.
aTwo common methods for selecting neighboring images are ε-sphere

and k-nearest neighbors.

Figure 2. Our approach for manifold cluster-
ing. Steps 1-3 are identical to the initialization
steps of the Isomap algorithm.

the estimation the parameters of those models (M-Step). In
most cases, the assignments of points to models are par-
tial, or soft, assignments. In the M-Step, these assign-
ments serve to weight the contribution of each data point
in defining each model. Since current manifold learning al-
gorithms treat each data point equally, one challenge is to
develop manifold embedding techniques for weighted point
sets. This challenge is met with our algorithm using the
development of Node-Weighted Multidimensional Scaling,
which we introduce in Section 3.2.

After the manifold is constructed, the E-step seeks to up-
date the assignments of each point by determining how well
they fit each model. This cannot be done directly because
MDS does not explicitly construct a manifold. Section 3.3
discusses a heuristic to approximate a measure of the dis-
tance of each point to each manifold.

Figure 3. The plot on the right shows the de-
creasing classification error during the itera-
tions of our algorithm. This estimate of clas-
sification error is the weighted average of the
residuals of all the points to each cluster.

3.2. Node-Weighted MDS

Below, we outline traditional multidimensional scaling.
In our approach, we require a weighted version of this pro-
cedure. We call this procedure node-weighted MDS to dis-
tinguish it from traditional weighted multidimensional scal-
ing, commonly referred to as individual differences scaling
or INDSCAL [5], which considers the problem of balancing
multiple distance (or similarity matrices) when each point
may have different weights with respect to different distance
matrices.
MDS (Multi-Dimensional Scaling) Given n×n matrix D,
such that D(i, j) is the desired squared distance from point
i to point j:

1. Define τ = −HDH/2, (H is called the centering ma-
trix, H = I − ~e~e>/n and ~e = [1, 1, · · · , 1]>).

2. Let s1, s2, . . . be the (sorted in decreasing order)
eigenvalues of τ , and let v1, v2, . . . be the corre-
sponding (column) eigenvectors. The matrix Y =
[
√

s1v1|
√

s2v2| . . .
√

skvk] has row vectors which are
the coordinates of the best k-dimensional embedding.

The matrix Y Y > is the best rank k approximation
to τ (with respect to the L2 matrix norm). The pro-
cess finds the k-dimensional coordinates that minimize∑

ij

(
|Yi − Yj |22 −D(i, j)

)2
[10]. In contrast, node-

weighted MDS seeks to minimize the following:∑
ij

wiwj

(
|Yi − Yj |22 −D(i, j)

)2
.

The process starts by changing the initial centering matrix
to be a weighted centering matrix: 1

H ′ = I − ~e~w>,

1In the ICCV published version, this equation reads H′ = (I −
~w ~w>)/

Pn
i=1 wi. This error has been corrected
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and then defining the correlation matrix τ = −H ′DH ′/2.
We then seek τk, a rank-k approximation to τ , that mini-
mizes the weighted L2 matrix norm:∑

ij

wiwj (τk(i, j)− τ(i, j))2 .

Given τk, then finding Y such that Y Y > = τk, (using
the same eigenvector decomposition as above) gives the k-
dimension coordinates of the node-weighted MDS embed-
ding. Efficiently solving for τk is the subject of the next
section.
Fast Low Rank Embedding. The weighted low rank em-
bedding problem (using our variables from the last sec-
tion) is formally: Given a matrix τ and a weight matrix
W of the same dimensions, find the matrix τk of rank k
that minimizes the Frobenius norm of the weighted differ-
ence: ||W ⊗ (A − M)||F , where the ⊗ operator indi-
cates element-wise multiplication of matrix elements. This
problem has been approached with both the weight matri-
ces constrained to be {0, 1} valued and the general case of
real-valued weights. Recent work suggests an iterative so-
lution [14] to this problem.

Our application has additional constraints on the matri-
ces τ and W that allow a direct solution to this problem.
These conditions are general enough to potentially be of in-
terest in other approaches or application domains. In par-
ticular, our weight matrix is symmetric and of rank 1, and
can be expressed as the outer product of the node weights
expressed as a column vectors W = ~w~w>. If we define
W̃ = diag(~w), (a matrix of all zeros with the weights w
along the diagonal), then we can simplify this special case
of weighted low-rank approximation as follows:

||(~w~w>)⊗ (τ − τk)||F = ||W̃ (τ − τk)W̃ ||F
= ||W̃ τW̃ − W̃ τkW̃ ||F
= ||W̃ τW̃ −R||F , (1)

where R is the low rank (unweighted) approximation to
W̃ τW̃ . R can be found with standard singular value de-
composition, leaving:

W̃ τkW̃ = R

τk = W̃−1RW̃−1. (2)

