Chapter 7

The Singular Value Decomposition (SVD)

The SVD produces orthonormal bases of v's and u's for the four fundamental subspaces.
Using those bases, A becomes a diagonal matrix Σ and Av_i = σ_iu_i : σ_i = singular value.
The two-bases diagonalization A = UΣV^T often has more information than A = XΛX⁻¹.
UΣV^T scarates A into rank-1 matrices σ_iu_i v_i^T + · · + σ_i u_i · · σ_i^T = σ_i w_i^T is the largest

7.1 Bases and Matrices in the SVD

The Singular Value Decomposition is a highlight of linear algebra. A is any m by matrix, square or rectangular. Its rank is r. We will diagonalize this A, but not by $X^{-1}AX$. The eigenvectors in X have three big problems: They are usually not orthogonal, there are not always enough eigenvectors, and $Ax = \lambda x$ requires A to be a square matrix. The singular vectors of A solve all those problems in a perfect way.

Let me describe what we want from the SVD: the right bases for the four subspaces. Then I will write about the steps to find those bases in order of importance.

The price we pay is to have **two sets of singular vectors**, u's and v's. The u's are in \mathbb{R}^m and the v's are in \mathbb{R}^n . They will be the columns of an m by m matrix U and an n by n matrix V. I will first describe the SVD in terms of those basis vectors. Then I can also describe the SVD in terms of the orthoorand matrices U and V.

(using vectors) The u's and v's give bases for the four fundamental subspaces :

 u_1, \ldots, u_r is an orthonormal basis for the **column space** u_{r+1}, \ldots, u_m is an orthonormal basis for the **left nullspace** $N(A^T)$ v_1, \ldots, v_r is an orthonormal basis for the **row space** v_{r+1}, \ldots, v_n is an orthonormal basis for the **nullspace** N(A). More than just orthogonality, these basis vectors diagonalize the matrix A :

"A is diagonalized" $Av_1 = \sigma_1 u_1$ $Av_2 = \sigma_2 u_2$... $Av_r = \sigma_r u_r$ (1)

Those singular values σ_1 to σ_r will be positive numbers: σ_i is the length of Av_i . The σ 's go into a diagonal matrix that is otherwise zero. That matrix is Σ .

(using matrices) Since the u's are orthonormal, the matrix U with those r columns has $U^T U = I$. Since the v's are orthonormal, the matrix V has $V^T V = I$. Then the equations $Av_t = \sigma_t u_t$ led us column by column that $AV_r = U_r \mathbf{z}_r$.

$$\begin{array}{l} (m \ \mathrm{by} \ n)(n \ \mathrm{by} \ r) \\ \boldsymbol{AV_r} = \boldsymbol{U_r} \boldsymbol{\Sigma_r} & \boldsymbol{A} \\ (m \ \mathrm{by} \ r)(r \ \mathrm{by} \ r) \end{array} \begin{bmatrix} \boldsymbol{v}_1 & \cdot & \boldsymbol{v}_r \\ & \cdot & \\ & \cdot & \\ \end{array} \end{bmatrix} = \begin{bmatrix} \boldsymbol{u}_1 & \cdot & \boldsymbol{u}_r \\ \boldsymbol{u}_1 & \cdot & \boldsymbol{u}_r \end{bmatrix} \begin{bmatrix} \boldsymbol{\sigma}_1 & & \\ & \cdot & \\ & \cdot & \\ & \cdot & \\ & & \boldsymbol{\sigma}_r \end{bmatrix} .$$
 (2)

This is the heart of the SVD, but there is more. Those v^{i} s and u^{i} s account for the row space and column space of A. We have n - r more v^{i} s and m - r more u^{i} s, from the nullspace N(A) and the left nullspace $N(A^{T})$. They are automatically orthogonal to the first v^{i} and u^{i} is (because the whole nullspaces are orthogonal). We now include all the v^{i} s and u^{i} is u and U_{i} so these matrices become square. We still have $AV = U\Sigma$.

