Chapter 7

The Singular Value Decomposition (SVD)

1 The SVD produces orthonormal bases of \boldsymbol{v} 's and \boldsymbol{u} 's for the four fundamental subspaces.
2 Using those bases, A becomes a diagonal matrix Σ and $A v_{i}=\sigma_{i} \boldsymbol{u}_{i}: \sigma_{i}=$ singular value.
3 The two-bases diagonalization $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathbf{T}}$ often has more information than $A=X \Lambda X^{-1}$.
$4 U \Sigma V^{\mathrm{T}}$ separates A into rank-1 matrices $\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\mathrm{T}}+\cdots+\sigma_{r} \boldsymbol{u}_{r} \boldsymbol{v}_{r}^{\mathrm{T}} . \quad \sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\mathrm{T}}$ is the largest!

7.1 Bases and Matrices in the SVD

The Singular Value Decomposition is a highlight of linear algebra. A is any m by n matrix, square or rectangular. Its rank is r. We will diagonalize this A, but not by $X^{-1} A X$. The eigenvectors in X have three big problems: They are usually not orthogonal, there are not always enough eigenvectors, and $A x=\lambda x$ requires A to be a square matrix. The singular vectors of A solve all those problems in a perfect way.

Let me describe what we want from the SVD : the right bases for the four subspaces. Then I will write about the steps to find those bases in order of importance.

The price we pay is to have two sets of singular vectors, \boldsymbol{u} 's and \boldsymbol{v} 's. The \boldsymbol{u} 's are in \mathbf{R}^{m} and the \boldsymbol{v} 's are in \mathbf{R}^{n}. They will be the columns of an m by m matrix \boldsymbol{U} and an n by n matrix \boldsymbol{V}. I will first describe the SVD in terms of those basis vectors. Then I can also describe the SVD in terms of the orthogonal matrices U and V.
(using vectors) The \boldsymbol{u} 's and \boldsymbol{v} 's give bases for the four fundamental subspaces:

$$
\begin{array}{ll}
\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{r} & \text { is an orthonormal basis for the column space } \\
\boldsymbol{u}_{r+1}, \ldots, \boldsymbol{u}_{m} & \text { is an orthonormal basis for the left nullspace } \boldsymbol{N}\left(A^{\mathrm{T}}\right) \\
\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r} & \text { is an orthonormal basis for the row space } \\
\boldsymbol{v}_{r+1}, \ldots, \boldsymbol{v}_{n} & \text { is an orthonormal basis for the nullspace } \boldsymbol{N}(A) .
\end{array}
$$

More than just orthogonality, these basis vectors diagonalize the matrix A :
" \boldsymbol{A} is diagonalized" $\quad A \boldsymbol{v}_{1}=\sigma_{1} \boldsymbol{u}_{1} \quad A \boldsymbol{v}_{2}=\sigma_{2} \boldsymbol{u}_{2} \quad \ldots \quad A \boldsymbol{v}_{r}=\sigma_{r} \boldsymbol{u}_{r}$
Those singular values σ_{1} to σ_{r} will be positive numbers: σ_{i} is the length of $A v_{i}$. The σ 's go into a diagonal matrix that is otherwise zero. That matrix is Σ.
(using matrices) Since the \boldsymbol{u} 's are orthonormal, the matrix U with those r columns has $U^{\mathrm{T}} U=I$. Since the \boldsymbol{v} 's are orthonormal, the matrix V has $V^{\mathrm{T}} V=I$. Then the equations $A \boldsymbol{v}_{i}=\sigma_{i} \boldsymbol{u}_{i}$ tell us column by column that $A \boldsymbol{V}_{r}=\boldsymbol{U}_{\boldsymbol{r}} \boldsymbol{\Sigma}_{r}$:

$$
\begin{gather*}
(m \text { by } n)(n \text { by } r) \tag{2}\\
\boldsymbol{A} \boldsymbol{V}_{\boldsymbol{r}}=\boldsymbol{U}_{r} \boldsymbol{\Sigma}_{\boldsymbol{r}} \\
(m \text { by } r)(r \text { by } r)
\end{gather*} \quad A\left[\begin{array}{lll}
& & \\
\boldsymbol{v}_{1} & \cdots \boldsymbol{v}_{r} \\
& & \\
\boldsymbol{u}_{1} & \cdots \boldsymbol{u}_{r} \\
&
\end{array}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \cdot & \\
& & \\
& & \sigma_{r}
\end{array}\right]
$$

This is the heart of the SVD, but there is more. Those \boldsymbol{v} 's and \boldsymbol{u} 's account for the row space and column space of A. We have $n-r$ more \boldsymbol{v} 's and $m-r$ more \boldsymbol{u} 's, from the nullspace $N(A)$ and the left nullspace $N\left(A^{\mathrm{T}}\right)$. They are automatically orthogonal to the first \boldsymbol{v} 's and \boldsymbol{u} 's (because the whole nullspaces are orthogonal). We now include all the \boldsymbol{v} 's and \boldsymbol{u} 's in V and U, so these matrices become square. We still have $\boldsymbol{A} \boldsymbol{V}=\boldsymbol{U} \boldsymbol{\Sigma}$.

