# The Metropolitan-Hastings Algorithm and Extensions 

S. Sawyer - Washington University - Vs. August 22, 2010
Table of Contents

1. Introduction ..... 2
2. The Metropolis-Hastings Algorithm
2.1. The basic idea ..... 2
2.2. A question of notation ..... 4
2.3. Reversibility and the "detailed balance" condition ..... 6
2.4. The Metropolis-Hastings theorem ..... 8
2.5. Consequences of the Metropolis-Hastings theorem ..... 9
3. Important Examples of MC Markov Chains
3.1. Random walk sampling ..... 10
3.1.1. Step sizes for random-walk sampling ..... 11
3.1.2. Random walks with $x$-dependent step size ..... 11
3.1.3. Multiplicative random walks ..... 14
3.2. Independence sampling ..... 14
3.2.1. Von Neumann's rejection sampling ..... 15
3.3. Random mixtures of update proposals ..... 16
3.4. Metropolis-Hastings and importance sampling ..... 17
3.5. Component-wise Metropolis-Hastings sampling ..... 18
3.5.1. "Hidden" variables ..... 20
3.5.2. "Hiding" variables by using a marginal density ..... 21
3.5.3. Random component updates ..... 21
3.6. Gibbs samplers ..... 21
3.7. Knowing when to stop ..... 22
4. Skew Transformations
4.1. Introduction ..... 24
4.1.1. Examples ..... 27
4.1.2. Domain-dependent steps in skew transformations ..... 28
4.2. Proof of Theorem 4.1.1 ..... 28
4.3. Temporary reparametrization as a skew transformation ..... 31
5. Bayesian Models in Statistics
5.1. Introduction ..... 32
5.2. A useful identity for component updates ..... 34
5.3. "Hidden" variables in a likelihood ..... 36
5.4. Sampling from the prior ..... 38
5.5. Conjugate priors ..... 38
5.6. "Improper" priors and quasi-stability ..... 40
Appendix (Ergodic theory and random mixtures) ..... 41
References ..... 49
6. Introduction. Suppose that we want to calculate the average value of a function $F(x)$ with respect to a probability density $\pi(x)$ on a set $X$, specifically

$$
\begin{equation*}
E(F)=\int_{X} F(x) \pi(x) d x \tag{1.1.1}
\end{equation*}
$$

We assume here that $X$ is endowed with an obvious, natural measure " $d x$ ". If $d x$ is counting measure on $X$ (that is, each point in $X$ has mass one), then $E(F)$ is a sum instead of an integral.

We assume that we do not know the density $\pi(x)$ exactly, but that we can calculate $\pi(x)$ within the normalizing constant. That is,

$$
\begin{equation*}
\pi(x)=C g(x) \tag{1.1.2}
\end{equation*}
$$

where $g(x)$ is known or easy to compute but $C$ is unknown. An important case is that of a Bayesian posterior distribution in statistics. In this case, $g(x)$ is a prior distribution times a likelihood function. In many cases, $g(x)$ is easy to write down but the normalizing constant

$$
\begin{equation*}
C=1 / \int_{X} g(x) d x \tag{1.1.3}
\end{equation*}
$$

is too complex to compute easily. (See Section 5 below.)
The "Metropolis" in the Metropolis-Hastings algorithm is the first author of a paper in the Journal of Chemical Physics (Metropolis et al. 1953; see bibliography). In Metropolis' paper, $g(x)$ is a partition function from statistical physics.

## 2. The Metropolis-Hastings Algorithm.

2.1. The basic idea. The key idea in the paper Metropolis et al. (1953) is first to start with a Markov chain $X_{n}$ with a fairly arbitrary transition density $q(x, y)$ on the state space $X$. By definition, $q(x, y)$ is a Markov transition density if $q(x, y) \geq 0$ and $\int_{y \in X} q(x, y) d y=1$, and $X_{n}$ satisfies

$$
\begin{equation*}
\operatorname{Pr}\left(X_{n+1} \in y+d y \mid X_{n}=x\right)=q(x, y) d y \tag{2.1.1}
\end{equation*}
$$

(We consider the case of a more general Markov transition function $q(x, A)$ below.) The second step is to modify the Markov chain $X_{n}$ to define a new Markov chain $X_{n}^{*}$ with a second transition density $p(x, y)$ that has $\pi(x)$ as a stationary probability measure. That is, such that

$$
\begin{equation*}
\int_{X} \pi(x) p(x, y) d x=\pi(y) \tag{2.1.2}
\end{equation*}
$$

for all $y \in X$. Then, by the Birkhoff ergodic theorem (see the Appendix)

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} F\left(X_{k}^{*}\right) \quad \text { converges a.s. } \tag{2.1.3}
\end{equation*}
$$

for any measurable function $F(x)$ on $X$ with $\int_{X}|F(x)| \pi(x) d x<\infty$. The Markov chain $X_{n}^{*}$ is called ergodic if the limit in (2.1.3) is constant whenever $\int_{X}|F(x)| \pi(x) d x<\infty$. In that case, one can show from (2.1.2) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} F\left(X_{k}^{*}\right)=\int_{X} F(x) \pi(x) d x \text { a.s. } \tag{2.1.4}
\end{equation*}
$$

We can then, in principle, use the left-hand side of (2.1.4) for sufficiently large $n$ to approximate the integral in (2.1.4). Sufficient conditions that $X_{n}^{*}$ be ergodic are that $X_{n}^{*}$ be irreducible and positive recurrent on $X$. The relations (2.1.2)-(2.1.4) form the basis of what are now known as Markov chain Monte Carlo (MCMC) methods.

We next show how to modify $X_{n}$ to form $X_{n}^{*}$. We define an "acceptance function" $a(x, y)$ as an arbitrary function on $X \times X$ such that

$$
\begin{equation*}
0 \leq a(x, y) \leq 1 \tag{2.1.5}
\end{equation*}
$$

Given $a(x, y)$ and $X_{n}^{*}=x$, we use the transition density $q(x, y)$ to "propose" a new state $y$. (That is, we choose $y \in X$ with the probability distribution $q(x, y) d y$.) With probability $a(x, y)$, the proposed state is accepted and we set $X_{n+1}^{*}=y$. Otherwise, the proposal is rejected and $X_{n+1}^{*}=X_{n}^{*}=x$. (That is, the process stays at the same position for one time step.)

