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Abstract

This paper describes a mathematical technique [1] for
dealing with dimensionality reduction. Given data in a
high-dimensional space, we show how to find parameters
that describe the lower-dimensional structures of which it
is comprised. Unlike other popular methods such as Prin-
ciple Component Analysis and Multi-dimensional Scal-
ing, diffusion maps are non-linear and focus on discov-
ering the underlying manifold (lower-dimensional con-
strained “surface” upon which the data is embedded). By
integrating local similarities at different scales, a global
description of the data-set is obtained. In comparisons, it
is shown that the technique is robust to noise perturbation
and is computationally inexpensive. Illustrative examples
and an open implementation are given.

1. Introduction: Dimensionality Reduction

The curse of dimensionality, a term which vividly re-
minds us of the problems associated with the process-
ing of high-dimensional data, is ever-present in today’s
information-driven society. The dimensionality of a data-
set, or the number of variables measured per sample, can
easily amount to thousands. Think, for example, of a
100 by 100 pixel image, where each pixel can be seen
to represent a variable, leading to a dimensionality of
10, 000. In such a high-dimensional feature space, data
points typically occur sparsely, causes numerous prob-
lems: some algorithms slow down or fail entirely, func-
tion and density estimation become expensive or inaccu-
rate, and global similarity measures break down [4].

The breakdown of common similarity measures ham-
pers the efficient organisation of data, which, in turn, has
serious implications in the field of pattern recognition.
For example, consider a collection of n x m images,
each encoding a digit between 0 and 9. Furthermore, the
images differ in their orientation, as shown in Fig.1. A
human, faced with the task of organising such images,
would likely first notice the different digits, and there-
after that they are oriented. The observer intuitively at-
taches greater value to parameters that encode larger vari-
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ances in the observations, and therefore clusters the data
in 10 groups, one for each digit. Inside each of the 10
groups, digits are furthermore arranged according to the
angle of rotation. This organisation leads to a simple two-
dimensional parametrisation, which significantly reduces
the dimensionality of the data-set, whilst preserving all
important attributes.

Figure 1: Two images of the same digit at different rota-
tion angles.

On the other hand, a computer sees each image as a
data point in R™"™”, an nm-dimensional coordinate space.
The data points are, by nature, organised according to
their position in the coordinate space, where the most
common similarity measure is the Euclidean distance.

A small Euclidean distance between vectors almost
certainly indicate that they are highly similar. A large
distance, on the other hand, provides very little informa-
tion on the nature of the discrepancy. This Euclidean dis-
tance therefore provides a good measure of local similar-
ity only. In higher dimensions, distances are often large,
given the sparsely populated feature space.

Key to non-linear dimensionality reduction is the re-
alisation that data is often embedded in (lies on) a lower-
dimensional structure or manifold, as shown in Fig. 2. It
would therefore be possible to characterise the data and
the relationship between individual points using fewer di-
mensions, if we were able to measure distances on the
manifold itself instead of in Euclidean space. For ex-
ample, taking into account its global structure, we could
represent the data in our digits data-set using only two
variables: digit and rotation.



Figure 2: Low dimensional data measured in a high-
dimensional space.

The challenge, then, is to determine the lower-
dimensional data structure that encapsulates the data,
leading to a meaningful parametrisation. Such a repre-
sentation achieves dimensionality reduction, whilst pre-
serving the important relationships between data points.
One realisation of the solution is diffusion maps.

In Section 2, we give an overview of three other well
known techniques for dimensionality reduction. Section
3 introduces diffusion maps and explains their function-
ing. In Section 4, we apply the knowledge gained in a
real world scenario. Section 5 compares the performance
of diffusion maps against the other techniques discussed
in Section 2. Finally, Section 6 demonstrates the organi-
sational ability of diffusion maps in an image processing
example.

2. Other Techniques for Dimensionality
Reduction

There exist a number of dimensionality reduction tech-
niques. These can be broadly categorised into those that
are able to detect non-linear structures, and those that are
not. Each method aims to preserve some specific property
of interest in the mapping. We focus on three well known
techniques: Principle Component Analysis (PCA), multi-
dimensional scaling (MDS) and isometric feature map
(isomap).