The new Σ is m by n. It is just the r by r matrix in equation (2) with $m-r$ extra zero rows and $n-r$ new zero columns. The real change is in the shapes of U and V. Those are square orthogonal matrices. So $A V=U \Sigma$ can become $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathbf{T}}$. This is the Singular Value Decomposition. I can multiply columns $\boldsymbol{u}_{i} \sigma_{i}$ from $U \Sigma$ by rows of V^{T} :

SVD

$$
\begin{equation*}
A=U \Sigma V^{\mathrm{T}}=u_{1} \sigma_{1} v_{1}^{\mathrm{T}}+\cdots+u_{r} \sigma_{r} v_{r}^{\mathrm{T}} \tag{4}
\end{equation*}
$$

Equation (2) was a "reduced SVD" with bases for the row space and column space. Equation (3) is the full SVD with nullspaces included. They both split up A into the same r matrices $\boldsymbol{u}_{i} \sigma_{i} \boldsymbol{v}_{i}^{\mathrm{T}}$ of rank one: column times row.

We will see that each σ_{i}^{2} is an eigenvalue of $A^{\mathrm{T}} A$ and also $A A^{\mathrm{T}}$. When we put the singular values in descending order, $\sigma_{1} \geq \sigma_{2} \geq \ldots \sigma_{r}>0$, the splitting in equation (4) gives the r rank-one pieces of A in order of importance. This is crucial.
Example 1 When is $\Lambda=U \Sigma V^{\mathrm{T}}$ (singular values) the same as $X \Lambda X^{-1}$ (eigenvalues)?
Solution A needs orthonormal eigenvectors to allow $X=U=V$. A also needs eigenvalues $\lambda \geq 0$ if $\Lambda=\Sigma$. So A must be a positive semidefinite (or definite) symmetric matrix. Only then will $A=X \Lambda X^{-1}$ which is also $Q \Lambda Q^{\mathrm{T}}$ coincide with $A=U \Sigma V^{\mathrm{T}}$.

Example 2 If $A=\boldsymbol{x}^{\mathrm{T}}$ (rank 1) with unit vectors \boldsymbol{x} and \boldsymbol{y}, what is the SVD of A ?
Solution The reduced SVD in (2) is exactly $\boldsymbol{x} \boldsymbol{y}^{\mathrm{T}}$, with rank $r=1$. It has $\boldsymbol{u}_{1}=\boldsymbol{x}$ and $\boldsymbol{v}_{1}=\boldsymbol{y}$ and $\sigma_{1}=1$. For the full SVD, complete $\boldsymbol{u}_{1}=\boldsymbol{x}$ to an orthonormal basis of \boldsymbol{u} 's, and complete $\boldsymbol{v}_{1}=\boldsymbol{y}$ to an orthonormal basis of \boldsymbol{v} 's. No new σ 's, only $\sigma_{1}=1$.

Proof of the SVD

We need to show how those amazing \boldsymbol{u} 's and \boldsymbol{v} 's can be constructed. The \boldsymbol{v} 's will be orthonormal eigenvectors of $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}$. This must be true because we are aiming for

$$
\begin{equation*}
\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}=\left(U \Sigma V^{\mathrm{T}}\right)^{\mathrm{T}}\left(U \Sigma V^{\mathrm{T}}\right)=V \Sigma^{\mathrm{T}} U^{\mathrm{T}} U \Sigma V^{\mathrm{T}}=\boldsymbol{V} \boldsymbol{\Sigma}^{\mathrm{T}} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}} \tag{5}
\end{equation*}
$$

On the right you see the eigenvector matrix V for the symmetric positive (semi) definite matrix $A^{\mathrm{T}} A$. And $\left(\Sigma^{\mathrm{T}} \Sigma\right)$ must be the eigenvalue matrix of $\left(A^{\mathrm{T}} A\right)$: Each σ^{2} is $\lambda\left(A^{\mathrm{T}} A\right)$!