Given $X_{n+1}^{*}=z$ (where $z=y$ if the proposal is accepted and $z=x$ if the proposal is rejected), the process is repeated to generate $X_{n+2}^{*}$, and so forth. This defines a new Markov chain $X_{n}^{*}$ that is the same as $X_{n}$ except for the introduction of "wait states" with $X_{n+1}^{*}=X_{n}^{*}=x$, which occur with probability $a(x, y)$ when $X_{n}^{*}=x$. By construction, the process $X_{n}^{*}$ has "transition density"

$$
\begin{equation*}
p(x, y)=a(x, y) q(x, y)+A(x) \delta_{x}(d y) \tag{2.1.6}
\end{equation*}
$$

where

$$
A(x)=1-\int_{z \in X} a(x, z) q(x, z) d z
$$

Here $A(x)$ is the probability that $z \in X$ is proposed but rejected, leading to $X_{n+1}^{*}=X_{n}^{*}=x$. The expression $\delta_{x}(d y)$ in (2.1.6) represents a Dirac
measure that puts mass one at the point $y=x$ and is otherwise zero. Strictly speaking, $p(x, y)$ in (2.1.6) does not represent a density with respect to $d x$ if $d x$ is a continuous measure on $X$ and $A(x)>0$. We give a better description of the algorithm below.

The final step is to find an acceptance function $a(x, y)$ so that $\pi(x)$ is a stationary measure for $X_{n}^{*}$; that is, so that (2.1.2) holds. Hastings (1970) proved (see below) that the transition density $p(x, y)$ in (2.1.6) has $\pi(x)$ as a stationary density if the acceptance function $a(x, y)$ is

$$
\begin{align*}
a(x, y) & =\min \left\{1, \frac{\pi(y) q(y, x)}{\pi(x) q(x, y)}\right\}=\min \left\{1, \frac{q(y, x) / \pi(x)}{q(x, y) / \pi(y)}\right\}  \tag{2.1.7}\\
& =\min \left\{1, \frac{g(y) q(y, x)}{g(x) q(x, y)}\right\}=\min \left\{1, \frac{q(y, x) / g(x)}{q(x, y) / g(y)}\right\}
\end{align*}
$$

where $\pi(x)=C g(x)$ as in (1.1.2). In particular, we don't need to know the normalizing constant $C$ in (2.1.7).

The original Metropolis et al. (1953) algorithm assumed $q(x, y)=$ $q(y, x)$, for which the acceptance function has the simpler form

$$
a(x, y)=\min \left\{1, \frac{\pi(y)}{\pi(x)}\right\}=\min \left\{1, \frac{g(y)}{g(x)}\right\}
$$

If $q(x, y)=q(y, x)$, the algorithm accepts the proposed new value $y$ with probability one if $g(y) \geq g(x)$ and accepts it with probability $g(y) / g(x)$ if $g(y)<g(x)$. If the proposal density $q(x, y)$ is not symmetric (that is, if $q(x, y) \neq q(y, x))$, then the Metropolis-Hastings acceptance function $a(x, y)$ requires the correction factor $q(y, x) / q(x, y)$ in (2.1.7).
2.2. A question of notation. In Chapter 1 and Section 2.1, the implicit measure " $d x$ " could be the usual volume measure (Lebesgue measure) if $X \subseteq R^{d}$, a counting measure that assigns measure one to each point if $X$ is discrete, or surface measure in a subspace of $R^{d}$. In some descriptions of the Metropolis-Hastings algorithm, the precise meaning of the implicit measure $d x$ is understood and can vary from paragraph to paragraph, and even from term to term in the same equation. This lack of a good notation can make proofs difficult to follow even when the proofs are basically correct.

For this reason, we will adopt a standard notation for measures from probability theory and write expressions like those in Section 1 in the form

$$
\begin{equation*}
E(F)=\int_{X} F(x) \pi(d x) \tag{2.2.1}
\end{equation*}
$$

where $\pi(d x)$ is a probability measure on $X$ and

$$
\begin{equation*}
\pi(d x)=C g(d x) \quad \text { where } \quad C=1 / \int_{X} g(d x) \tag{2.2.2}
\end{equation*}
$$

In (2.2.2), $g(d x)$ is a nonnegative measure on $X$ with $\int_{X} g(d x)<\infty$. By definition, $\pi(d x)$ is a probability measure of $X$ if it is a nonnegative measure with $\pi(X)=\int_{X} \pi(d x)=1$. An expression $q(x, d y)$ is a Markov transition function on $X$ if
(i) For each $x \in X, q(x, d y)$ (as a function of $y$ ) is a probability measure on $X$,
(ii) For each measurable set $A \subseteq X, c_{A}(x)=\int_{A} q(x, d y)$ is a measurable function of $x$.

It follows from (i,ii) that $\int_{X} h(y) q(x, d y)$ is a measurable function on $X$ whenever $h(x)$ is a bounded measurable function on $X$.

Let $X_{n}$ be a Markov chain $X$ with

$$
\operatorname{Pr}\left(X_{n+1} \in d y \mid X_{n}=x\right)=q(x, d y)
$$

and let $a(x, y)$ be an acceptance function as in (2.1.5). Then the modified Markov chain $X_{n}^{*}$ described in Section 2.1 has transition function

$$
\begin{equation*}
p(x, d y)=a(x, y) q(x, d y)+A(x) \delta_{x}(d y) \tag{2.2.3}
\end{equation*}
$$

where

$$
A(x)=1-\int_{z \in X} a(x, z) q(x, d z)
$$

This now makes better sense since we do not have to pretend that $\delta_{x}(d y)$ is a function on $X$. Note that $p(x, d y)$ in (2.2.3) satisfies conditions (i,ii) above. (Technically speaking, we assume that all measures on $X$ are $\sigma$-finite and second countable and defined on the same sigma algebra of subsets of $X$. This includes all measures that arise in practice.)

Similarly, we say that the transition function $p(x, d y)$ has $\pi(d x)$ as a stationary measure if

$$
\begin{equation*}
\int_{X} p(x, d y) \pi(d x)=\pi(d y) \tag{2.2.4}
\end{equation*}
$$

considered as measure in $y$ on $X$, or equivalently if

$$
\begin{equation*}
\int_{X} \int_{X} f(y) p(x, d y) \pi(d x)=\int_{X} f(y) \pi(d y) \tag{2.2.5}
\end{equation*}
$$

for all measurable functions $f(y) \geq 0$ on $X$. The condition (2.2.5) is usually easier to work with than (2.2.4). Recall that $\int f(y) \pi(d y)=\infty$ is allowed in measure theory if $f(y) \geq 0$ and $\pi(d y) \geq 0$ is a nonnegative measure. In general, most theorems in measure theory for nonnegative $\sigma$-finite measures are valid if the real numbers are extended in this way, so that there is no need to require that the integrals in (2.2.5) be finite.
(Exercises: (1) Prove that (2.2.5) for all measurable $f(y) \geq 0$ is equivalent to (2.2.4).
(2) Show that $p(x, d y) \pi(d x)$ in (2.2.4) defines a probability measure on the product space $X \times X$.)