2.1. Principal Component Analysis (PCA)

PCA [3] is a linear dimensionality reduction technique.
It aims to find a linear mapping between a high dimen-
sional space (n dimensional) and a subspace (d dimen-
sional with d < m) that captures most of the variability in
the data. The subspace is specified by d orthogonal vec-
tors: the principal components. The PCA mapping is a
projection into that space.

The principal components are the dominant eigenvec-
tors (i.e., the eigenvectors corresponding to the largest
eigenvalues) of the covariance matrix of the data.

Principal component analysis is simple to implement,
but many real-world data-sets have non-linear character-
istics which a PCA mapping fails to encapsulate.

2.2. Multidimensional Scaling (MDS)

MDS [6] aims to embed data in a lower dimensional
space in such a way that pair-wise distances between data
points, X7y, are preserved. First, a distance matrix D x
is created. Its elements contain the distances between
points in the feature space, i.e. Dx[i,j| = d(z;, z; ).
For simplicity sake, we consider only Euclidean distances
here.

The goal is to find a lower-dimensional set of feature
vectors, Y7, for which the distance matrix, Dy [i, j] =
d(y:, y;), minimises a cost function, p(Dx, Dy). Of the
different cost functions available, strain is the most pop-
ular (MDS using strain is called “classical MDS”):

Pstrain(Dx, Dy) = |JT (D% — D3)J)|[%-

Here, J is the centering matrix, so that JTXJ sub-
tracts the vector mean from each component in X.
The Frobenius matrix norm, ||X||g, is defined as
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The intuition behind this cost function is that it pre-
serves variation in distances, so that scaling by a constant
factor has no influence [2]. Minimising the strain has a
convenient solution, given by the dominant eigenvectors
of the matrix —3J7 D% J.

MDS, when using Euclidean distances, is criticised
for weighing large and small distances equally. We
mentioned earlier that large Euclidean distances provide
little information on the global structure of a data-set,
and that only local similarity can be accurately inferred.
For this reason, MDS cannot capture non-linear, lower-
dimensional structures according to their true parameters
of change.

2.3. Isometric Feature Map (Isomap)

Isomap [5] is a non-linear dimensionality reduction tech-
nique that builds on MDS. Unlike MDS, it preserves
geodesic distance, and not Euclidean distance, between
data points. The geodesic represents a straight line in
curved space or, in this application, the shortest curve
along the geometric structure defined by our data points
[2]. Isomap seeks a mapping such that the geodesic dis-
tance between data points match the corresponding Eu-
clidean distance in the transformed space. This preserves
the true geometric structure of the data.

How do we approximate the geodesic distance be-
tween points without knowing the geometric structure of
our data? We assume that, in a small neighbourhood
(determined by K-nearest neighbours or points within a
specified radius), the Euclidean distance is a good ap-
proximation for the geodesic distance. For points fur-
ther apart, the geodesic distance is approximated as the
sum of Euclidean distances along the shortest connecting
path. There exist a number of graph-based algorithms for
calculating this approximation.



Once the geodesic distance has been obtained, MDS
is performed as explained above.

A weakness of the isomap algorithm is that the ap-
proximation of the geodesic distance is not robust to noise
perturbation.

3. Diffusion maps

Figure 3: A random walk on a data set. Each “jump”
has a probability associated with it. The dashed path
between nodes 1 and 6 requires two jumps (i.e., two
time units) with the probability along the path being
p(node 1, node 2) p(node 2, node 6).

Diffusion maps are a non-linear technique. It achieves
dimensionality reduction by re-organising data according
to parameters of its underlying geometry.

The connectivity of the data set, measured using a lo-
cal similarity measure, is used to create a time-dependent
diffusion process. As the diffusion progresses, it inte-
grates local geometry to reveal geometric structures of
the data-set at different scales. Defining a time-dependent
diffusion metric, we can then measure the similarity be-
tween two points at a specific scale (or time), based on
the revealed geometry.