Now $A \boldsymbol{v}_{i}=\sigma_{i} \boldsymbol{u}_{i}$ tells us the unit vectors \boldsymbol{u}_{1} to \boldsymbol{u}_{r}. This is the key equation (1). The essential point-the whole reason that the SVD succeeds-is that those unit vectors \boldsymbol{u}_{1} to \boldsymbol{u}_{r} are automatically orthogonal to each other (because the \boldsymbol{v} 's are orthogonal) :

$$
\begin{equation*}
\text { Key step } \quad \boldsymbol{u}_{i}^{\mathrm{T}} \boldsymbol{u}_{j}=\left(\frac{A \boldsymbol{v}_{i}}{\sigma_{i}}\right)^{\mathrm{T}}\left(\frac{A \boldsymbol{v}_{j}}{\sigma_{j}}\right)=\frac{\boldsymbol{v}_{i}^{\mathrm{T}} A^{\mathrm{T}} A \boldsymbol{v}_{j}}{\sigma_{i} \sigma_{j}}=\frac{\sigma_{j}^{2}}{\sigma_{i} \sigma_{j}} \boldsymbol{v}_{i}^{\mathrm{T}} \boldsymbol{v}_{j}=\text { zero. } \tag{6}
\end{equation*}
$$

The \boldsymbol{v} 's are eigenvectors of $A^{\mathrm{T}} A$ (symmetric). They are orthogonal and now the \boldsymbol{u} 's are also orthogonal. Actually those u 's will be eigenvectors of $A A^{\mathrm{T}}$.

Finally we complete the \boldsymbol{v} 's and \boldsymbol{u} 's to $n \boldsymbol{v}$'s and $m \boldsymbol{u}$'s with any orthonormal bases for the nullspaces $N(A)$ and $N\left(A^{\mathrm{T}}\right)$. We have found V and Σ and U in $A=U \Sigma V^{\mathrm{T}}$.

An Example of the SVD

Here is an example to show the computation of three matrices in $A=U \Sigma V^{\mathrm{T}}$.
Example 3 Find the matrices U, Σ, V for $A=\left[\begin{array}{ll}\mathbf{3} & \mathbf{0} \\ \mathbf{4} & \mathbf{5}\end{array}\right]$. The rank is $\boldsymbol{r}=\mathbf{2}$.
With rank 2, this A has positive singular values σ_{1} and σ_{2}. We will see that σ_{1} is larger than $\lambda_{\max }=5$, and σ_{2} is smaller than $\lambda_{\min }=3$. Begin with $A^{\mathrm{T}} A$ and $A A^{\mathrm{T}}$:

$$
A^{\mathrm{T}} A=\left[\begin{array}{ll}
25 & 20 \\
20 & 25
\end{array}\right] \quad A A^{\mathrm{T}}=\left[\begin{array}{rr}
9 & 12 \\
12 & 41
\end{array}\right]
$$

Those have the same trace (50) and the same eigenvalues $\sigma_{1}^{2}=45$ and $\sigma_{2}^{2}=5$. The square roots are $\sigma_{1}=\sqrt{\mathbf{4 5}}$ and $\sigma_{2}=\sqrt{\mathbf{5}}$. Then $\sigma_{1} \sigma_{2}=15$ and this is the determinant of A.

A key step is to find the eigenvectors of $A^{\mathrm{T}} A$ (with eigenvalues 45 and 5):

$$
\left[\begin{array}{ll}
25 & 20 \\
20 & 25
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\mathbf{4 5}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad\left[\begin{array}{ll}
25 & 20 \\
20 & 25
\end{array}\right]\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=\mathbf{5}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

Then \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are those (orthogonal!) eigenvectors rescaled to length 1 .

Right singular vectors $\boldsymbol{v}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right] \quad \boldsymbol{v}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}-1 \\ 1\end{array}\right] . \boldsymbol{u}_{i}=$ left singular vectors.
Now compute $A \boldsymbol{v}_{1}$ and $A \boldsymbol{v}_{2}$ which will be $\sigma_{1} \boldsymbol{u}_{1}=\sqrt{45} \boldsymbol{u}_{1}$ and $\sigma_{2} \boldsymbol{u}_{2}=\sqrt{5} \boldsymbol{u}_{2}$:

$$
\begin{aligned}
& A \boldsymbol{v}_{1}=\frac{3}{\sqrt{2}}\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\sqrt{45} \frac{\mathbf{1}}{\sqrt{\mathbf{1 0}}}\left[\begin{array}{l}
\mathbf{1} \\
\mathbf{3}
\end{array}\right]=\sigma_{1} \boldsymbol{u}_{1} \\
& A \boldsymbol{v}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
-3 \\
1
\end{array}\right]=\sqrt{5} \frac{\mathbf{1}}{\sqrt{\mathbf{1 0}}}\left[\begin{array}{r}
-\mathbf{3} \\
\mathbf{1}
\end{array}\right]=\sigma_{2} \boldsymbol{u}_{2}
\end{aligned}
$$

The division by $\sqrt{10}$ makes \boldsymbol{u}_{1} and \boldsymbol{u}_{2} orthonormal. Then $\sigma_{1}=\sqrt{45}$ and $\sigma_{2}=\sqrt{5}$ as expected. The Singular Value Decomposition is $A=U \Sigma V^{\mathrm{T}}$:

$$
\boldsymbol{U}=\frac{1}{\sqrt{10}}\left[\begin{array}{rr}
1 & -3 \tag{7}\\
3 & 1
\end{array}\right] \quad \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\sqrt{45} & \\
& \sqrt{5}
\end{array}\right] \quad \boldsymbol{V}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]
$$

U and V contain orthonormal bases for the column space and the row space (both spaces are just \mathbf{R}^{2}). The real achievement is that those two bases diagonalize $A: A V$ equals $U \Sigma$. Then the matrix $U^{\mathbf{T}} \boldsymbol{A} \boldsymbol{V}=\boldsymbol{\Sigma}$ is diagonal.