If the measures $\pi(d x), g(d x)$, and $q(x, y)$ have densities with respect to a measure $d x$ on $X$, then

$$
\begin{equation*}
\pi(d x)=\pi_{1}(x) d x, \quad g(d x)=g_{1}(x) d x, \quad q(x, d y)=q_{1}(x, y) d y \tag{2.2.6}
\end{equation*}
$$

where $\pi_{1}(x), g_{1}(x)$, and $q_{1}(x, y)$ are measurable functions on $X$ or $X \times X$. The larger family of transition functions $q(x, d y)$ includes not only examples of ergodic Markov chains on $X$ that cannot be expressed as $q(x, y) d y$ for Lebesgue measure $d y$ on $X \subseteq R^{d}$, but also Markov chains on linear or nonlinear subspaces of $R^{d}$ whose transition function does not have a density with respect to $d$-dimensional Lebesgue measure. We will see examples of this in Chapter 4 below.
2.3. Reversibility and the "detailed balance" condition. If $\pi(d x)$ is a probability measure and $p(x, d y)$ a Markov transition function on $X$, then

$$
\iint_{X \times X} \pi(d x) p(x, d y)=\int_{x \in X}\left(\int_{y \in X} p(x, d y)\right) \pi(d x)=1
$$

by Fubini's theorem. Thus $\pi(d x) p(x, d y)$ is a probability measure on the product space $X \times X$. It follows that one can define random variables $X_{1}$ and $Y_{1}$ with joint distribution

$$
\begin{equation*}
P\left(X_{1} \in d x, Y_{1} \in d y\right)=\pi(d x) p(x, d y) \tag{2.3.1}
\end{equation*}
$$

on $X \times X$. It follows from Fubini's theorem that $P\left(X_{1} \in d x\right)=$ $\int_{y} \pi(d x) p(x, d y)=\pi(d x)$ and hence $E\left(f\left(X_{1}\right)\right)=\int_{X} f(x) \pi(d x)$ for measurable functions $f(x) \geq 0$. Similarly $E\left(f\left(Y_{1}\right)\right)=\int_{X} f(x) \pi(d x)$ if the stationarity condition (2.2.4) holds. In general, (2.2.4) is equivalent to

$$
\begin{equation*}
E\left(f\left(X_{1}\right)\right)=E\left(f\left(Y_{1}\right)\right) \tag{2.3.2}
\end{equation*}
$$

for measurable functions $f(y) \geq 0$.
In many Markov chains for which stationarity holds, the relation

$$
\begin{equation*}
\pi(d x) p(x, d y)=\pi(d y) p(y, d x) \tag{2.3.3}
\end{equation*}
$$

also holds. Since then

$$
\int_{x \in X} \pi(d x) p(x, d y)=\int_{x \in X} \pi(d y) p(y, d x)=\pi(d y)
$$

it follows that (2.3.3) implies stationarity (2.2.4), although the reverse may not hold. The relation (2.3.3) is called the "detailed balance condition" by Chib and Greenberg (1995).

An equivalent form of (2.3.3) is

$$
\begin{equation*}
\int_{X} \int_{X} f(x, y) \pi(d x) p(x, d y)=\int_{X} \int_{X} f(x, y) \pi(d y) p(y, d x) \tag{2.3.4}
\end{equation*}
$$

or

$$
E(f(X, Y))=E(f(Y, X))
$$

for measurable functions $f(x, y) \geq 0$ on the product space $X \times X$ for the random variables $X, Y$ in (2.3.1).
(Exercise: Prove that (2.3.4) for all measurable $f(x, y) \geq 0$ is equivalent to (2.3.3), and that (2.3.3) implies (2.2.4).)

Since (2.3.1) can be viewed as the probability that $X$ starts at $x$ and then goes to $Y=y$, and the right-hand side of (2.3.3) can be viewed as the probability that $X$ starts at $y$ and then goes to $Y=x$, the relation (2.3.3) can be described as saying that the transition function $p(x, d y)$ is time reversible with respect to the probability measure $\pi(d x)$. (Usually time reversible is abbreviated to just reversible.)

A useful necessary and sufficient condition for (2.3.3) is the following.
Lemma 2.3.1 (Tierney 1994). Suppose that $p(x, d y)$ in (2.2.3) is derived from the transition function $q(x, d y)$, the acceptance function $a(x, y)$ with $0 \leq a(x, y) \leq 1$, and the probability measure $\pi(d x)$. In particular

$$
\begin{align*}
p(x, d y) & =a(x, y) q(x, d y)+A(x) \delta_{x}(d y),  \tag{2.3.5}\\
A(x) & =1-\int_{z \in X} a(x, z) q(x, d z)
\end{align*}
$$

Then the detailed balanced condition (2.3.3) holds if and only if

$$
\begin{equation*}
\pi(d x) a(x, y) q(x, d y)=\pi(d y) a(y, x) q(y, d x) \tag{2.3.6}
\end{equation*}
$$

in the sense that the two measures on $X \times X$ are the same.
Corollary 2.3.1. If (2.3.6) holds, then $\pi(d x)$ is a stationary measure for $p(x, d y)$ in (2.2.5)

Proof of Lemma 2.3.1. By (2.3.5),

$$
\begin{equation*}
\pi(d x) p(x, d y)=\pi(d x) a(x, y) q(x, d y)+\pi(d x) A(x) \delta_{x}(d y) \tag{2.3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi(d y) p(y, d x)=\pi(d y) a(y, x) q(y, d x)+\pi(d y) A(y) \delta_{y}(d x) \tag{2.3.8}
\end{equation*}
$$

The two measures on the right-hand side of (2.3.7)-(2.3.8) are the same by Tonelli's theorem since, by arguing as in (2.3.4),

$$
\int_{x} \int_{y} f(x, y) \delta_{x}(d y) \pi(d x) A(x)=\int_{x} f(x, x) A(x) \pi(d x)
$$

and

$$
\int_{y} \int_{x} f(x, y) \delta_{y}(d x) A(y) \pi(d y)=\int_{x} f(y, y) A(y) \pi(d y)
$$

for measurable $f(x, y) \geq 0$. The two measures in the middle of the lines (2.3.7)-(2.3.8) are exactly the two measures in (2.3.6). If they are the same, the two measures in the detailed balance condition (2.3.3) are the same, and vice versa. This completes the proof of Lemma 2.3.1.
2.4. The Metropolis-Hastings theorem. The purpose here is to prove