A diffusion map embeds data in (transforms data to)
a lower-dimensional space, such that the Euclidean dis-
tance between points approximates the diffusion distance
in the original feature space. The dimension of the diffu-
sion space is determined by the geometric structure un-
derlying the data, and the accuracy by which the diffu-
sion distance is approximated. The rest of this section
discusses different aspects of the algorithm in more de-
tail.

3.1. Connectivity

Suppose we take a random walk on our data, jumping be-
tween data points in feature space (see Fig. 3). Jumping
to a nearby data-point is more likely than jumping to an-
other that is far away. This observation provides a relation
between distance in the feature space and probability.

The connectivity between two data points, z and v, is
defined as the probability of jumping from x to y in one
step of the random walk, and is

connectivity(x,y) = p(z, y). (1)

It is useful to express this connectivity in terms of a non-
normalised likelihood function, &, known as the diffusion
kernel:

connectivity(x,y) o k(x,y). 2)

The kernel defines a local measure of similarity within a
certain neighbourhood. Outside the neighbourhood, the
function quickly goes to zero. For example, consider the
popular Gaussian kernel,

2
k(z,y) = exp <M> . 3)

(67

The neighbourhood of x can be defined as all those
elements y for which k(x,y) > ¢ with 0 < ¢ < 1. This
defines the area within which we trust our local similar-
ity measure (e.g. Euclidean distance) to be accurate. By
tweaking the kernel scale («, in this case) we choose the
size of the neighbourhood, based on prior knowledge of
the structure and density of the data. For intricate, non-
linear, lower-dimensional structures, a small neighbour-
hood is chosen. For sparse data, a larger neighbourhood
is more appropriate.

The diffusion kernel satisfies the following proper-
ties:

1. kis symmetric: k(z,y) = k(y, z)
2. k is positivity preserving: k(z,y) > 0

We shall see in Section 8 that the first property is re-
quired to perform spectral analysis of a distance matrix,
K;; = k(x;,x;). The latter property is specific to the
diffusion kernel and allows it to be interpreted as a scaled
probability (which must always be positive), so that

1
=D kmy) =1, “
X
yeX
The relation between the kernel function and the connec-

tivity is then

1
connectivity(x,y) = p(z,y) = Ek(%y) &)

with i the normalisation constant.



Define a row-normalised diffusion matrix, P, with
entries P;; = p(X;, X;). Each entry provides the con-
nectivity between two data points, X; and X, and encap-
sulates what is known locally. By analogy of a random
walk, this matrix provides the probabilities for a single
step taken from ¢ to j. By taking powers of the diffusion
matrix!, we can increase the number of steps taken. For
example, take a 2 x 2 diffusion matrix,

pP= [ P11 P12 } .
P21 P22

Each element, P; ;, is the probability of jumping between
data points ¢ and j. When P is squared, it becomes

p2 — | PuPu+piepar Prapee + pripie
P21P12 + P22P21 P22P22 + P21P12

Note that Pj1 = p11p11 + p12p21, which sums two prob-
abilities: that of staying at point 1, and of moving from
point 1 to point 2 and back. When making two jumps,
these are all the paths from point ¢ to point 5. Similarly,
Pfj sum all paths of length ¢ from point ¢ to point j.

3.2. Diffusion Process

As we calculate the probabilities P? for increasing values
of t, we observe the data-set at different scales. This is the
diffusion processz, where we see the local connectivity
integrated to provide the global connectivity of a data-set.

With increased values of ¢ (i.e. as the diffusion pro-
cess “runs forward”), the probability of following a path
along the underlying geometric structure of the data set
increases. This happens because, along the geometric
structure, points are dense and therefore highly connected
(the connectivity is a function of the Euclidean distance
between two points, as discussed in Section 2). Pathways
form along short, high probability jumps. On the other
hand, paths that do not follow this structure include one
or more long, low probability jumps, which lowers the
path’s overall probability.

In Fig. 4, the red path becomes a viable alternative
to the green path as the number of steps increases. Since
it consists of short jumps, it has a high probability. The
green path keeps the same, low probability, regardless of
the value of ¢ .

