# Homework Exercises 

Mladen Victor WICKERHAUSER<br>PMF 2022: Dimensionality Reduction and Manifold Estimation

July 26, 2022

If an exercise consists of just a statement, then prove the statement.

## 1 Manifolds

Exercise 1: $|\langle x, y\rangle| \leq\|x\|\|y\|$. When is there equality?

## Exercise 2:

(a) Second countable implies first countable.
(b) Second countable implies separable.

## Exercise 3:

(a) A metric space is a first countable Hausdorff topological space.
(b) A separable metric space is second countable.

Exercise 4: (Lindelöf) If $X$ is a separable metric space, and $A \subset X$ is any subset, then every open cover of $A$ has a countable subcover.

Exercise 5: Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces. If $\phi: X \rightarrow Y$ is bijective and continuous, then for each $G_{Y} \in \mathcal{T}_{Y}$ there exists $G_{X} \in \mathcal{T}_{X}$ such that $\phi\left(G_{X}\right)=G_{Y}$.

Exercise 6: $(G, \phi)$ is differentially compatible with $(G, I)$ iff $\phi: \mathbf{E}^{d} \rightarrow \mathbf{E}^{d}$ is differentiable on $G$. (Hint: you may use the Inverse Function Theorem.)

Exercise 7: Newton-Raphson $K^{\prime}$ iteration converges to the same unique root $x^{\prime}$ as contraction iteration $K$.

Exercise 8: Linear $\mathbf{F}$ implies $D_{\mathbf{x}} \mathbf{F}(\mathbf{x}, \mathbf{y})$ and $D_{\mathbf{y}} \mathbf{F}(\mathbf{x}, \mathbf{y})$ are constant.

Exercise 9: Show that $\xi$ is well-defined. Namely, explain why the directional derivatives of $f$ agree for all of $v^{\prime} s$ equivalent curves through $x$.

Exercise 10: $\quad G(x)$, the set of all germs at $x$, is an algebra under pointwise addition and multiplication.

## 2 Regression

Exercise 11: Unique solution $\left\{a_{j}\right\}$ exists for each $\left\{y_{i}: 0 \leq i \leq n\right\}$ iff matrix $\left\{f_{j}\left(x_{i}\right): 0 \leq i, j \leq n\right\}$ is nonsingular.

Exercise 12: Distinct $x_{i}$ 's make Vandermonde matrix $V$ invertible.

Exercise 13: If $\hat{\mathbf{p}}$ is linear and $\mathbf{y}$ has finite expectation and variance, then $\hat{\mathbf{p}}(\mathbf{y})$ has finite variance and expectation.

Exercise 14: $K, K^{\prime}$ convex implies $K \cap K^{\prime}$ is convex.

Exercise 15: If $\mathbf{x}$ is in the 2-simplex defined by $\mathbf{x}_{a}, \mathbf{x}_{b}, \mathbf{x}_{c}$, then the convex combination $\mathbf{x}=p_{a} \mathbf{x}_{a}+p_{b} \mathbf{x}_{b}+p_{c} \mathbf{x}_{c}$ is unique.

Exercise 16: Complete the proof of the Delaunay tesselation theorem. Hint: see K.Q.Brown (1979).

Exercise 17: If $S$ is in general position, then no $x \in \mathcal{M}$ can be equidistant from 4 or more centers.

Exercise 18: The dual of the dual of $(V, E, F)$ is isomorphic to $(V, E, F)$.

## 3 Compression

Exercise 19: $\operatorname{tr} \bar{\Sigma}=\frac{1}{n-1} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\overline{\mathbf{x}}\right\|^{2}$, namely, the trace of the covariance matrix is the total sample variance.

Exercise 20: Transform coding gain $G(U)$ is maximized by the empirical K-L basis $U$ for $\mathbf{x}$. (Hint: use Cholesky factorization.)

Exercise 21: The Haar scaling expansion $P_{0}$ is an orthogonal projection.

Exercise 22: $H H^{*} x=x, G G^{*} x=x$, and $x=H^{*} H x+G^{*} G x$.

## 4 Reduction

There are no exercises for this section. Download and install the R programming system and experiment with the files

04clust.txt
04datav.txt
04isomap.txt
04malda.txt
04stepr.txt
04trees.txt

## 5 Perron-Frobenius Theorem

Exercise 23: $M$ is irreducible, namely $M$ is nonnegative and $\exp (M)-I$ is positive, if and only if $(\forall i, j)(\exists k) M^{k}(i, j)>0$.

Exercise 24: Prove Gershgorin's theorem:
Theorem. Suppose $M$ is an $n \times n$ matrix over $\mathbf{C}$. For $i=1, \ldots, n$, define the Gershgorin disc $G_{i} \subset \mathbf{C}$ by

$$
G_{i} \stackrel{\text { def }}{=}\left\{z \in \mathbf{C}:|z-M(i, i)| \leq \sum_{j \neq i}|M(i, j)|\right\}
$$

Then every eigenvalue of $M$ lies in $\bigcup_{i} G_{i}$.

## 6 Diffusion Maps

Exercise 25: If $P$ is row stochastic, then $\left\|P^{k}\right\|_{\infty}=1$ for all $k$.

Exercise 26: Suppose that $P=U S V^{T}$ is a singular value decomposition of the $n \times n$ matrix $P$, where $U, V$ are orthogonal, and $S$ is diagonal. Then

$$
P=\sum_{l} s_{l} \mathbf{u}_{l} \otimes \mathbf{v}_{l} \quad \text { meaning } \quad P(i, j)=\sum_{l} s_{l} \mathbf{u}_{l}(i) \mathbf{v}_{l}(j) .
$$

Exercise 27: Let $P$ be the transition matrix obtained from the gaussian kernel matrix on a $n$-point data set. Let $\Psi$ and $\Phi$ be the biorthogonal duals derived from $P$
(a) $P=\Psi \Lambda \Phi^{T}$, with $\Lambda=\left(\begin{array}{lll}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} .\end{array}\right)$.
(b) Column $\psi_{l}$ of $\Psi$ is an eigenvector of $P$ with eigenvalue $\lambda_{l}$.
(c) $P^{k}=\Psi \Lambda^{k} \Phi^{T}$.

## 7 Markov Chain Monte Carlo

Exercise 28: Let $\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right)$ be a Dirichlet posterior for a Dirichlet prior and multinomial experimental likelihood, so

$$
\left(p_{1}^{\alpha_{1}-1} \cdots p_{k}^{\alpha_{k}-1}\right)\left(p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}\right) \propto p_{1}^{n_{1}+\alpha_{1}-1} \cdots p_{k}^{n_{k} \alpha_{k}-1}
$$

Fix $i$ with $1 \leq i \leq k$. Under what conditions $\operatorname{Var}\left(p_{i}\right) \rightarrow 0$ as the number of experiments tends to infinity?

Exercise 29: Suppose that $\left\{X_{k}: k=1,2, \ldots\right\}$ is an ergodic Markov chain on a finite state space $S=\{1, \ldots, m\}$. Let $\pi \in \mathbf{R}^{m}$ be its stationary distribution. Then for any bounded function $F$ on $S$,

$$
\frac{1}{N} \sum_{k=1}^{N} F\left(X_{k}\right) \rightarrow \sum_{i=1}^{m} F(i) \pi(i)
$$

almost surely as $N \rightarrow \infty$.