$$\begin{array}{l} (m \operatorname{by} n)(n \operatorname{by} n) \\ \operatorname{Av} \operatorname{equals} U \Sigma \quad A \\ (m \operatorname{by} n)(m \operatorname{by} n) \end{array} \begin{bmatrix} \mathbf{v}_1 \cdots \mathbf{v}_r \cdots \mathbf{v}_n \\ & & \\ \end{array} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1 \cdots \mathbf{u}_r \cdots \mathbf{u}_m \\ & & \\ \end{array} \begin{bmatrix} \sigma_1 & & \\ & & \\ & & \\ & & \\ \end{array} \end{bmatrix}. \quad (3)$$

The new Σ is *m* by *n*. It is just the *r* by *r* matrix in equation (2) with m - r extra zero rows and n - r new zero columns. The real change is in the shapes of *U* and *V*. Those are square orthogonal matrices. So $AV = U\Sigma$ can become $A = U\Sigma V^T$. This is the Singular Value Decomposition. I can multiply columns $u_{\alpha \bar{\tau}}$ from $U\Sigma$ by rows of V^T :

SVD
$$A = U\Sigma V^T = u_1\sigma_1v_1^T + \cdots + u_r\sigma_rv_r^T$$
. (4)

Equation (2) was a "reduced SVD" with bases for the row space and column space. Equation (3) is the full SVD with nullspaces included. They both split up A into the same r matrices $u_i\sigma_iv_i^T$ of rank one: column times row.

We will see that each σ_i^2 is an eigenvalue of $A^T A$ and also AA^T . When we put the singular values in descending order, $\sigma_1 \ge \sigma_2 \ge ... \sigma_r > 0$, the splitting in equation (4) gives the r rank-one pieces of A in order of importance. This is crucial.

Example 1 When is $\Lambda = U\Sigma V^T$ (singular values) the same as $X\Lambda X^{-1}$ (eigenvalues)?

Solution A needs orthonormal eigenvectors to allow X = U = V. A also needs eigenvalues $\lambda \ge 0$ if $A = \Sigma$. So A must be a *positive semidefinite (or definite) symmetric matrix*. Only then will $A = X\lambda X^{-1}$ which is also $Q\Delta Q^{-1}$ coincide with $A = U\Sigma V^{T}$.

382

Example 2 If $A = xy^{T}$ (rank 1) with unit vectors x and y, what is the SVD of A?

Solution The reduced SVD in (2) is exactly xy^{T} , with rank r = 1. It has $u_{1} = x$ and $v_{1} = y$ and $\sigma_{1} = 1$. For the full SVD, complete $u_{1} = x$ to an orthonormal basis of v^{i} , so and complete $v_{1} = y$ to an orthonormal basis of v^{i} . None w^{i} s', only $\sigma_{1} = 1$.

Proof of the SVD

We need to show how those amazing u's and v's can be constructed. The v's will be orthonormal eigenvectors of $A^T A$. This must be true because we are aiming for

$$A^{T}A = (U\Sigma V^{T})^{T}(U\Sigma V^{T}) = V\Sigma^{T}U^{T}U\Sigma V^{T} = V\Sigma^{T}\Sigma V^{T}.$$
 (5)

On the right you see the eigenvector matrix V for the symmetric positive (semi) definite matrix $A^{T}A$. And $(\Sigma^{T}\Sigma)$ must be the eigenvalue matrix of $(A^{T}A)$: Each σ^{2} is $\lambda(A^{T}A)$!

Now $Av_i = \sigma_i u_i$ tells us the unit vectors u_1 to u_r . This is the key equation (1). The essential point—the whole reason that the SVD succeeds—is that those unit vectors u_1 to u_r are automatically orthogonal to each other (because the v's are orthogonal):

Key step
$$u_i^{\mathrm{T}}u_j = \left(\frac{Av_i}{\sigma_i}\right)^{\mathrm{T}} \left(\frac{Av_j}{\sigma_j}\right) = \frac{v_i^{\mathrm{T}}A^{\mathrm{T}}Av_j}{\sigma_i\sigma_j} = \frac{\sigma_j^2}{\sigma_i\sigma_j}v_i^{\mathrm{T}}v_j = \text{zero.}$$
 (6)

The v's are eigenvectors of $A^{T}A$ (symmetric). They are orthogonal and now the u's are also orthogonal. Actually those u's will be eigenvectors of AA^{T} .