IThe diffusion matrix can be interpreted as the transition matrix of
an ergodic Markov chain defined on the data [1]

2In theory, a random walk is a discrete-time stochastic process,
while a diffusion process considered to be a continuous-time stochastic
process. However, here we study discrete processes only, and consider
random walks and diffusion processes equivalent.

Figure 4: Paths along the true geometric structure of the
data set have high probability.

3.3. Diffusion Distance

The previous section showed how a diffusion process re-
veals the global geometric structure of a data set. Next,
we define a diffusion metric based on this structure. The
metric measures the similarity of two points in the obser-
vation space as the connectivity (probability of “jump-
ing”) between them. It is related to the diffusion matrix
P, and is given by

Di(Xi, X;)° = D Ipe(Xiyw) = pe(Xj,u)[* (6)
ueX
- Sweenk

k

The diffusion distance is small if there are many high
probability paths of length ¢ between two points. Unlike
isomap’s approximation of the geodesic distance, the dif-
fusion metric is robust to noise perturbation, as it sums
over all possible paths of length ¢ between points.

As the diffusion process runs forward, revealing the
geometric structure of the data, the main contributors to
the diffusion distance are paths along that structure.

Consider the term p;(z, ) in the diffusion distance.
This is the probability of jumping from z to u (for any
u in the data set) in ¢ time units, and sums the probabil-
ities of all possible paths of length ¢ between x and w.
As explained in the previous section, this term has large
values for paths along the underlying geometric structure
of the data. In order for the diffusion distance to remain
small, the path probabilities between x, u and u, y must
be roughly equal. This happens when x and y are both
well connected via u.

The diffusion metric manages to capture the similar-
ity of two points in terms of the true parameters of change
in the underlying geometric structure of the specific data
set.

3.4. Diffusion Map

Low-dimensional data is often embedded in higher di-
mensional spaces. The data lies on some geometric struc-
ture or manifold, which may be non-linear (see Fig. 2).
In the previous section, we found a metric, the diffusion
distance, that is capable of approximating distances along
this structure. Calculating diffusion distances is computa-
tionally expensive. It is therefore convenient to map data



points into a Euclidean space according to the diffusion
metric. The diffusion distance in data space simply be-
comes the Euclidean distance in this new diffusion space.

A diffusion map, which maps coordinates between
data and diffusion space, aims to re-organise data accord-
ing to the diffusion metric. We exploit it for reducing
dimensionality.

The diffusion map preserves a data set’s intrinsic ge-
ometry, and since the mapping measures distances on a
lower-dimensional structure, we expect to find that fewer
coordinates are needed to represent data points in the new
space. The question becomes which dimensions to ne-
glect, in order to preserve diffusion distances (and there-
fore geometry) optimally.

With this in mind, we examine the mapping

pt(Xi,Xl)
p (XZ>X2)
o - PL. @®)
pe(Xs, Xw)

For this map, the Euclidean distance between two
mapped points, Y; and Y, is

2 2
IV =Yl = D Ipe(Xiw) — pu( X, )|
ueX

Z ’Pitk - Plij}Q = Dt(Xian)aQ
k

which is the diffusion distance between data points
X; and X;. This provides the re-organisation we sought
according to diffusion distance. Note that no dimension-
ality reduction has been achieved yet, and the dimension
of the mapped data is still the sample size, V.
Dimensionality reduction is done by neglecting cer-
tain dimensions in the diffusion space. Which dimen-
sions are of less importance? The proof in Section 8 pro-
vides the key. Take the normalised diffusion matrix,

P=D7'K,

where D is the diagonal matrix consisting of the row-
sums of K. The diffusion distances in (8) can be ex-
pressed in terms of the eigenvectors and -values of P as

A (@)
v A512(d)

7

S ©)
At ()
where 11 (i) indicates the i-th element of the first eigen-
vector of P. Again, the Euclidean distance between
mapped points Y;and Y is the diffusion distance. The
set of orthogonal left eigenvectors of P form a basis for
the diffusion space, and the associated eigenvalues )\; in-
dicate the importance of each dimension. Dimension-
ality reduction is achieved by retaining the m dimen-
sions associated with the dominant eigenvectors, which

Figure 5: Original Data

ensures that ||Y/ —Y/|| approximates the diffusion dis-
tance, Dy(X;, X;), best. Therefore, the diffusion map
that optimally preserves the intrinsic geometry of the data
is (9).