The matrix A splits into a combination of two rank-one matrices, columns times rows:

$$
\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\mathrm{T}}+\sigma_{2} \boldsymbol{u}_{2} \boldsymbol{v}_{2}^{\mathrm{T}}=\frac{\sqrt{\mathbf{4 5}}}{\sqrt{\mathbf{2 0}}}\left[\begin{array}{ll}
\mathbf{1} & \mathbf{1} \\
\mathbf{3} & \mathbf{3}
\end{array}\right]+\frac{\sqrt{5}}{\sqrt{\mathbf{2 0}}}\left[\begin{array}{rr}
\mathbf{3} & -\mathbf{3} \\
-\mathbf{1} & \mathbf{1}
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
4 & 5
\end{array}\right]=A
$$

An Extreme Matrix

Here is a larger example, when the \boldsymbol{u} 's and the \boldsymbol{v} 's are just columns of the identity matrix. So the computations are easy, but keep your eye on the order of the columns. The matrix A is badly lopsided (strictly triangular). All its eigenvalues are zero. $A A^{\mathrm{T}}$ is not close to $A^{\mathrm{T}} A$. The matrices U and V will be permutations that fix these problems properly.

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right] \begin{aligned}
& \text { eigenvalues } \lambda=0,0,0,0 \text { all zero ! } \\
& \text { only one eigenvector }(1,0,0,0) \\
& \text { singular values } \sigma=3,2,1 \\
& \text { singular vectors are columns of } I
\end{aligned}
$$

We always start with $A^{\mathrm{T}} A$ and $A A^{\mathrm{T}}$. They are diagonal (with easy \boldsymbol{v} 's and \boldsymbol{u} 's):

$$
A^{\mathrm{T}} A=\left[\begin{array}{llll}
\mathbf{0} & 0 & 0 & 0 \\
0 & \mathbf{1} & 0 & 0 \\
0 & 0 & \mathbf{4} & 0 \\
0 & 0 & 0 & \mathbf{9}
\end{array}\right] \quad A A^{\mathrm{T}}=\left[\begin{array}{llll}
\mathbf{1} & 0 & 0 & 0 \\
0 & \mathbf{4} & 0 & 0 \\
0 & 0 & \mathbf{9} & 0 \\
0 & 0 & 0 & \mathbf{0}
\end{array}\right]
$$

Their eigenvectors (\boldsymbol{u} 's for $A A^{\mathrm{T}}$ and \boldsymbol{v} 's for $A^{\mathrm{T}} A$) go in decreasing order $\sigma_{1}^{2}>\sigma_{2}^{2}>\sigma_{3}^{2}$ of the eigenvalues. These eigenvalues $\sigma^{2}=9,4,1$ are not zero!

$$
\boldsymbol{U}=\left[\begin{array}{llll}
0 & 0 & \mathbf{1} & 0 \\
0 & \mathbf{1} & 0 & 0 \\
\mathbf{1} & 0 & 0 & 0 \\
0 & 0 & 0 & \mathbf{1}
\end{array}\right] \quad \Sigma=\left[\begin{array}{llll}
\mathbf{3} & & & \\
& \mathbf{2} & & \\
& & \mathbf{1} & \\
& & & 0
\end{array}\right] \quad \boldsymbol{V}=\left[\begin{array}{llll}
0 & 0 & 0 & \mathbf{1} \\
0 & 0 & \mathbf{1} & 0 \\
0 & \mathbf{1} & 0 & 0 \\
\mathbf{1} & 0 & 0 & 0
\end{array}\right]
$$

Those first columns \boldsymbol{u}_{1} and \boldsymbol{v}_{1} have 1's in positions 3 and 4. Then $\boldsymbol{u}_{1} \sigma_{1} \boldsymbol{v}_{1}^{\mathrm{T}}$ picks out the biggest number $A_{34}=3$ in the original matrix A. The three rank-one matrices in the SVD come exactly from the numbers $3,2,1$ in A.

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathbf{T}}=\mathbf{3} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\mathrm{T}}+\mathbf{2} \boldsymbol{u}_{2} \boldsymbol{v}_{2}^{\mathrm{T}}+\mathbf{1} \boldsymbol{u}_{3} \boldsymbol{v}_{3}^{\mathrm{T}}
$$

Note Suppose I remove the last row of A (all zeros). Then A is a 3 by 4 matrix and $A A^{\mathrm{T}}$ is 3 by 3 -its fourth row and column will disappear. We still have eigenvalues $\lambda=1,4,9$ in $A^{\mathrm{T}} A$ and $A A^{\mathrm{T}}$, producing the same singular values $\sigma=3,2,1$ in Σ.