Theorem 2.4.1. (Metropolis-Hastings) Assume that the probability measure $\pi(d x)$ and transition function $q(x, d y)$ satisfy

$$
\begin{equation*}
q(x, d y)=q(x, y) d y \quad \text { and } \quad \pi(d x)=\pi(x) d x \tag{2.4.1}
\end{equation*}
$$

for a nonnegative measure $d x$ on $X$. Define $p(x, d y)$ by (2.3.5) for the acceptance function

$$
\begin{equation*}
a(x, y)=\min \left\{1, \frac{\pi(y) q(y, x)}{\pi(x) q(x, y)}\right\} \tag{2.4.2}
\end{equation*}
$$

where the right-hand size of (2.4.2) is replaced by 1 if $\pi(x) q(x, y)=0$. Then $p(x, d y)$ satisfies the detailed balance condition (2.3.3). In particular, $\pi(x) d x$ is a stationary measure for $p(x, d y)$.

Proof. By (2.4.2),

$$
\begin{align*}
\pi(x) a(x, y) q(x, y) & =\min \{\pi(x) q(x, y), \pi(y) q(y, x)\}  \tag{2.4.3}\\
& =\pi(y) a(y, x) q(y, x)
\end{align*}
$$

since the right-hand side of the first equation in (2.4.3) is a symmetric function of $x$ and $y$. This implies (2.3.6) in Lemma 2.3.1 and hence the reversibility condition (2.3.3).

Since all that is required for the reversibility condition (2.3.3) is

$$
\begin{equation*}
\pi(x) a(x, y) q(x, y)=\pi(y) a(y, x) q(y, x) \tag{2.4.4}
\end{equation*}
$$

one can ask whether or not there exists a modification $X_{n}^{*}$ of $X_{n}$ as in Section 2.1 with a minimum number of wait states. The answer is yes, as the following Corollary indicates.

Corollary 2.4.1. The function $a(x, y)$ in (2.4.2) is the pointwise maximum value of all functions with $0 \leq a(x, y) \leq 1$ that satisfy the reversibility condition (2.3.3) for $p(x, d y)$ in (2.3.5). That is, among all acceptance functions $a(x, y)$ satisfying (2.4.4), the function $a(x, y)$ in (2.4.2) has the smallest probability of wait states at all $x \in X$.

Proof. Let $Q$ be the set of all functions $b(x, y)$ such that $0 \leq b(x, y) \leq 1$ and

$$
\begin{equation*}
\pi(x) b(x, y) q(x, y)=\pi(y) b(y, x) q(y, x) \tag{2.4.5}
\end{equation*}
$$

for all $x, y \in X$. Note that if $b_{1}(x, y)$ and $b_{2}(x, y)$ both satisfy (2.4.5), then so does $b_{3}(x, y)=\max \left\{b_{1}(x, y), b_{2}(x, y)\right\}$, and similarly so does $a(x, y)=$ $\max _{b \in Q} b(x, y)$.

If $\pi(x) q(x, y)=0$, then $a(x, y)=1$ by (2.4.5), and (2.4.2) holds by definition. If $\pi(x) q(x, y)>0$ and $0 \leq \pi(y) q(y, x) \leq \pi(x) q(x, y)$, then $a(y, x)=1$ and $a(x, y) \leq 1$ by (2.4.5). Then

$$
a(x, y)=\frac{\pi(y) q(y, x)}{\pi(x) q(x, y)}<1
$$

by (2.4.5), which implies (2.4.2). If $0<\pi(x) q(x, y)<\pi(y) q(y, x)$, then $a(x, y)=1$ and the right-hand side of (2.4.2) is also 1 . This completes the proof of Corollary 2.4.1.
2.5. Consequences of the Metropolis-Hastings theorem. It follows in general that

Theorem 2.5.1. Let $X_{n}^{*}$ be an ergodic Markov chain with stationary distribution $\pi(d x)$. Assume $F(x) \geq 0$. Then

$$
\begin{align*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} F\left(X_{k}^{*}\right) & =\int_{X} F(x) \pi(x) d x \quad \text { a.s. }  \tag{2.5.1}\\
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} F\left(X_{k}^{*}\right)^{2} & =\int_{X} F(x)^{2} \pi(x) d x \quad \text { a.s. }
\end{align*}
$$

and for integers $m \geq 0$

$$
\begin{align*}
\lim _{n \rightarrow \infty} & \frac{1}{n} \sum_{k=1}^{n} F\left(X_{k}^{*}\right) F\left(X_{k+m}^{*}\right) \\
& =\int_{X} F(x) \int_{X} F(y) \pi(y) p^{m}(x, d y) \pi(x) d x \quad \text { a.s. } \tag{2.5.2}
\end{align*}
$$

The function $p^{m}(x, d y)=\operatorname{Pr}\left(X_{m} \in d y \mid X_{0}=x\right)$ in (2.5.2) is the $m^{\text {th }}$ power of the transition density $p(x, d y)$ in (2.3.5).

The relations (2.5.1) imply that, in principle, it does not matter what proposal function $q(x, y)$ we use as long as we use the correct acceptance function for $\pi(x)$. The random variables $F\left(X_{k}^{*}\right)$ will have the same asymptotic mean and variance in all cases.

However, the asymptotic variance of the average $(1 / n) \sum_{k=1}^{n} F\left(X_{k}^{*}\right)$ in (2.5.1) (as opposed to the asymptotic variance of $F\left(X_{k}^{*}\right)$ ) depends on the limiting autocovariances in (2.5.2). Proposal functions that minimize these autocovariances will lead to more accurate estimators of the right-hand side of (2.5.1) for finite $n$.