Finally we complete the v's and u's to n v's and m u's with any orthonormal bases for the nullspaces N(A) and $N(A^T)$. We have found V and Σ and U in $A = U\Sigma V^T$.

An Example of the SVD

Here is an example to show the computation of three matrices in $A = U\Sigma V^T$.

Example 3 Find the matrices
$$U, \Sigma, V$$
 for $A = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$. The rank is $r = 2$.

With rank 2, this A has positive singular values σ_1 and σ_2 . We will see that σ_1 is larger than $\lambda_{max} = 5$, and σ_2 is smaller than $\lambda_{min} = 3$. Begin with A^TA and AA^T :

$$A^{\mathrm{T}}A = \begin{bmatrix} 25 & 20\\ 20 & 25 \end{bmatrix}$$
 $AA^{\mathrm{T}} = \begin{bmatrix} 9 & 12\\ 12 & 41 \end{bmatrix}$

Those have the same trace (50) and the same eigenvalues $\sigma_1^2 = 45$ and $\sigma_2^2 = 5$. The square roots are $\sigma_1 = \sqrt{45}$ and $\sigma_2 = \sqrt{5}$. Then $\sigma_1 \sigma_2 = 15$ and this is the determinant of A.

A key step is to find the eigenvectors of ATA (with eigenvalues 45 and 5):

25	20] [[1]	4	1	ſ	25	20]	ſ -	-1	_ [-1]
20	25	1	= 45 [1	l	20	25	l	1	= 5	$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Then v1 and v2 are those (orthogonal!) eigenvectors rescaled to length 1.

Right singular vectors $v_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $v_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. $u_i = \text{left singular vectors.}$

Now compute Av_1 and Av_2 which will be $\sigma_1u_1 = \sqrt{45}u_1$ and $\sigma_2u_2 = \sqrt{5}u_2$:

$$\begin{aligned} Av_1 &= \frac{3}{\sqrt{2}} \begin{bmatrix} 1\\ 3 \end{bmatrix} &= \sqrt{45} \frac{1}{\sqrt{10}} \begin{bmatrix} 1\\ 3 \end{bmatrix} &= \sigma_1 u_1 \\ Av_2 &= \frac{1}{\sqrt{2}} \begin{bmatrix} -3\\ 1 \end{bmatrix} &= \sqrt{5} \frac{1}{\sqrt{10}} \begin{bmatrix} -3\\ 1 \end{bmatrix} &= \sigma_2 u_2 \end{aligned}$$

The division by $\sqrt{10}$ makes u_1 and u_2 orthonormal. Then $\sigma_1 = \sqrt{45}$ and $\sigma_2 = \sqrt{5}$ as expected. The Singular Value Decomposition is $A = U\Sigma V^T$:

$$U = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & -3\\ 3 & 1 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \sqrt{45} & \\ & \sqrt{5} \end{bmatrix} \qquad V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1\\ 1 & 1 \end{bmatrix} .$$
(7)

U and V contain orthonormal bases for the column space and the row space (both spaces are just \mathbb{R}^2). The real achievement is that those two bases diagonalize A: AV equals $U\Sigma$. Then the matrix $U^T AV = \Sigma$ is diagonal.

The matrix A splits into a combination of two rank-one matrices, columns times rows :

$$\sigma_1 u_1 v_1^{\mathrm{T}} + \sigma_2 u_2 v_2^{\mathrm{T}} = \frac{\sqrt{45}}{\sqrt{20}} \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} + \frac{\sqrt{5}}{\sqrt{20}} \begin{bmatrix} 3 & -3 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix} = A.$$

An Extreme Matrix

Here is a larger example, when the u's and the u's are just columns of the identity matrix. So the computations are easy, but keep your eye on the order of the columns. The matrix A is badly lopsided (strictly triangular). All its eigenvalues are zero. AA^{T} is not close to $A^{T}A$. The matrices U and V will be permutations that fix these problems properly.