Removing the zero row of A (now 3×4) just removes the last row of Σ together with the last row and column of U. Then $(3 \times 4)=(3 \times 3)(3 \times 4)(4 \times 4)$. The SVD is totally adapted to rectangular matrices.

A good thing, because the rows and columns of a data matrix A often have completely different meanings (like a spreadsheet). If we have the grades for all courses, there would be a column for each student and a row for each course: The entry $a_{i j}$ would be the grade. Then $\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\mathrm{T}}$ could have $\boldsymbol{u}_{1}=$ combination course and $\boldsymbol{v}_{1}=$ combination student. And σ_{1} would be the grade for those combinations: the highest grade.

The matrix A could count the frequency of key words in a journal : A different article for each column of A and a different word for each row. The whole journal is indexed by the matrix A and the most important information is in $\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\mathrm{T}}$. Then σ_{1} is the largest frequency for a hyperword (the word combination \boldsymbol{u}_{1}) in the hyperarticle \boldsymbol{v}_{1}.

I will soon show pictures for a different problem: A photo broken into SVD pieces.

Singular Value Stability versus Eigenvalue Instability

The 4 by 4 example A provides an example (an extreme case) of the instability of eigenvalues. Suppose the $\mathbf{4 , 1}$ entry barely changes from zero to $1 / 60,000$. The rank is now 4 .

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
\frac{1}{60,000} & 0 & 0 & 0
\end{array}\right] \quad \begin{aligned}
& \text { That change by only } 1 / 60,000 \text { produces a } \\
& \text { much bigger jump in the eigenvalues of } A \\
& \lambda=0,0,0,0 \text { to } \lambda=\frac{1}{\mathbf{1 0}}, \frac{i}{\mathbf{1 0}}, \frac{-1}{\mathbf{1 0}}, \frac{-i}{\mathbf{1 0}}
\end{aligned}
$$

The four eigenvalues moved from zero onto a circle around zero. The circle has radius $\frac{1}{10}$ when the new entry is only $1 / 60,000$. This shows serious instability of eigenvalues when $A A^{\mathrm{T}}$ is far from $A^{\mathrm{T}} A$. At the other extreme, if $A^{\mathrm{T}} A=A A^{\mathrm{T}}$ (a "normal matrix") the eigenvectors of A are orthogonal and the eigenvalues of A are totally stable.

By contrast, the singular values of any matrix are stable. They don't change more than the change in A. In this example, the new singular values are $\mathbf{3 , 2}, \mathbf{1}$, and $\mathbf{1} / 60,000$. The matrices U and V stay the same. The new fourth piece of A is $\sigma_{4} \boldsymbol{u}_{4} \boldsymbol{v}_{4}^{\mathrm{T}}$, with fifteen zeros and that small entry $\sigma_{4}=1 / 60,000$.

Singular Vectors of A and Eigenvectors of $S=A^{T} A$

Equations (5-6) "proved" the SVD all at once. The singular vectors v_{i} are the eigenvectors \boldsymbol{q}_{i} of $S=A^{\mathrm{T}} A$. The eigenvalues λ_{i} of S are the same as σ_{i}^{2} for A. The rank r of S equals the rank r of A. The all-important rank-one expansions (from columns times rows) were perfectly parallel:

$$
\begin{array}{ll}
\text { Symmetric } \boldsymbol{S} & S=Q \Lambda Q^{\mathrm{T}}=\lambda_{1} \boldsymbol{q}_{1} \boldsymbol{q}_{1}^{\mathrm{T}}+\lambda_{2} \boldsymbol{q}_{2} \boldsymbol{q}_{2}^{\mathrm{T}}+\cdots+\lambda_{r} \boldsymbol{q}_{r} \boldsymbol{q}_{r}^{\mathrm{T}} \\
\text { SVD of } \boldsymbol{A} & A=U \Sigma V^{\mathrm{T}}=\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\mathrm{T}}+\sigma_{2} \boldsymbol{u}_{2} \boldsymbol{v}_{2}^{\mathrm{T}}+\cdots+\sigma_{r} \boldsymbol{u}_{r} \boldsymbol{v}_{r}^{\mathrm{T}}
\end{array}
$$