Similarly, different ergodic Markov chains $X_{n}^{*}$ take longer to converge or "mix", so that the minimum $n$ for which the left-hand side of (2.5.1) is a reasonable approximation of the integral side can vary even if the asymptotic covariances are the same. Thus, in practice, particular choices of the proposal functions $q(x, d y)$ do matter.
3. Important Examples of MC Markov Chains. Some MCMC steps or proposal functions are used often enough to have special names:
3.1. Random walk sampling. In general if $q(x, y)=q(y, x)$ is a symmetric density, then the acceptance function (2.4.2) simplifies to

$$
\begin{equation*}
a(x, y)=\min \left\{1, \frac{\pi(y)}{\pi(x)}\right\} \tag{3.1.1}
\end{equation*}
$$

This is Metropolis' (1953) original form of the algorithm. The usual definition of random walk for $q(x, y)$ in $R^{d}$ assumes $q(x, y)=q(y-x)$, or equivalently that the proposal random variable $Y$ satisfies

$$
\begin{equation*}
\{Y \mid X=x\} \approx x+W \tag{3.1.2}
\end{equation*}
$$

for a random variable $W$ whose density is $f_{W}(y)=q(y)$. Metropolis' condition $q(x, y)=q(y, x)$ is equivalent to $f_{W}(x)=f_{W}(-x)$, which is equivalent to $W \approx-W$ or that the distribution of $W$ be symmetric about 0 .
3.1.1. Step sizes for random-walk sampling. While the behavior of the Markov chain generated by $f_{W}(x)$ and $\pi(x)$ is less sensitive to the shape of the distribution $f_{W}(x)$, it is sensitive to the size of the steps. Usually (3.1.2) is written in the form

$$
\begin{equation*}
\{Y \mid X=x\} \approx x+h W \tag{3.1.3}
\end{equation*}
$$

and then the value of $h>0$ is chosen (or "tuned") so that the Markov chain has good convergence properties. While Theorem 2.5 .1 says that the chain will eventually approximate the stationary distribution $\pi(x)$ for any $h>0$, this may take a very long time if the value of $h$ is chosen inappropriately.

If $h$ in (3.1.3) is too large, then proposals will rarely be accepted and the Markov chain in (2.5.1) will rarely move, and the ratios in (2.5.1) will take a long time to converge. If $h$ is too small, then two problems can arise. First, the chain $X_{n}$ will take only small steps and may take a long time before it can cover a significant portion of $X$, let alone before its sample statistics approximate $\pi(x)$. A second, less obvious, problem is that proposals may be accepted too often. This means that the process $X_{n}$ may be more determined in the short run by the proposal distribution $q(x, y)$ (and its stationary distribution) then by $\pi(x)$, which is the stationary distribution of $p(x, y)$. Again, the chain $X_{n}^{*}$ may take a long time before its sample statistics approximate $\pi(x)$.

As a rule of thumb, conventional wisdom is to adjust $h$ empirically so that the acceptance ratio (which is one minus the proportion of wait states) is in the range $30-50 \%$, with $30-40 \%$ tending to work better than $40-50 \%$. Metropolis random walks with a smaller acceptance ratio (generally due to a larger value of $h$ ) are said to take "fewer but higher-quality steps".
3.1.2. Random walks with $\boldsymbol{x}$-dependent step size. It can happen that values of $h$ in (3.1.3) are too large in certain parts of the domain, where perhaps $\pi(x)$ is highly variable, and too small in other parts of the domain, where $\pi(x)$ is relatively flat. The latter problem can happen if, for example, the density $\pi(x) \sim C / x^{a}$ for large $x$. If $X_{n}=x$ for large $x$, then $\pi(x)$ is
essentially constant in the range $x_{1}=x \pm h$, and nearly all proposals are accepted. The result is similar to an unbiased coin-tossing random walk on the tail of the distribution.

In general, if you continually toss an unbiased coin, adding one for each head and subtracting one for each tail, and start (for example) with $X_{0}=20$, then eventually you will have $X_{n}=0$, but the number of tosses until this happens has an infinite mean and a very heavy-tailed distribution. For a Metropolis random walk, this can show up as rare long excursions to improbably large values of $x$ if $h$ is too small on the tail of the distribution.

A possible solution is to have the step size depend on $x$, either in a regular way or else as different values in different regions in $X$. In general, define the proposal $q(x, y)$ as the distribution of

$$
\begin{equation*}
\{Y \mid X=x\} \approx x+h_{x} W \tag{3.1.4}
\end{equation*}
$$

where $W$ is a random variable with density $f_{W}(x)$. Then for any measurable function $\phi(y) \geq 0$

$$
\begin{aligned}
E_{x}(\phi(Y)) & =\int_{X} \phi\left(x+h_{x} y\right) f_{W}(y) d y=\left(\frac{1}{h_{x}}\right)^{d} \int_{X} \phi(x+y) f_{W}\left(\frac{y}{h_{x}}\right) d y \\
& =\left(\frac{1}{h_{x}}\right)^{d} \int_{X} \phi(y) f_{W}\left(\frac{y-x}{h_{x}}\right) d y
\end{aligned}
$$

This means that the proposal density $q(x, y)$ for (3.1.4) is

$$
\begin{equation*}
q(x, y)=\left(\frac{1}{h_{x}}\right)^{d} f_{W}\left(\frac{y-x}{h_{x}}\right) \tag{3.1.5}
\end{equation*}
$$

with respect to $d y$. If the acceptance function is

$$
\begin{equation*}
a(x, y)=\min \left\{1, \frac{\pi(y)}{\pi(x)}\left(\frac{h_{x}}{h_{y}}\right)^{d} \frac{f_{W}\left((x-y) / h_{y}\right)}{f_{W}\left((y-x) / h_{x}\right)}\right\} \tag{3.1.6}
\end{equation*}
$$

then $X_{n}^{*}$ has $\pi(x)$ as a stationary density by Theorem 2.4.1. If $W$ is symmetric $\left(f_{W}(x)=f_{W}(-x)\right)$, then

$$
a(x, y)=\min \left\{1, \frac{\pi(y)}{\pi(x)}\left(\frac{h_{x}}{h_{y}}\right)^{d}\right\}
$$

As a check, note that this reduces to (3.1.1) if $h_{x}=h_{y}$.