3.3. Manifold Distance Metrics

The result of node-weighted MDS and other manifold
learning methods is a low dimensional embedding of the
points. To implement the E-step of the algorithm in Fig-
ure 2, we need to re-weight the points based on how well
they fit each of the k manifolds. This section details a
method to estimate the distance of a point to a manifold

(a) Original Data Set

(b) Node-Weighted MDS Embedding

Figure 4. (a) A set of points representing 2 1-
D manifolds in 2 dimensions. The horizontal
line corresponds to the manifold implied by
the highly weighted points along the x-axis.
(b) The result of node-weighted MDS where
the points along the x-axis (a) have a weight
of 1 and the points along the y-axis have a
weight of 0.

which is defined only implicitly through the weighted em-
bedding of points. The idea is to compare the original
geodesic distances between points with the distance implied
by the weighted embedding. If the distances between a
point pi and the highly weighted points are similar, then
pi fits well on this manifold.

Figure 4 shows an example of 2-D points embedded us-
ing node-weighted MDS. The points along the horizontal
line (including the point labeled A) have a weight of 1 and
the points along the perpendicular (including points B and
C) have a weight of 0. To estimate the distance of point B
to this manifold, we consider the difference of the geodesic
distance of point B to the other points on the manifold and
the distance in the low dimensional embedding. In the case
of points B and A: dG(A,B) = d1 + d2, dE(A,B) = d1,
and the distance to the manifold dM (A,B) = dG − dE =
d2. In the weighted case, dM (A,B) = w(B)(dG−dE). So,
for this example, the large value of dG(B,C) − dE(B,C)
would not contribute to the distance of point B to the mani-
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fold since we do not consider point C to lie on this manifold.
Averaging this distance over all of the points, we define the
distance of point pi to manifold M as:

dM (pi) =

∑n
j=1 w(pj)(dG(pi, pj)− dE(pi, pj))∑n

j=1 w(pj)

3.4. Classifying Data Points

For each iteration of our algorithm, we calculate the
weight of each point belonging to each of the k clusters,
using the softmin function. So, the weight of point pi be-
longing to cluster c is:

wc
i =

e
−dMc

(pi)
2

σ2∑k
j=1 e

−dMj
(pi)

2

σ2

The ability of this algorithm to converge is sensitive the
variance, σ. We calculate the weighted variance for each
cluster:

σ̂c2 =
∑

wc
i

(
∑

wc
i )2 −

∑
(wc

i
2)

∑
wc

i (dMc
)2

4. Experimental Results

The extension of manifold learning to data sets that arise
from multiple intersecting manifolds is an important step
in applying these techniques more broadly. In this section
we present results showing manifold clustering results on a
several examples including manifolds of different topology
and dimension, and an application to human motion capture
data demonstrating the algorithms applicability to natural
data sets. In each case, the dimensionality of the compo-
nent clusters was provided to the algorithm (i.e., in the left
most example of Table 1, the EM algorithm fit the data to
3 1-D manifolds, in the third example, the model data is fit
to a circle and a 2-D plane). When the component manifold
topology was circular, the low-dimensional embedding al-
gorithm used is the node-weighted analog to the modified
MDS proposed in [12].

4.1. Comparison to Intrinsic Dimensional-
ity Estimates

Recent work in the field of intrinsic dimensionality esti-
mation allows us to obtain a measure of the quality of our
output. A method is proposed in [11] which estimates the
intrinsic dimensionality of a data set by applying the princi-
ple of maximum likelihood to the distances between neigh-
boring data points. Table 1 shows the results of our segmen-
tation on artificial data sets and the estimated dimensional-
ity of the subsets, as clustered by our algorithm.

4.2. Human Activity Parsing

We applied our method to the analysis of human mo-
tion capture data of various simple activities. Each data set
contains examples of a single actor performing a series of
simple motions. One test was applied on a data set of an
actor performing a series of basketball referee signals. The
actor performed each of the 3 signals (technical foul, jump
ball, and carrying) 3 times in the sequence. The data set
consisted of 2212 frames of x−, y−, and z−coordinates
for 175 markers. Each frame therefore represented a point
in some 525-dimensional space (175 markers * 3 coordi-
nates). We applied our method using k = 3 1-D clusters to
label each frame. Ground truth was obtained by manual an-
notation of the original video sequence. We then compared
our labeling to the ground truth. Figure 5 shows results on
this data set. On this data set, our method performs with
94.8% accuracy.

5. Summary and Conclusions

In this paper, we presented a method for learning man-
ifolds of data sets that originate from multiple, intersect-
ing low-dimensional manifolds. The main contributions are
the unsupervised learning algorithm for factoring low-rank
manifolds, node-weighted multi-dimensional scaling, and a
fast (rank-one weighted) low-rank approximation scheme.
We applied this approach on artificially generated data sets
and demonstrated the application of our method to parsing
natural human motion into component behaviors.
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