The \boldsymbol{q} 's are orthonormal, the \boldsymbol{u} 's are orthonormal, the \boldsymbol{v} 's are orthonormal. Beautiful.
But I want to look again, for two good reasons. One is to fix a weak point in the eigenvalue part, where Chapter 6 was not complete. If λ is a double eigenvalue of S, we can and must find two orthonormal eigenvectors. The other reason is to see how the SVD picks off the largest term $\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\mathrm{T}}$ before $\sigma_{2} \boldsymbol{u}_{2} \boldsymbol{v}_{2}^{\mathrm{T}}$. We want to understand the eigenvalues λ (of S) and singular values σ (of A) one at a time instead of all at once.
Start with the largest eigenvalue λ_{1} of S. It solves this problem:
$\boldsymbol{\lambda}_{\mathbf{1}}=$ maximum ratio $\frac{\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}}{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}}$. The winning vector is $\boldsymbol{x}=\boldsymbol{q}_{1}$ with $S \boldsymbol{q}_{1}=\lambda_{1} \boldsymbol{q}_{1}$.
Compare with the largest singular value σ_{1} of A. It solves this problem:
$\sigma_{1}=$ maximum ratio $\frac{\|A x\|}{\|\boldsymbol{x}\|}$. The winning vector is $\boldsymbol{x}=\boldsymbol{v}_{1}$ with $A \boldsymbol{v}_{1}=\sigma_{1} \boldsymbol{u}_{1}$.

This "one at a time approach" applies also to λ_{2} and σ_{2}. But not all \boldsymbol{x} 's are allowed:

$$
\begin{align*}
& \boldsymbol{\lambda}_{2}=\text { maximum ratio } \frac{\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}}{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}} \text { among all } \boldsymbol{x} \text { 's with } \boldsymbol{q}_{1}^{\mathrm{T}} \boldsymbol{x}=0 \text {. The winning } \boldsymbol{x} \text { is } \boldsymbol{q}_{2} \tag{10}\\
& \boldsymbol{\sigma}_{2}=\text { maximum ratio } \frac{\|A \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \text { among all } \boldsymbol{x} \text { 's with } \boldsymbol{v}_{1}^{\mathrm{T}} \boldsymbol{x}=0 \text {. The winning } \boldsymbol{x} \text { is } \boldsymbol{v}_{2} \tag{11}
\end{align*}
$$

When $S=A^{\mathrm{T}} A$ we find $\lambda_{1}=\sigma_{1}^{2}$ and $\lambda_{2}=\sigma_{2}^{2}$. Why does this approach succeed?
Start with the ratio $r(\boldsymbol{x})=\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x} / \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}$. This is called the Rayleigh quotient. To maximize $r(\boldsymbol{x})$, set its partial derivatives to zero: $\partial r / \partial x_{i}=0$ for $i=1, \ldots, n$. Those derivatives are messy and here is the result: one vector equation for the winning x :

$$
\begin{equation*}
\text { The derivatives of } r(x)=\frac{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{S} \boldsymbol{x}}{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}} \text { are zero when } \quad S \boldsymbol{x}=r(\boldsymbol{x}) \boldsymbol{x} \tag{12}
\end{equation*}
$$

So the winning \boldsymbol{x} is an eigenvector of S. The maximum ratio $r(\boldsymbol{x})$ is the largest eigenvalue λ_{1} of S. All good. Now turn to A-and notice the connection to $S=A^{\mathrm{T}} A$!

$$
\text { Maximizing } \frac{\|A x\|}{\|\boldsymbol{x}\|} \text { also maximizes }\left(\frac{\|A \boldsymbol{x}\|}{\|\boldsymbol{x}\|}\right)^{2}=\frac{\boldsymbol{x}^{\mathrm{T}} A^{\mathrm{T}} A \boldsymbol{x}}{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}}=\frac{\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}}{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}}
$$

So the winning $\boldsymbol{x}=\boldsymbol{v}_{1}$ in (9) is the top eigenvector \boldsymbol{q}_{1} of $S=A^{\mathrm{T}} A$ in (8).
Now I have to explain why \boldsymbol{q}_{2} and \boldsymbol{v}_{2} are the winning vectors in (10) and (11). We know they are orthogonal to \boldsymbol{q}_{1} and \boldsymbol{v}_{1}, so they are allowed in those competitions. These paragraphs can be omitted by readers who aim to see the SVD in action (Section 7.2).

Start with any orthogonal matrix Q_{1} that has \boldsymbol{q}_{1} in its first column. The other $n-1$ orthonormal columns just have to be orthogonal to \boldsymbol{q}_{1}. Then use $S \boldsymbol{q}_{1}=\lambda_{1} \boldsymbol{q}_{1}$:

$$
S Q_{1}=S\left[\begin{array}{ll}
\boldsymbol{q}_{1} & \boldsymbol{q}_{2} \ldots \boldsymbol{q}_{n}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{q}_{1} & \boldsymbol{q}_{2} \ldots \boldsymbol{q}_{n}
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & \boldsymbol{w}^{\mathrm{T}} \tag{13}\\
\mathbf{0} & S_{n-1}
\end{array}\right]=Q_{1}\left[\begin{array}{cc}
\lambda_{1} & \boldsymbol{w}^{\mathrm{T}} \\
\mathbf{0} & S_{n-1}
\end{array}\right]
$$