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{eigenvalues } \lambda = 0, 0, 0, 0 \text{ all zero }!}_{\text{singular values } n = 0, 0, 0, 0 \text{ all zero }!}_{\text{singular values } n = 0, 2, 1}$$

We always start with A^TA and AA^T. They are diagonal (with easy v's and u's):

	[0]	0	0	0	$AA^{\mathrm{T}} =$	1	0	0	0	
AT A	0	1	0	0		0	4	0	0	
A A =	0	0	4	0		0	0	9	0	İ
$A^{\mathrm{T}}A =$	0	0	0	9		0	0	0	0 0 0 0	

Their eigenvectors (u's for AA^{T} and u's for $A^{T}A$) go in decreasing order $\sigma_{1}^{2} > \sigma_{2}^{2} > \sigma_{3}^{2}$ of the eigenvalues. These eigenvalues $\sigma^{2} = 9, 4, 1$ are not zero!

	0	0	1	0] [3	1		0	0	0	1]
U =	0	1	0	0	$\Sigma = 2$		17	0	0	1	0
	1	0	0	0	2 =	1	v –	0	1	0	0
	0	0	0	1	ļ	0	V =	1	0	0	0

Those first columns u_1 and v_1 have 1's in positions 3 and 4. Then $u_1\sigma_1v_1^T$ picks out the biggest number $A_{34} = 3$ in the original matrix A. The three rank-one matrices in the SVD come exactly from the numbers 3, 2, 1 in A.

$$A = U\Sigma V^{T} = 3u_{1}v_{1}^{T} + 2u_{2}v_{2}^{T} + 1u_{3}v_{3}^{T}$$
.

Note Suppose I remove the last row of A (all zeros). Then A is a 3 by 4 matrix and AA^{T} is 3 by 3—its fourth row and column will disappear. We still have eigenvalues $\lambda = 1, 4, 9$ in $A^{T}A$ and AA^{T} , producing the same singular values $\sigma = 3, 2, 1$ in Σ .

Removing the zero row of A (now 3×4) just removes the last row of Σ together with the last row and column of U. Then $(3 \times 4) = (3 \times 3)(3 \times 4)(4 \times 4)$. The SVD is totally adapted to rectangular matrices.

A good thing, because the rows and columns of a data matrix A often have completely different meanings (like a spreadsheet). If we have the grades for all courses, there would be a column for each student and a row for each course: The entry a_i would be the grade. Then σ_{14} , v_{17}^{27} could have $u_{11} = combination courses and <math>v_{11} = combination student.$ $And <math>\sigma_{17}$ would be the grade of those combinations: the highest grade.

The matrix A could count the frequency of key words in a journal: A different article for each column of A and a different word for each row. The whole journal is indexed by the matrix A and the most important information is in $\sigma_1 u_1 v_1^T$. Then σ_1 is the largest frequency for a hyperword (the word combination u_1) in the hyperarticle v_1 .

I will soon show pictures for a different problem: A photo broken into SVD pieces.

Singular Value Stability versus Eigenvalue Instability

The 4 by 4 example A provides an example (an extreme case) of the instability of eigenvalues. Suppose the 4,1 entry barely changes from zero to 1/60,000. The rank is now 4.

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ \frac{1}{60.000} & 0 & 0 & 0 \end{bmatrix}$$
That change by only 1/60,000 produces a much bigger jump in the eigenvalues of A $\lambda = 0, 0, 0, 0$ to $\lambda = \frac{1}{10}, \frac{1}{10}, \frac{-1}{10}, \frac{-1}{10}$

The four eigenvalues moved from zero onto a circle around zero. The circle has radius $\frac{1}{10}$ when the new entry is only 1/60, 000. This shows serious instability of eigenvalues when AA^{T} is far from $A^{T}A$. At the other extreme, if $A^{T}A = AA^{T}$ (a "normal matrix") the eigenvectors of A are orthogonal and the eigenvalues of A are totally stable.

By contrast, the singular values of any matrix are stable. They don't change more than the change in A. In this example, the new singular values are 3, 2, 1, and 1/60,000. The matrices U and V stay the same. The new fourth piece of A is $\sigma_4 u_4 v_4^T$, with fifteen zeros and that small entry $\sigma_4 = 1/60,000$.