4. Diffusion Process Experiment

We implemented a diffusion map algorithm in the Python
programming language. The code was adapted for the
machine learning framework Elefant (Efficient Learning,
Large Scale Inference and Optimisation Toolkit), and will
be included as part of the next release. The basic algo-
rithm is outlined in Algorithm 1.

Algorithm 1 Basic Diffusion Mapping Algorithm
INPUT: High dimensional data set X;,¢=0...N — 1.

1. Define a kernel, k(x, y) and create a kernel matrix,
K, such that Kj,’j = k(Xq’ Xj)

2. Create the diffusion matrix by normalising the
rows of the kernel matrix.

3. Calculate the eigenvectors of the diffusion matrix.

4. Map to the d-dimensional diffusion space at time
t, using the d dominant eigenvectors and -values as
shown in (9).

OUTPUT: Lower dimensional data set Y;, 7 = 0..IN — 1.

The experiment shows how the algorithm integrates
local information through a time-dependent diffusion to
reveal structures at different time scales. The chosen
data-set exhibits different structures on each scale. The
data consists of 5 clusters which, on an intermediate
scale, has a noisy C-shape with a single parameter: the
position along the C-shape. This parameter is encoded in
the colours of the clusters. On a global scale the structure
is one super-cluster.



As the diffusion time increases, we expect different
scales to be revealed. A one dimensional curve charac-
terised by a single parameter should appear. This is the
position along the C-shape, the direction of maximum
global variation in the data. The ordering of colours along
the C-shape should be preserved.

4.1. Discussion

In these results, three different geometric structures are
revealed, as shown in figures (5) and (6):

Att = 1, the local geometry is visible as five clusters.
The diffusion process is still restricted individual clusters,
as the probability of jumping to another in one time-step
is small. Therefore, even with reduced dimensions, we
can clearly distinguish the five clusters in the diffusion
space.

Att = 3, clusters connect to form a single structure in
diffusion space. Paths of length three bring them together.
Being better connected, the diffusion distance between
clusters decreases.

At this time scale, the one-dimensional parameter of
change, the position along the C-shape, is recovered: in
the diffusion space the order of colours are preserved
along a straight line.

Att = 10, a third geometric structure is seen. The
five clusters have merged to form a single super-cluster.
At this time scale, all points in the observation space are
equally well connected. The diffusion distances between
points are very small. In the lower dimensional diffu-
sion space it is approximated as zero, which projects the
super-cluster to a single point.

This experiment shows how the algorithm uses the
connectivity of the data to reveal geometric structures at
different scales.

5. Comparison With Other Methods

We investigate the performance of those dimensionality
reduction algorithms discussed in Section 2, and compare
them to diffusion maps. We use a similar data set as in
the previous experiment, the only difference being an in-
creased variance inside clusters. Which of the algorithms
detect the position along the C-shape as a parameter of
change, i.e. which of the methods best preserve the or-
dering of the clusters in a one-dimensional feature space?
Being linear techniques, we expect PCA and MDS to fail.
In theory, isomap should detect the C-shape, although it
is known that it struggles with noisy data.

5.1. Discussion
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Figure 10: The one-dimensional diffusion space.

5.1.1. PCA

In observation space (Fig. (5)), most variation occurs
along the z-axis. The PCA mapping in Fig. 7 preserves
this axis as the first principal component. The second
principal component runs parallel to x = y, and is or-
thogonal to the z-axis. The variation in the third dimen-
sion is orthogonal to these principal components, and pre-
serves the C-shape. Once data is projected onto the two
primary axes of variation, the ordering along the non-
linear C-shape is lost. As expected, PCA fails to detect a
single parameter of change.

