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The MDS problem
Assume a collection of n objects with pairwise distances {`ij}1≤i,j≤n.
Represent them as points in some Euclidean space, say y1, . . . ,yn ∈ Rk,
such that

‖yi − yj‖2 = `ij (or as close as possible), ∀ i, j

Remark. Objects can be images, documents, humans, etc., as along as
there is a well-defined distance metric on them. The goal of MDS is to
represent them as vectors in some Euclidean space (and to visualize their
proximity relationships as well as the global appearance).



Multidimensional Scaling (MDS)

Remark. Possible distance metrics that can be used by MDS:

• Euclidean distance (`2)

• Manhattan/Cityblock distance (`1)

• Chebyshev/maximum coordinate difference (`∞)

• Minkowski distance (`p)

• Cosine of the angle: ‖ x
‖x‖ −

y
‖y‖‖

2 = 2− 2 cos θ

• Geodesic distance (along curved dimensions)
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We illustrate the MDS problem with some examples.

Example 0.1. Given the distances between 20 cities in the U.S., display
them on a (two-dimensional) map to preserve, as closely as possible, all
the distances.
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Example 0.2 (MDS as a dimension reduction method). Suppose we
are given points in a very high dimensional space x1, . . . ,xn ∈ Rd (e.g.,
images, documents) with some kind of distance `ij = ‖xi − xj‖. We
would like to find low dimensional representations, y1, . . . ,yn ∈ Rk for
some k < d, which can (approximately) preserve the given distances.
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Example 0.3. If the points are known to lie on a manifold (curve, surface,
etc.), then one can use geodesic distance (shortest distance along the
manifold) and try to preserve them in a low-dimensional Euclidean space.
This is called the manifold learning problem.
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Mathematical setup and derivation
To solve the MDS problem, first observe that the solutions are not unique,
as any translation of the new points preserves the pairwise distances.

We can remove the translational invariance by adding a constraint∑
yi = 0.

Assuming the equations

‖yi − yj‖2 = `ij for all i, j

have a solution, we solve them together with the constraint.
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We square the above equations and expand them to get

`2ij = ‖yi‖2 + ‖yj‖2 − 2yT
i yj

Summing over i and j separately gives that∑
i

`2ij =
∑

i

‖yi‖2 +
∑

i

‖yj‖2 − 2
∑

i

yT
i yj

=
∑

i

‖yi‖2 + n‖yj‖2∑
j

`2ij =
∑

j

‖yi‖2 +
∑

j

‖yj‖2 − 2
∑

j

yT
i yj

= n‖yi‖2 +
∑

j

‖yj‖2
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Denoting by

`2·j =
∑

i

`2ij

`2i· =
∑

j

`2ij

`2·· =
∑

i

∑
j

`2ij

we can rewrite the equations as

`2·j =
∑

i

‖yi‖2 + n‖yj‖2

`2i· = n‖yi‖2 +
∑

j

‖yj‖2
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We continue to sum them up (over j, i respectively) to obtain that

`2·· = n
∑

i

‖yi‖2 + n
∑

j

‖yj‖2 = 2n
∑

t

‖yt‖2

This implies that ∑
t

‖yt‖2 = 1
2n`

2
··

Plugging back we then find

‖yj‖2 = 1
n
`2·j −

1
2n2 `

2
··

‖yi‖2 = 1
n
`2i· −

1
2n2 `

2
··
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and finally

yT
i yj = 1

2

( 1
n
`2i· +

1
n
`2·j −

1
n2 `

2
·· − `2ij

)
︸ ︷︷ ︸

:=gij

, ∀ i, j

Let

• G = (gij) ∈ Rn×n (with gij defined above): gram matrix

• Y = [y1, . . . ,yn]T ∈ Rn×k: embedding matrix

Then the last equation may be rewritten as

YYT = G.
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Properties of the G matrix:

• If L is symmetric, then G is also symmetric. This is because

G = −1
2JLJ, where L = (`2ij), J = In −

1
n

11T .