Singular Vectors of A and Eigenvectors of $S = A^{T}A$

Equations (5–6) "proved" the SVD all at once. The singular vectors v_i are the eigenvectors q_i of $S = A^T A$. The eigenvalues λ_i of S are the same as σ_i^2 for A. The rank r of S equals the rank r of A. The all-important rank-one expansions (from columns times rows) were perfectly parallel:

 $\begin{array}{ll} \textbf{Symmetric S} & S = Q \Lambda Q^{\mathrm{T}} & = \lambda_1 q_1 q_1^{\mathrm{T}} + \lambda_2 q_2 q_2^{\mathrm{T}} + \cdots + \lambda_r q_r q_r^{\mathrm{T}} \\ \textbf{SVD of A} & A = U \Sigma V^{\mathrm{T}} & = \sigma_1 u_1 v_1^{\mathrm{T}} + \sigma_2 u_2 v_2^{\mathrm{T}} + \cdots + \sigma_r u_r v_r^{\mathrm{T}} \\ \end{array}$

The q's are orthonormal, the u's are orthonormal, the v's are orthonormal. Beautiful.

But I want to look again, for two good reasons. One is to fix a weak point in the eigenvalue part, where Chapter 6 was not complete. If λ is a *double* eigenvalue of *S*, we can and must find *two* orthonormal eigenvectors. The other reason is to see how the SVD picks off the largest term $\sigma_1 u_1 v_1^2$ before $\sigma_2 u_2 v_2^2$. We want to understand the eigenvalues λ (of *S*) and singular values σ (*d* Λ) one at a time instead of all at once.

Start with the largest eigenvalue λ_1 of S. It solves this problem:

$$\lambda_1 =$$
maximum ratio $\frac{x^T S x}{x^T x}$. The winning vector is $x = q_1$ with $Sq_1 = \lambda_1 q_1$. (8)

Compare with the largest singular value σ_1 of A. It solves this problem:

$$\sigma_1 =$$
maximum ratio $\frac{||Ax||}{||x||}$. The winning vector is $x = v_1$ with $Av_1 = \sigma_1 u_1$. (9)

This "one at a time approach" applies also to λ_2 and σ_2 . But not all x's are allowed:

$$\lambda_2 = \text{maximum ratio} \ \frac{x^{\mathrm{T}} S x}{x^{\mathrm{T}} x} \text{ among all } x$$
's with $q_1^{\mathrm{T}} x = 0$. The winning x is q_2 . (10)

$$\sigma_2 = \text{maximum ratio} \frac{||Ax||}{||x||}$$
 among all x's with $v_1^T x = 0$. The winning x is v_2 .
(11)

When $S = A^T A$ we find $\lambda_1 = \sigma_1^2$ and $\lambda_2 = \sigma_2^2$. Why does this approach succeed?

Start with the ratio $r(x) = x^T S x / x^T x$. This is called the *Rayleigh quotient*. To maximize r(x), set its partial derivatives to zero: $\partial r / \partial x_i = 0$ for i = 1, ..., n. Those derivatives are messy and here is the result: one vector equation for the winning x:

The derivatives of
$$r(x) = \frac{x^T S x}{x^T x}$$
 are zero when $Sx = r(x)x$. (12)

So the winning x is an eigenvector of S. The maximum ratio r(x) is the largest eigenvalue λ_1 of S. All good. Now turn to A—and notice the connection to $S = A^T A!$

$$\text{Maximizing } \frac{||Ax||}{||x||} \text{ also maximizes } \left(\frac{||Ax||}{||x||}\right)^2 = \frac{x^{\mathrm{T}}A^{\mathrm{T}}Ax}{x^{\mathrm{T}}x} = \frac{x^{\mathrm{T}}Sx}{x^{\mathrm{T}}x}$$

So the winning $x = v_1$ in (9) is the top eigenvector q_1 of $S = A^T A$ in (8).