5.1.2. MDS

Similar to PCA, MDS preserves the two axes along which
the Euclidean distance varies most. Its one-dimensional
projection fails to preserve the cluster order, as shown in
Fig. 8. Suppose we had fixed the red data points in a one
dimensional feature space (see Fig. 11), and wanted to
plot the other data points such that Euclidean distances
are preserved (this is the premise of MDS). Data points
lying on the same radius would then be plotted on top of
one another. Due to the non-linear structure of the data,
MDS cannot preserve the underlying clusters.

Figure 11: Failure of MDS for non-linear structures
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5.1.3. Isomap

When determining geodesic distances, isomap searches
a certain neighbourhood. The choice of this neighbour-
hood is critical: if too large, it allows for “short circuits”
whereas, if it is too small, connectivity becomes very
sparse. These “short circuits” can skew the geometry of
the outcome entirely. For diffusion maps, a similar chal-
lenge is faced when choosing kernel parameters.

Isomap is able to recover all the clusters in this ex-
periment, given a very small neighbourhood. It even pre-
serve the clusters in the correct order. Two of the clusters
overlap a great deal, due to the algorithm’s sensitivity to
noise.

5.1.4. Comparison with Diffusion Maps

Fig. 10 shows that a diffusion map is able to preserve the
order of clusters in one dimension. As mentioned before,
choosing parameter(s) for the diffusion kernel remains
difficult. Unlike isomap, however, the result is based on
a summation over all data, which lessens sensitivity to-
wards kernel parameters. Diffusion maps are the only
one of these techniques that allows geometric analysis at
different scales.

6. Demonstration: Organisational Ability

A diffusion map organises data according to its under-
lying parameters of change. In this experiment, we vi-
sualise those parameters. Our data-set consists of ran-
domly rotated versions of a 255 x 255 image template
(see Fig. 12). Each rotated image represents a single,
65025-dimensional data-point. The data is mapped to the
diffusion space, and the dimensionality reduced to two.
At each 2-dimensional coordinate, the original image is
displayed.

Figure 12: Template: 255 x 255 pixels.

6.1. Discussion

Figure 13: Organisation of images in diffusion space.

In the diffusion space, the images are organised accord-
ing to their angle of rotation (see Fig. 13). Images with
similar rotations lie close to one another.

The dimensionality of the data-set has been reduced
from 65025 to only two. As an example, imaging running
a K-means clustering algorithm in diffusion space. This
will not only be much faster than in data space, but would
likely achieve better results, not having to deal with a
massive, sparse, high-dimensional data-set.

7. Conclusion

We investigated diffusion maps, a technique for non-
linear dimensionality reduction. We showed how it inte-
grates local connectivity to recover parameters of change
at different time scales. We compared it to three other
techniques, and found that the diffusion mapping is more
robust to noise perturbation, and is the only technique that
allows geometric analysis at differing scales. We further-
more demonstrated the power of the algorithm by organ-
ising images. Future work will revolve around applica-
tions in clustering, noise-reduction and feature extraction.

8. Proof

This section discusses the mathematical foundation of
diffusion maps. The diffusion distance, given in (7), is
very expensive to calculate but, as shown here, it can be
written in terms of the eigenvectors and values of the dif-
fusion matrix. These values can be calculated efficiently.

We set up a new diffusion space, where the coordi-
nates are scaled components of the eigenvectors of the
diffusion matrix. In the diffusion space, Euclidean dis-
tances are equivalent to diffusion distances in data space.

Lemma 1: Suppose K is a symmetric, n X n kernel
matrix such that K[i, j| = k(i, j). A diagonal matrix, D,



normalises the rows of K to produce a diffusion matrix
P=D"'K. (10)
Then, the matrix P’, defined as

P =DY2pp-1/2 (11)

1. is symmetric
2. has the same eigenvalues as P

3. the eigenvectors, X}, of P' are multiplied by D~'/?

and D? to get the left (e P = XeT) and right
eigenvectors (Pv = \v) of P respectively.