Verify:

JLJ = L︸︷︷︸
`ij

− 1
n

1 1T L︸︷︷︸
(`2

·j)

− 1
n

L1︸︷︷︸
(`2

i·)

1T + 1
n2 1 1T L1︸ ︷︷ ︸

`2
··

1T = −2G.

• All the rows (and columns) of G sum to zero, due to

J1 = In1− 1
n

1 1T 1︸︷︷︸
n

= 1− 1 = 0.

This also indicates that G must have an eigenvalue of 0.
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Remark. The solution of the problem, if it exists, is still not unique. The
reason is that any rotation of Y, i.e., YQ for some orthogonal matrix Q,
is also a solution:

(YQ)(YQ)T = YQQT YT = YYT = G.

In practice, we only need to find one solution to represent the given data
in a Euclidean space.

In order for a solution to exist, G must be positive definite. In this case,
we can write

G = UΛUT = UΛ1/2Λ1/2UT

from which we can obtain the following result.
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Theorem 0.1. If the matrix G = −1
2JLJ is positive semidefinite and

k ≥ r = rank(G), then the MDS problem has the following exact solution

Y = UkΣk = [
√
λ1u1, . . . ,

√
λrur,

√
λr+1ur+1︸ ︷︷ ︸

=0

, . . . ,
√
λkuk︸ ︷︷ ︸
=0

] ∈ Rn×k

where (λi,ui) are the eigenpairs of the G matrix.

Remark. If the eigenvalues decay rapidly, we can truncate the columns to
obtain an approximate solution ←− more useful

Yr0 ≈ [
√
λ1u1 . . .

√
λr0ur0 ] = Ur0Λ1/2

r0 ∈ Rn×r0 ←− embedding

where r0 < r is the number of dominant (or chosen) eigenvalues.
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Remark. In the setting of vector data x1, . . . ,xn ∈ Rd with the goal of
preserving Euclidean distances, the MDS approach is equivalent to PCA.

To see this, note that in this case

G = X̃X̃T = UΣ2UT ,

where we used the SVD of X̃ = UΣVT . Clearly, if k ≥ r, an exact
solution of YYT = G is Yk = UkΣk. Otherwise, if k < r, it is the “best”
approximation (such that YYT is the closest to G).

This remark shows that PCA also tries to preserve, as much as possible,
the pairwise Euclidean distances of the original data.
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The (classical) MDS algorithm
Input: Matrix of squared pairwise distances L ∈ Rn×n and integer k ≥ 1

Output: A k-dimensional representation of the underlying data Y ∈ Rn×k.

Steps:

1. Compute the matrix G = −1
2JLJ (see footnote below1)

2. Find the top-k eigenvectors of G: G ≈ UkΛkUT
k

3. Form the embedding matrix Y = UkΛ1/2
k .

1Do not use this formula to compute G; this is only for mathematical convenience.
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MATLAB implementation of MDS

cmdscale Classical Multidimensional Scaling.

Y = cmdscale(D) % D is an n-by-n distance matrix (not squared!)

[Y,e] = cmdscale(D, p) % p specifies the dimensionality of the
desired embedding Y
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Example 0.4 (Mapping of the 20 US cities).
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Example 0.5 (MNIST handwritten digit 1). Apply MDS with `1 metric
to embed the images of 1 into 2 dimensions.

MATLAB script:

% digits1 is a 7877-by-784 matrix containing all the 1’s
Y = cmdscale(pdist(digits1, ’cityblock’), 2);

(picture on next slide)
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In general, to select k and evaluate the quality of approximation by MDS,
one can use the following measure.

Def 0.1. The Kruskal stress is defined as

Stress =

√√√√∑i,j(`ij − ‖yi − yj‖2)2∑
i,j `

2
ij

.

Empirically,

• the fit is good if stress < 0.1, and

• unacceptable if stress > 0.15.
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Example 0.6. The stress of the 2-D representation of the 20 US cities
data is 0.0029.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 23/24



Multidimensional Scaling (MDS)

Further reading

A book chapter on MDS2

• Classical MDS (just covered in class): preserve the input distances

• Ordinal MDS: preserve only the rank order

2http://www.bristol.ac.uk/media-library/sites/cmm/migrated/documents/
chapter3.pdf
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