Now I have to explain why q_2 and v_2 are the winning vectors in (10) and (11). We know they are orthogonal to q_1 and v_1 , so they are allowed in those competitions. These paragraphs can be omitted by readers who aim to see the SVD in action (Section 7.2).

Start with any orthogonal matrix Q_1 that has q_1 in its first column. The other n-1orthonormal columns just have to be orthogonal to q_1 . Then use $Sq_1 = \lambda_1q_1$:

$$SQ_1 = S\begin{bmatrix} \boldsymbol{q}_1 & \boldsymbol{q}_2 \dots \boldsymbol{q}_n \end{bmatrix} = \begin{bmatrix} \boldsymbol{q}_1 & \boldsymbol{q}_2 \dots \boldsymbol{q}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \boldsymbol{w}^{\mathrm{T}} \\ \boldsymbol{0} & S_{n-1} \end{bmatrix} = Q_1 \begin{bmatrix} \lambda_1 & \boldsymbol{w}^{\mathrm{T}} \\ \boldsymbol{0} & S_{n-1} \end{bmatrix}.$$
(13)

Multiply by Q_1^T , remember $Q_1^TQ_1 = I$, and recognize that $Q_1^TSQ_1$ is symmetric like S:

The symmetry of
$$Q_1^T S Q_1 = \begin{bmatrix} \lambda_1 & \boldsymbol{w}^T \\ \boldsymbol{0} & S_{n-1} \end{bmatrix}$$
 forces $\boldsymbol{w} = \boldsymbol{0}$ and $S_{n-1}^T = S_{n-1}$.

The requirement $q_1^T x = 0$ has reduced the maximum problem (10) to size n - 1. The largest eigenvalue of S_{n-1} will be the second largest for S. It is λ_2 . The winning vector in (10) will be the eigenvector q_2 with $Sq_2 = \lambda_2q_2$.

We just keep going—or use the magic word induction—to produce all the eigenvectors q_1, \ldots, q_n and their eigenvalues $\lambda_1, \ldots, \lambda_n$. The Spectral Theorem $S = Q\Lambda Q^T$ is proved even with repeated eigenvalues. All symmetric matrices can be diagonalized.

Similarly the SVD is found one step at a time from (9) and (11) and onwards. Section 7.2 will show the geometry—we are finding the axes of an ellipse. Here I ask a different question: **How are the** λ 's and σ 's actually computed?

Computing the Eigenvalues of S and the SVD of A

The singular values σ_i of A are the square roots of the eigenvalues λ_i of $S = A^T A$. This connects the SVD to the symmetric eigenvalue problem (symmetry is good). In the end we don't want to multiply A^T times A (squaring is time-consuming: not good). But the same ideas govern both problems. How to compute the $\lambda's$ for S and singular values σ for A?

The first idea is to produce zeros in A and S without changing the σ 's and the Ns. Singular vectors and eigenvectors will change—no problem. The similar matrix $Q^{-1}SQ$ has the same X's as S. If Q is orthogonal, this matrix is $Q^{T}SQ$ and still symmetric. Section 11.3 will show how to build Q from 2 by 2 rotations so that $Q^{T}SQ$ is symmetric and tridiagonal (many zeros). We can't get all the way to a diagonal matrix A—which would show all the eigenvalues of S—without a new idea and more work in Chapter 11.

For the SVD, what is the parallel to $Q^{-1}SQ^2$. Now we don't want to change any singular values of A. Natural answer: You can multiply A by two different orthogonal matrices Q_1 and Q_2 . Use them to produce zeros in Q_1^2 AQ_2 . The σ' s and λ' 's don't change:

 $(Q_1^T A Q_2)^T (Q_1^T A Q_2) = Q_2^T A^T A Q_2 = Q_2^T S Q_2$ gives the same $\sigma(A)$ from the same $\lambda(S)$.