For example, suppose that $W$ in (3.1.4) is multivariate normal with mean zero and positive definite covariance matrix $\Sigma$. Then

$$
\begin{equation*}
f_{W}(x)=\frac{1}{\sqrt{(2 \pi)^{d} \operatorname{det}(\Sigma \mid)}} \exp \left(-(1 / 2) x^{\prime} \Sigma^{-1} x\right) \tag{3.1.7}
\end{equation*}
$$

Since $\Sigma$ is symmetric and positive definite, $\Sigma=R D R^{\prime}$ where $R$ is an orthogonal matrix and $D$ is diagonal with positive entries. A way of simulating the random variable $W$ is to set

$$
\begin{equation*}
W=R D^{1 / 2} Z \tag{3.1.8}
\end{equation*}
$$

where $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{d}\right)$ if $Z_{i}$ are independent one-dimensional normal random variables with means zero and variances one. Then

$$
\operatorname{Cov}(W)=\left(R D^{1 / 2}\right) \operatorname{Cov}(Z)\left(R D^{1 / 2}\right)^{\prime}=R D R^{\prime}=\Sigma
$$

so that $W$ in (3.1.8) has the correct distribution. This means that $Y$ in (3.1.4) can be simulated by

$$
\begin{equation*}
Y=X+h_{X} W=X+h_{X} R D^{1 / 2} Z \tag{3.1.9}
\end{equation*}
$$

By (3.1.7)

$$
\begin{align*}
\frac{f_{W}\left((x-y) / h_{y}\right)}{f_{W}\left((y-x) / h_{x}\right)} & =\exp \left(-\frac{1}{2} A(x-y)\left(\frac{1}{h_{y}^{2}}-\frac{1}{h_{x}^{2}}\right)\right)  \tag{3.1.10}\\
& =\exp \left(-\frac{1}{2 h_{x}^{2}} A(x-y)\left(\left(\frac{h_{x}^{2}}{h_{y}^{2}}\right)-1\right)\right)
\end{align*}
$$

where $A(x)=x^{\prime} \Sigma^{-1} x$. By (3.1.9)

$$
\begin{aligned}
A(X-Y) & =A\left(h_{X} R D^{1 / 2} Z\right)=h_{X}^{2}\left(R D^{1 / 2} Z\right)^{\prime} \Sigma^{-1}\left(R D^{1 / 2} Z\right) \\
& =h_{X}^{2} Z^{\prime} D^{1 / 2} R^{\prime} \Sigma^{-1} R D^{1 / 2} Z=h_{X}^{2} Z^{\prime} Z
\end{aligned}
$$

Thus, ignoring the minimum in (3.1.6), the logarithm of the acceptance function can be written

$$
\log a(X, Y)=\log \left(\frac{\pi(Y)}{\pi(X)}\right)+d \log \left(\frac{h_{X}}{h_{Y}}\right)-\frac{1}{2} Z^{\prime} Z\left(\left(\frac{h_{X}}{h_{Y}}\right)^{2}-1\right)
$$

for the vector $Z$ in (3.1.9).
3.1.3. Multiplicative random walks. It is sometimes useful to have multiplicative updates

$$
\begin{equation*}
\{Y \mid X=x\} \approx x W \tag{3.1.11}
\end{equation*}
$$

instead of additive updates (3.1.2). This allows proposed values $Y$ to be larger when $X$ is larger and smaller when $X$ is smaller. It follows from (3.1.11) that

$$
\begin{aligned}
E(\phi(Y) \mid X=x) & =E(\phi(x W))=\int \phi(x y) f_{W}(y) d y \\
& =\int \phi(y) q(x, y) d y=(1 / x) \int \phi(y) f_{W}(y / x) d y
\end{aligned}
$$

for $\phi(y) \geq 0$, where $f_{W}(y)$ is the density for $W$. Thus the proposal density is

$$
q(x, y)=\frac{1}{x} f_{W}\left(\frac{y}{x}\right)
$$

The proposal function $q(x, y)$ is said to define a symmetric multiplicative random walk if $W \approx 1 / W$, which is equivalent to $f_{W}(y)=(1 / y)^{2} f_{W}(1 / y)$. (Exercise: Prove this.) In that case

$$
\frac{\pi(y) q(y, x)}{\pi(x) q(x, y)}=\frac{\pi(y)(1 / y) f_{W}(x / y)}{\pi(x)(1 / x) f_{W}(y / x)}=\frac{\pi(y)(1 / y)(y / x)^{2} f_{W}(y / x)}{\pi(x)(1 / x) f_{W}(y / x)}=\frac{\pi(y) y}{\pi(x) x}
$$

Thus the acceptance function for an arbitrary symmetric multiplicative random walk is

$$
\begin{equation*}
a(x, y)=\min \left\{1, \frac{\pi(y) y}{\pi(x) x}\right\} \tag{3.1.12}
\end{equation*}
$$

3.2. Independence sampling. If the value proposed for $X_{n+1}$ is independent of $X_{n}$, that is, if $q(x, y)=q(y)$, then the MH algorithm is called an independence sampler. The acceptance function becomes

$$
\begin{equation*}
a(x, y)=\min \left\{1, \frac{\pi(y) q(x)}{\pi(x) q(y)}\right\}=\min \left\{1, \frac{\pi(y) / q(y)}{\pi(x) / q(x)}\right\} \tag{3.2.1}
\end{equation*}
$$

That is, given $X_{n}=x$ and $k(y)=\pi(y) / q(y)$, the proposed value $y$ is accepted if $k(y) \geq k(x)$ and accepted with probability $k(y) / k(x)$ if $k(y)<k(x)$. Again, we do not need to know the normalizing constants of either $\pi(y)$ or $q(y)$.

It is very important for independence samplers that $q(y)$ not be lightertailed than $\pi(y)$ for large values of $y$ if $X$ is noncompact, nor than $q(y)$
be lighter tailed at a singularity of $\pi(y)$. That is, we should NOT have $k(y)=\pi(y) / q(y) \gg 1$ either for large $y$ or at a singularity of $\pi(y)$. In that case, large values of $Y$ (as measured by $\pi(y)$ ) are rarely proposed and it is easy to find examples in which the independence sampler has truly horrible convergence properties. That is, while

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} F\left(X_{k}^{*}\right)=\int_{X} F(x) \pi(x) d x \quad \text { a.s. } \tag{3.2.2}
\end{equation*}
$$

the left-hand side of (3.2.2) is a reasonable approximation of $\int F(x) \pi(x) d x$ only for extremely large values of $n$. Even worse, the averages in (3.2.2) may appear to converge but to an incorrect value, even for $n \approx 10^{6}$ or $n \approx 10^{10}$.

One way to make this less likely for heavy-tailed $\pi(y)$ for large $y$ is to use a proposal distribtion $q(y)$ that has a power law $\left(q(y)=\max \left\{1,1 / y^{a}\right\}\right)$ or a Student- $t$ distribution, but one would have to make sure that $\pi(y)$ is not more heavy-tailed yet.

