A1

Partitions of unity

In this appendix we prove that a second-countable finite-dimensional manifold has a partition of unity subordinate to any cover. This material, although easy, is often omitted in courses on manifolds.

Definition A1.1 (Second countable) A topological space X is second countable if there is a countable basis for the topology.

In other words, X is second countable if there is a countable collection of open sets $(U_i)_{i\in I}$ such that every open set U is a union

$$U := \cup_{i \in J} U_i \tag{A1.1}$$

for some subset $J \subset I$. A standard example of a second-countable space is \mathbb{R}^n ; we can take the U_i to be the balls with rational radii centered at points with rational coordinates. Separable Banach spaces are also second countable.

A standard counterexample is the nonseparable Banach space l^{∞} ; the uncountably many unit balls centered at the vectors where all the entries are ± 1 are disjoint. The horrible surface of Example 1.3.1 is a much more relevant counterexample.

Definition A1.2 (\sigma-compact) A topological space X is σ -compact if it is Hausdorff and is a countable union of compact sets.

Proposition A1.3 A locally compact Hausdorff space X that is second countable is σ -compact. In particular, every second-countable finite-dimensional manifold is σ -compact.

PROOF For each point $x \in X$, choose a neighborhood V_x with compact closure. If \mathcal{U} is a countable basis for the topology, it is easy to see that those $U \in \mathcal{U}$ that are contained in some V_x are still a basis, and that $\overline{\mathcal{U}}$ is compact for all such U. These sets $\overline{\mathcal{U}}$ are a countable collection of compact sets whose union is X. \square

Exercise A1.4 shows that a topological space that is not locally compact can perfectly well be second countable without being σ -compact.

Exercise A1.4 Show that a Hilbert space with a countably infinite basis is second countable but not σ -compact. Hint: A compact subset is nowhere dense, so you can apply the Baire category theorem. \diamondsuit

Definition A1.5 (Locally finite cover) An open cover $\mathcal{U} := (U_i)_{i \in I}$ of a topological space X is *locally finite* if every point $x \in X$ has a neighborhood V that intersects only finitely many of the U_i .

The first step in constructing partitions of unity subordinate to an open cover is to show that the cover has a locally finite refinement. A slight modification of the proof of Proposition A1.6 shows that this is true for any σ -compact space. We will show a slightly stronger statement, but only for finite-dimensional manifolds; it will simplify the construction of partitions of unity.

Proposition A1.6 Let $B_r^n \subset \mathbb{R}^n$ be the ball of radius r, and let X be a second countable, n-dimensional manifold. Then any open cover of X admits a countable, locally finite refinement \mathcal{U} by open subsets U that admit surjective coordinate maps $\varphi_U: U \to B_2^n$ such that the $\varphi_U^{-1}(B_1^n)$ still cover X.

PROOF Since X is second countable, it has at most countably many components, and we may assume X to be connected. Choose a countable cover $\mathcal{V} := \{V_0, V_1, \dots\}$ of X by open sets with compact closures, indexed by the positive integers. Define by induction compact sets

$$A_0 \subset A_1 \subset \dots$$
 $A1.2$

as follows: Set $A_0 := \overline{V}_0$, and suppose A_0, \ldots, A_i have been defined. The V_j form an open cover of A_i , so there is a smallest J_i such that

$$A_i \subset \bigcup_{j \le J_i} U_j. \tag{A1.3}$$

Set $A_{i+1} := \bigcup_{j \leq J_i} \overline{V}_j$. If the J_i eventually stabilize, i.e., if $J_i = J_{i+1} = \ldots$, then A_i is closed (in fact, compact) and open in X, hence $A_i = X$, since X is connected. Otherwise, $J_i \to \infty$ and we also have $\bigcup_i A_i = \bigcup_i \overline{V}_i = X$. In both cases, $\bigcup_i A_i = X$. For convenience, set $A_i := \emptyset$ if i < 0.

Let \mathcal{W} be an open cover of X. Intersect all open sets $W \in \mathcal{W}$ with all $A_{i+2} - A_i$, to construct a new open cover \mathcal{W}' that refines \mathcal{W} . For each $x \in X$, find a coordinate neighborhood U_x contained in some element of \mathcal{W}' , together with a surjective local coordinate $\varphi_x : U_x \to B_2^n$. Define $U_x' := \varphi_x^{-1}(B_1^n)$.

For each i, choose a cover of the compact set $A_i - \overset{\circ}{A}_{i-1}$ by finitely many of the $U'_x, x \in Z_i$, where $Z_i \subset A_i - \overset{\circ}{A}_{i-1}$ is a finite set. For convenience, set

 $Z_i := \emptyset$ for i < 0. The set $Z := \bigcup_i Z_i$ is countable; consider the cover \mathcal{U} by all $U_x, x \in Z$. This cover is a refinement of \mathcal{W} , and it is locally finite: the open sets $A_{i+1} - A_{i-1}$ form an open cover of X, and each one can intersect only the finitely many

$$U_x$$
, for $x \in \bigcup_{j=i-2}^{i+2} Z_j$. A1.4

Clearly our open sets are coordinate neighborhoods, as desired. \Box

Construction of partitions of unity

It is now easy to construct partitions of unity subordinate to any cover of a second-countable n-dimensional manifold X.

Theorem A1.7 (Partitions of unity) Let X be a second countable finite-dimensional topological manifold, and let W be an open cover of X. Then there exists a locally finite refinement \mathcal{U} of W, and a continuous partition of unity subordinate to \mathcal{U} . Moreover, if X is a C^{∞} manifold, the partition of unity can be chosen C^{∞} .

PROOF Find a locally finite cover $\mathcal{U} := (U_x)_{x \in Z}$, as in the proof of Proposition A1.6, together with coordinate maps φ_x , which can be chosen C^{∞} if X is C^{∞} .

Let $h \geq 0$ be a C^{∞} function on \mathbb{R}^n with support in B_2^n and strictly positive on B_1^n . Define h_x , for $x \in Z$, by $h_x := h \circ \varphi_x$; since h_x has compact support, it is the restriction of a continuous function on X (C^{∞} if X is C^{∞}) with support in U_x , which we will still denote by h_x . Now the function $g := \sum_{x \in Z} h_x$ is a strictly positive continuous function on X; the sum exists and is continuous (C^{∞} if X is C^{∞}) because the cover \mathcal{U} is locally finite. The functions g_x , $x \in Z$, defined by $g_x := h_x/g$ form the desired continuous partition of unity, C^{∞} if X is C^{∞} . \square