The freedom of two Q's allows us to reach $Q_1^T A Q_2 =$ **bidiagonal matrix** (2 diagonals). This compares perfectly to $Q^T S Q = 3$ diagonals. It is nice to notice the connection between them: (*bidiagonalf' bidiagonal) = tridiagonal.*

The final steps to a diagonal Λ and a diagonal Σ need more ideas. This problem can't be easy, because underneath we are solving $det(S - \lambda I) = 0$ for polynomials of dependence n = 100 or 1000 or more. The favorite way to find λ 's and τ 's uses simple orthogonal matrices to approach $Q^TSQ = \Lambda$ and $U^TAV = \Sigma$. We stop when very close to Λ and Σ .

This 2-step approach is built into the commands eig(S) and svd(A).

REVIEW OF THE KEY IDEAS

The SVD factors A into UΣV^T, with r singular values σ₁ ≥ ... ≥ σ_r > 0.

The numbers σ²₁,...,σ²_r are the nonzero eigenvalues of AA^T and A^TA.

3. The orthonormal columns of U and V are eigenvectors of AA^T and A^TA.

4. Those columns hold orthonormal bases for the four fundamental subspaces of A.

Those bases diagonalize the matrix: Av_i = σ_iu_i for i ≤ r. This is AV = UΣ.

6. $A = \sigma_1 u_1 v_1^T + \cdots + \sigma_r u_r v_r^T$ and σ_1 is the maximum of the ratio ||Ax|| / ||x||.

WORKED EXAMPLES

7.1 A Identify by name these decompositions of A into a sum of columns times rows:

1. Orthogonal columns	$\boldsymbol{u}_1 \sigma_1, \dots, \boldsymbol{u}_r \sigma_r$	times	orthonormal rows	$v_1^T,, v_r^T$.				
2. Orthonormal columns	q_1, \ldots, q_r	times	triangular rows	$r_1^T,, r_r^T$.				
3. Triangular columns	l_1, \ldots, l_r	times	triangular rows	$u_1^T,, u_r^T$.				
Where do the rank and the pivots and the singular values of A come into this picture?								

Solution These three factorizations are basic to linear algebra, pure or applied:

1. Singular Value Decomposition $A = U\Sigma V^{T}$

- 2. Gram-Schmidt Orthogonalization A = QR
- 3. Gaussian Elimination A = LU

You might prefer to separate out singular values σ_i and heights h_i and pivots d_i :

- 1. $A = U\Sigma V^T$ with unit vectors in U and V. The singular values σ_i are in Σ .
- 2. A = QHR with unit vectors in Q and diagonal 1's in R. The heights h_i are in H.
- A = LDU with diagonal 1's in L and U. The pivots d_i are in D.

Each h_i tells the height of column *i* above the plane of columns 1 to *i* - 1. The volume of the full *n*-dimensional box (r = m = n) comes from $A = U\Sigma V^T = LDU = QHR$:

 $|\det A| = |$ product of σ 's | = | product of d's | = | product of h's |.

7.1.B Show that σ₁ ≥ |λ|_{max}. The largest singular value dominates all eigenvalues.

Solution Start from $A = U\Sigma V^{\tau}$. Remember that multiplying by an orthogonal matrix does not change length: ||Qx|| = ||x|| because $||Qx||^2 = x^T Q^T Qx = x^T^T x = ||x||^2$. This applies to Q = U and $Q = V^T$. In between is the diagonal matrix Σ .

$$||A\mathbf{x}|| = ||U\Sigma V^T \mathbf{x}|| = ||\Sigma V^T \mathbf{x}|| \le \sigma_1 ||V^T \mathbf{x}|| = \sigma_1 ||\mathbf{x}||.$$
 (14)

An eigenvector has $||Ax|| = |\lambda| ||x||$. So (14) says that $|\lambda| ||x|| \le \sigma_1 ||x||$. Then $|\lambda| \le \sigma_1$.

Apply also to the unit vector x = (1, 0, ..., 0). Now Ax is the first column of A. Then by inequality (14), this column has length $\leq \sigma_1$. Every entry must have $|a_{ij}| \leq \sigma_1$.

Equation (14) shows again that the maximum value of ||Ax||/||x|| equals σ_1 .

Section 11.2 will explain how the ratio $\sigma_{max}/\sigma_{min}$ governs the roundoff error in solving Ax = b. MATLAB warns you if this "condition number" is large. Then x is unreliable.