Multiply by Q_{1}^{T}, remember $Q_{1}^{\mathrm{T}} Q_{1}=I$, and recognize that $Q_{1}^{\mathrm{T}} S Q_{1}$ is symmetric like S :

$$
\text { The symmetry of } Q_{1}^{\mathrm{T}} S Q_{1}=\left[\begin{array}{cc}
\lambda_{1} & \boldsymbol{w}^{\mathrm{T}} \\
\mathbf{0} & S_{n-1}
\end{array}\right] \text { forces } \boldsymbol{w}=\mathbf{0} \text { and } S_{n-1}^{\mathrm{T}}=S_{n-1}
$$

The requirement $\boldsymbol{q}_{1}^{\mathrm{T}} \boldsymbol{x}=0$ has reduced the maximum problem (10) to size $n-1$. The largest eigenvalue of S_{n-1} will be the second largest for S. It is $\boldsymbol{\lambda}_{\mathbf{2}}$. The winning vector in (10) will be the eigenvector \boldsymbol{q}_{2} with $S \boldsymbol{q}_{2}=\lambda_{2} \boldsymbol{q}_{2}$.

We just keep going-or use the magic word induction-to produce all the eigenvectors $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}$ and their eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. The Spectral Theorem $S=Q \Lambda Q^{\mathrm{T}}$ is proved even with repeated eigenvalues. All symmetric matrices can be diagonalized.

Similarly the SVD is found one step at a time from (9) and (11) and onwards. Section 7.2 will show the geometry-we are finding the axes of an ellipse. Here I ask a different question: How are the λ 's and σ 's actually computed?

Computing the Eigenvalues of S and the SVD of A

The singular values σ_{i} of A are the square roots of the eigenvalues λ_{i} of $S=A^{\mathrm{T}} A$. This connects the SVD to the symmetric eigenvalue problem (symmetry is good). In the end we don't want to multiply A^{T} times A (squaring is time-consuming: not good). But the same ideas govern both problems. How to compute the λ 's for S and singular values σ for A ?

The first idea is to produce zeros in A and S without changing the σ 's and the λ 's. Singular vectors and eigenvectors will change-no problem. The similar matrix $Q^{-1} S Q$ has the same $\boldsymbol{\lambda}$'s as \boldsymbol{S}. If Q is orthogonal, this matrix is $Q^{\mathrm{T}} S Q$ and still symmetric. Section 11.3 will show how to build Q from 2 by 2 rotations so that $Q^{\mathrm{T}} S Q$ is symmetric and tridiagonal (many zeros). We can't get all the way to a diagonal matrix Λ-which would show all the eigenvalues of S-without a new idea and more work in Chapter 11.

For the SVD, what is the parallel to $Q^{-1} S Q$? Now we don't want to change any singular values of A. Natural answer: You can multiply A by two different orthogonal matrices Q_{1} and Q_{2}. Use them to produce zeros in $Q_{1}^{\mathrm{T}} A Q_{2}$. The σ 's and λ 's don't change :
$\left(Q_{1}^{\mathrm{T}} A Q_{2}\right)^{\mathrm{T}}\left(Q_{1}^{\mathrm{T}} A Q_{2}\right)=Q_{2}^{\mathrm{T}} A^{\mathrm{T}} A Q_{2}=Q_{2}^{\mathrm{T}} S Q_{2}$ gives the same $\sigma(A)$ from the same $\lambda(S)$.
The freedom of two Q 's allows us to reach $Q_{1}^{\mathrm{T}} A Q_{2}=$ bidiagonal matrix (2 diagonals). This compares perfectly to $Q^{\mathrm{T}} S Q=3$ diagonals. It is nice to notice the connection between them: $(\text { bidiagonal })^{\mathrm{T}}($ bidiagonal $)=$ tridiagonal.

The final steps to a diagonal Λ and a diagonal Σ need more ideas. This problem can't be easy, because underneath we are solving $\operatorname{det}(S-\lambda I)=0$ for polynomials of degree $n=100$ or 1000 or more. The favorite way to find λ 's and σ 's uses simple orthogonal matrices to approach $Q^{\mathrm{T}} S Q=\Lambda$ and $U^{\mathrm{T}} A V=\Sigma$. We stop when very close to Λ and Σ.

This 2-step approach is built into the commands eig (S) and $\operatorname{svd}(A)$.

- REVIEW OF THE KEY IDEAS ■

1. The SVD factors A into $U \Sigma V^{\mathrm{T}}$, with r singular values $\sigma_{1} \geq \ldots \geq \sigma_{r}>0$.
2. The numbers $\sigma_{1}^{2}, \ldots, \sigma_{r}^{2}$ are the nonzero eigenvalues of $A A^{\mathrm{T}}$ and $A^{\mathrm{T}} A$.
3. The orthonormal columns of U and V are eigenvectors of $A A^{\mathrm{T}}$ and $A^{\mathrm{T}} A$.
4. Those columns hold orthonormal bases for the four fundamental subspaces of A.
5. Those bases diagonalize the matrix: $A \boldsymbol{v}_{i}=\sigma_{i} \boldsymbol{u}_{i}$ for $i \leq r$. This is $\boldsymbol{A} \boldsymbol{V}=\boldsymbol{U} \boldsymbol{\Sigma}$.
6. $A=\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\mathrm{T}}+\cdots+\sigma_{r} \boldsymbol{u}_{r} \boldsymbol{v}_{r}^{\mathrm{T}}$ and σ_{1} is the maximum of the ratio $\|A \boldsymbol{x}\| /\|\boldsymbol{x}\|$.