If we know how to generate random variables $X_{n+1}$ whose distribution is exactly equal to $\pi(x)=C g(x)$ and set $q(x)=\pi(x)$, then $a(x, y)=1$. In this case, there are no wait states and the independence sampler is the same as classical Monte Carlo sampling.
3.2.1. Von Neumann's rejection sampling. The independence sampler is similar in spirit to the "rejection method" of von Neumann (1951), which can be used to generate random variables with an arbitrary distribution $\pi(x)$. Von Neumann's rejection method assumes that we can find a function $A(x)$ and density $q(x)$ such that

$$
\begin{equation*}
\pi(x)=c A(x) q(x) \tag{3.2.3}
\end{equation*}
$$

where $0 \leq A(x) \leq 1$ and such that we know how to generate random variables with distribution $q(x)$. The algorithm is to sample values $Y$ from the proposal distribution $q(y)$ and accept $Y$ with probability $A(y)$. If the value is rejected, the algorithm continues to sample from $q(y)$ until a value is accepted. The first accepted value of $Y$ has a distribution that is exactly $\pi(x)$. (Exercise: Prove this.)

In contrast with von Neumann's method, the independence sampler does not have retrials. If a value is rejected, the previous value is used. The Markov chain values $X_{n}$ have $\pi(d x)$ as a stationary distribution, but in general do not have the distribution $\pi(d x)$ themselves.

If we know how to generate random variables $X_{n+1}$ with distribution exactly equal to $\pi(x)=q(x)$, then we can take $A(x)=1$. In this case, there are no rejections and the method is again the same as classical Monte Carlo sampling.
3.3. Random mixtures of update proposals. A random mixture of proposals $q_{a}(x, d y)$ with mixture weights $w_{a}>0$ is defined by, first, choosing an index $a$ with probability $w_{a}$, and second, choosing a proposed value $y \in X$ with probability $q_{a}(x, d y)$. Random mixture updates on the same set of coordinates could be useful if no one proposal function has good properties for all of $x$. Choosing the proposal based on $x \in X$ as in Section 3.1.2 might be more efficient in this case, but the random mixture model would have a simpler acceptance function and would be easier to implement.

Given a random mixture, we have two possible ways of defining the acceptance function and the combined Metropolis-Hastings Markov chain $p(x, d y)$. The first (and generally simplest) way is to forget that the index $a$ came from a random choice and use the acceptance function

$$
\begin{equation*}
a_{a}(x, y)=\min \left\{1, \frac{\pi(y) q_{a}(y, x)}{\pi(x) q_{a}(x, y)}\right\} \tag{3.3.1}
\end{equation*}
$$

to define the chain $p_{a}(x, d y)$ as in Theorem 2.4.1. Then

$$
\begin{equation*}
\pi(d x) p_{a}(x, d y)=\pi(d y) p_{a}(y, d x) \tag{3.3.2}
\end{equation*}
$$

for $p_{a}(x, d y)$ defined by

$$
\begin{aligned}
p_{a}(x, d y) & =a_{a}(x, y) q_{a}(x, d y)+A_{a}(x) \delta_{x}(d y), \\
A_{a}(x) & =1-\int_{z \in X} a_{a}(x, z) q_{a}(x, d z)
\end{aligned}
$$

Since $a$ was chosen randomly with probability $w_{a}$, the unmixed (or marginal) Metropolis-Hastings Markov chain has transition function

$$
p(x, d y)=\sum_{a} w_{a} p_{a}(x, d y)
$$

Thus by linearity $p(x, d y)$ also satisfies the detailed balance condition

$$
\begin{equation*}
\pi(d x) p(x, d y)=\pi(d y) p(y, d x) \tag{3.3.3}
\end{equation*}
$$

and $\pi(x) d x$ is a stationary measure for $p(x, d y)$.
The second method is to use the combined proposal function

$$
q(x, d y)=\sum_{a} w_{a} q_{a}(x, d y)
$$

with the corresponding acceptance function

$$
\begin{equation*}
a(x, y)=\min \left\{1, \frac{\pi(y) q(y, x)}{\pi(x) q(x, y)}\right\} \tag{3.3.4}
\end{equation*}
$$

This also leads to the detailed balance condition (3.3.3) and hence $p(x, d y)$ also preserves $\pi(x) d x$. Due to the nonlinearity of the acceptance functions (3.3.1) and (3.3.4), there is no simple relationship between the update transition functions $p_{a}(x, d y)$ in (3.3.2) and $p(x, d y)$ from (3.3.4).
3.4. Metropolis-Hastings and importance sampling. A useful technique to improve the efficiency of any Monte Carlo technique is the following. Suppose in the limiting approximation (2.5.1) in Theorem 2.5.1

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} F\left(X_{k}^{*}\right)=\int_{X} F(x) \pi(x) d x \tag{3.4.1}
\end{equation*}
$$

that $F(x)$ is small on a portion of the state space $X$ that has significant weight under $\pi(x)$.

Then the Markov chain $X_{n}$ (with stationary distribution $\left.\pi(x) d x\right)$ may spend most of its time in parts of the state space $X$ that contribute little to the sum and hence little to the estimation of the integral. In general, importance sampling refers to changing any Monte Carlo method so that, first, the sampling is biased towards parts of the state space that are more important for the sum or integral being estimated and, second, corrections are made for the resulting biased sampling.

Let $H(x) \geq 0$ be a function on $X$ that is small where $F(x)$ is small and relatively large where $F(x)$ is large. Of course, $H(x)=F(x)$ satisfies this criterion, but we assume that $H(x)$ easier to work with than $F(x)$. Let $X_{n}$ be the Markov chain defined in Section 2 with transition density $q(x, y)$, and let $Y_{n}^{*}$ be the corresponding Metropolis-Hastings Markov chain (see Theorem 2.4.1) with the acceptance function defined with $H(x) g(x)$ (or $H(x) \pi(x)$ ) instead of $g(x)$ or $\pi(x)$. (Recall that $\int \pi(x) d x=1$ but that $g(x)$ is unnormalized.) Specifically, we use the acceptance function

$$
\begin{equation*}
a(x, y)=\min \left\{1, \frac{H(y) g(y) q(y, x)}{H(x) g(x) q(x, y)}\right\} \tag{3.4.2}
\end{equation*}
$$

instead of the same acceptance function with $H(x)=1$. If $q(x, y)$ corresponds to random-walk or independence sampling, then (3.4.2) is of the same form with $H(x) g(x)$ in place of $g(x)$. Then Theorem 2.4.1 implies that $Y_{n}^{*}$ has the stationary probability density

$$
\begin{equation*}
g_{H}(x)=C_{H} H(x) g(x) \quad \text { where } \quad \int_{X} g_{H}(x) d x=1 \tag{3.4.3}
\end{equation*}
$$

instead of $\pi(x)$. Since $Y_{n}^{*}$ does not have $g(x) d x$ as a stationary distribution, it cannot be used to estimate integrals of the form $\int F(x) \pi(x) d x$ directly, but by the ergodic theorem for $Y_{n}^{*}$ we do have