Proof: Substitute (10) into (11) to obtain
P =D YV2KD /2, (12)

As K is symmetric, P’ will also be symmetric.
We can make P the subject of the equation in (11),

P=D2p'pD'/2, (13)

As P’ is symmetric, there exists an orthonormal set of
eigenvectors of P’ such that

P’ = SAST, (14)

where A is a diagonal matrix containing the eigenvalues
of P’ and S is a matrix with the orthonormal eigenvectors
of P’ as columns.

Substituting (14) into (13),

P =D 125ASTDY/2,

Since S is an orthogonal matrix

P = D '?3AS7'D'?
= (D7Y28)A(D~Y/25)~1 (15)
= QAQ L. (16)

Therefore, the eigenvalues of P’ and P are the same. Fur-
thermore, the right eigenvectors of P are the columns of

Q=D""%s, (17)
while the left eigenvectors are the rows of
Q'=STD2. (18)

From (17) we see that the equation for the eigenvectors
of P can be given in terms of the eigenvectors x) of P’.
The right eigenvectors of P are

vy = D73x, (19)

and the left eigenvectors are
e = D%x%. (20
From (15) we then obtain the eigen decomposition,

P = Z)\kvkef. (21)
k

When we examine this eigen decomposition further, we
see something interesting. Eq. 21 expresses each row of
the diffusion matrix in terms of a new basis: ey, the left
eigenvectors of the diffusion matrix.

In this new coordinate system in R™, a row ¢ of P is
represented by the point

)\1V1[i]
)\2V2 [Z]
Mi = . )

Anvnli]

where v, [¢] is the i-th component of the n-th right eigen-
vector. However, P is not symmetric, and so the coordi-
nate system will not be orthonormal, i.e.

efer #1

or, equivalently,
elle,#1

and
ef T'ey, # 0forl # k.

This is a result of the scaling applied to the orthogonal
eigenvectors of P’ in (19) and (20). This scaling can be
counter-acted by using a different metric ), such that

engk =1

and
ef Qer=0forl #k

where () must be a positive definite, symmetric matrix.
We choose
Q=D

where D is the diagonal normalisation matrix. It satisfies
the two requirements for a metric and leads to

_1 _1
Qe = (D HT(D e
= X
=1

)

using (20). In the same way we can show that
el D7 'e, =0forl # k.

Therefore the left eigenvectors of the diffusion matrix
form an orthonormal coordinate system of R™ , given that
the metric is D~'. We define R™ with metric D~ as the



diffusion space, denoted by Io(R™, D). For example,
the Euclidean distance between two vectors, a and a’, is
normally

d(a,a' )i, = d(a,a"),wn, 1) = (a — a)T'(a—a)
inls. In ZQ(RH, D1

d(a, a/)lz(Rme

), it becomes

1y =(a—a)"D  a—a).

Lemma 2: If we choose our diffusion coordinates as
in (9), then the diffusion distance between points in data
space (measured using the D™' metric) is equal to the
Euclidean distance in the diffusion space.

Proof: We are required to prove that

Dulwsna;)* = piin) = ooy, ) o p22)
= 1M = Mjlf g (23)
= D AWl —veli)® @

k

Here, p;(x;, ;) = P;; are the probabilities which form
the components of the diffusion matrix. For simplicity
we assume ¢ = 1. Then

D(zi,z;)° = |p(ai,-) —

= 1Pl -

(x]7.)||12(]R'n 1)
[]7 ']HIQ(RH,Dfl) :
According to the eigen decomposition in (21), this equals

Z)\ka Z)\kvk

k>0

2

2

- ZAkef (vi[i] — v&lj])

2

D? (vili] = vilj])

= Z)\kxk

2

= > i (veli] = vils) D?

In Iy(R", D~

(ZA;CXQCT (vi[i] — vi[4]) 5) (ZAmx

1), this distance is

= Z)\kxk vili] — vi[j Z/\mx

Since {x } is an orthonormal set,

mli] = vm[j])

XTxi =0  for m#k.

Therefore

D(wi,zj)* = D A (el = vili)®. 29)

We’ve therefore shown that the diffusion distance,
Dy(x;,2;)%, is simply the Euclidean distance between
mapped points, M; and M, in diffusion space.
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