- WORKED EXAMPLES ■

7.1 A Identify by name these decompositions of A into a sum of columns times rows:

1. Orthogonal columns $\quad \boldsymbol{u}_{1} \sigma_{1}, \ldots, \boldsymbol{u}_{r} \sigma_{r}$ times orthonormal rows $\boldsymbol{v}_{1}^{\mathrm{T}}, \ldots, \boldsymbol{v}_{r}^{\mathrm{T}}$.
2. Orthonormal columns $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{r}$ times triangular rows $\boldsymbol{r}_{1}^{\mathrm{T}}, \ldots, \boldsymbol{r}_{r}^{\mathrm{T}}$.
3. Triangular columns $\quad \boldsymbol{l}_{1}, \ldots, \boldsymbol{l}_{r} \quad$ times triangular rows $\boldsymbol{u}_{1}^{\mathrm{T}}, \ldots, \boldsymbol{u}_{r}^{\mathrm{T}}$.

Where do the rank and the pivots and the singular values of A come into this picture?
Solution These three factorizations are basic to linear algebra, pure or applied:

1. Singular Value Decomposition $A=U \Sigma V^{\mathrm{T}}$
2. Gram-Schmidt Orthogonalization $A=Q R$
3. Gaussian Elimination $A=L U$

You might prefer to separate out singular values σ_{i} and heights \boldsymbol{h}_{i} and pivots \boldsymbol{d}_{i} :

1. $A=U \Sigma V^{\mathrm{T}}$ with unit vectors in U and V. The singular values σ_{i} are in Σ.
2. $A=Q H R$ with unit vectors in Q and diagonal 1's in R. The heights $\boldsymbol{h}_{\boldsymbol{i}}$ are in \boldsymbol{H}.
3. $A=L D U$ with diagonal 1 's in L and U. The pivots \boldsymbol{d}_{i} are in \boldsymbol{D}.

Each h_{i} tells the height of column i above the plane of columns 1 to $i-1$. The volume of the full n-dimensional box $\left(r=m=n\right.$) comes from $A=U \Sigma V^{\mathrm{T}}=L D U=Q H R$:

$$
|\operatorname{det} A|=\mid \text { product of } \sigma ' s|=| \text { product of } d ' s|=| \text { product of } h ' s \mid .
$$

7.1.B Show that $\sigma_{1} \geq|\lambda|_{\max }$. The largest singular value dominates all eigenvalues.

Solution Start from $A=U \Sigma V^{\mathrm{T}}$. Remember that multiplying by an orthogonal matrix does not change length: $\|Q \boldsymbol{x}\|=\|\boldsymbol{x}\|$ because $\|Q \boldsymbol{x}\|^{2}=\boldsymbol{x}^{\mathrm{T}} Q^{\mathrm{T}} Q \boldsymbol{x}=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}=\|\boldsymbol{x}\|^{2}$. This applies to $Q=U$ and $Q=V^{\mathrm{T}}$. In between is the diagonal matrix Σ.

$$
\begin{equation*}
\|A \boldsymbol{x}\|=\left\|U \Sigma V^{\mathrm{T}} \boldsymbol{x}\right\|=\left\|\Sigma V^{\mathrm{T}} \boldsymbol{x}\right\| \leq \sigma_{1}\left\|V^{\mathrm{T}} \boldsymbol{x}\right\|=\sigma_{1}\|\boldsymbol{x}\| \tag{14}
\end{equation*}
$$

An eigenvector has $\|A x\|=|\lambda|\|x\|$. So (14) says that $|\lambda|\|x\| \leq \sigma_{1}\|x\|$. Then $|\lambda| \leq \sigma_{1}$.
Apply also to the unit vector $\boldsymbol{x}=(1,0, \ldots, 0)$. Now $\boldsymbol{A} \boldsymbol{x}$ is the first column of A. Then by inequality (14), this column has length $\leq \sigma_{1}$. Every entry must have $\left|a_{i j}\right| \leq \sigma_{1}$.

Equation (14) shows again that the maximum value of $\|A x\| /\|x\|$ equals σ_{1}.
Section 11.2 will explain how the ratio $\sigma_{\max } / \sigma_{\min }$ governs the roundoff error in solving $A \boldsymbol{x}=\boldsymbol{b}$. MATLAB warns you if this "condition number" is large. Then \boldsymbol{x} is unreliable.