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{F\left(Y_{k}^{*}\right)}{H\left(Y_{k}^{*}\right)}=\int_{X} \frac{F(x)}{H(x)} g_{H}(x) d x  \tag{3.4.4}\\
& \quad=C_{H} \int_{X} F(x) g(x) d x=\frac{\int_{X} F(x) g(x) d x}{\int_{X} H(x) g(x) d x} \tag{3.4.5}
\end{align*}
$$

since $C_{H}=1 / \int H(x) g(x) d x$. The ratios $F\left(Y_{n}^{*}\right) / H\left(Y_{n}^{*}\right)$ in (3.4.4) should spend less time in the parts of $X$ where $F(x)$ is small since $Y_{n}^{*}$ has stationary distribution $c_{H} H(x) g(x) d x$ instead of $\pi(x) d x$. Similarly, since $H(x)$ resembles $F(x)$ more than a constant function, the terms in the sum in (3.4.4) should have smaller variance than the corresponding terms in (3.4.1).

If the denominator of (3.4.5) is known or is easy to calculate, this should give a more efficient way to estimate $\int_{X} F(x) \pi(x) d x$.
3.5. Component-wise Metropolis-Hastings sampling. In many typical MCMC applications, the vectors $x \in X$ and density $\pi(x)$ are multidimensional and often highly multidimensional. However, it is usually possible to find Markov chain update $X_{n}^{*}$ where each update of $X_{n}^{*}$ consists of several substeps, each of which updates one component or one group of components of $x$.

Suppose that $x=\left(x_{1}, \ldots, x_{d}\right)$ and we have $d$ potential updates, where the $i^{\text {th }}$ update changes only the $i^{\text {th }}$ coordinate of $x$ and is ergodic in the sense of Section 2.1 on the line through $x$ parallel to the $i^{\text {th }}$ coordinate axis. Then the overall Metropolis-Hastings Markov chain $X_{n}$ will be ergodic on $X$. (See Theorem A. 3 in the Appendix.) This means that we can use long-term averages of $X_{n}^{*}$ to estimate components of $X_{n}^{*}$ or functions of components of $X_{n}^{*}$ as in Section 2.5.

We call changing or updating one coordinate or group of the coordinates of $x \in X$ a component move. By components-in-sequence MCMC we mean updating a Markov chain $X_{n}$ on $X$ by a sequence of substeps that each update one or more coordinates of $X$.

Assume for definiteness that $x, X_{n} \in X \subseteq R^{d}$ and that we have $d$ onedimensional proposal densities of the form

$$
\begin{equation*}
q_{i}\left(x_{i}, y\right)=q_{i}\left(x_{i}, x_{-i}, y\right), \quad x \in R^{d}, x_{i}, y \in R, x_{-i} \in R^{d-1} \tag{3.5.1}
\end{equation*}
$$

We assume for definiteness that each of the one-dimensional updates does have a density $q_{i}\left(x_{i}, y\right)$ with respect to Lebesgue measure on $R$. (Otherwise, see Section 2.3 or Chapter 4.) In (3.5.1), $x_{-i} \in R^{d-1}$ are the components of $x \in R^{d}$ other than the $i^{\text {th }}$ component $x_{i}$, which are viewed as parameters of the one-dimensional proposal density $q_{i}\left(x_{i}, x_{-i}, y\right)$.

Given (3.5.1), we update the Markov chain $X_{n}$ in such a way that each full step of $X_{n}$ (that is, $X_{n} \rightarrow X_{n+1}$ ) consists of $d$ consecutive onedimensional substeps in turn. The acceptance function for the $i^{\text {th }}$ substep is

$$
\begin{equation*}
a_{i}\left(x_{i}, x_{-i}, y_{i}\right)=\min \left\{1, \frac{\pi_{i}\left(y_{i} \mid x_{-i}\right) q_{i}\left(y_{i}, x_{-i}, x_{i}\right)}{\pi_{i}\left(x_{i} \mid x_{-i}\right) q_{i}\left(x_{i}, x_{-i}, y_{i}\right)}\right\} \tag{3.5.2}
\end{equation*}
$$

where

$$
\pi_{i}\left(x_{i} \mid x_{-i}\right)=\pi\left(x \mid x_{-i}\right)=\frac{\pi\left(x_{i}, x_{-i}\right)}{\int \pi\left(z, x_{-i}\right) d z}
$$

is the conditional distribution of $x_{i}$ given $x_{-i}$. The denominators of $\pi_{i}\left(y_{i} \mid\right.$ $\left.x_{-i}\right)$ and $\pi_{i}\left(x_{i} \mid x_{-i}\right)$ in (3.5.2) cancel out, so that in fact

$$
\begin{equation*}
a_{i}\left(x_{i}, x_{-i}, y_{i}\right)=\min \left\{1, \frac{\pi\left(y_{i}, x_{-i}\right) q\left(y_{i}, x_{-i}, x_{i}\right)}{\pi\left(x_{i}, x_{-i}\right) q\left(x_{i}, x_{-i}, y_{i}\right)}\right\} \tag{3.5.3}
\end{equation*}
$$

By convention, $\pi\left(y \mid x_{-i}\right)=q_{i}\left(x, x_{-i}, y\right)=0$ unless $y_{j}=x_{j}$ for $j \neq i$, so that the extended measures $\pi\left(d x \mid x_{-i}\right)$ and $q_{i}(x, d y)$ on $R^{d}$ are concentrated on the line through $x$ parallel to the $i^{\text {th }}$ coordinate axis.

The corresponding one-dimensional Metropolis-Hastings transition measure

$$
\begin{align*}
p_{i}\left(x_{i}, d y\right) & =a\left(x_{i}, y_{i}\right) q_{i}\left(x_{i}, y\right) d y+A_{i}(x) \delta_{x_{i}}(d y) \quad \text { where }  \tag{3.5.4}\\
A\left(x_{i}\right) & =1-\int_{z \in X} a\left(x_{i}, z\right) q_{i}\left(x_{i}, z\right) d z, \quad x_{i}, y, y_{i} \in R^{1}
\end{align*}
$$

(with $x_{-i}$ suppressed) has $\pi_{i}\left(x_{i} \mid x_{-i}\right)$ as a stationary measure on $R^{1}$. Each $p_{i}\left(x_{i}, x_{-i}, d y\right)$ on $R^{1}$ extends to a transition measure $p_{i}(x, d y)$ on $X$ that has $\pi(x)$ as a stationary measure (see the Appendix). Since each of the $d$ transition measures $p_{i}(x, d y)$ preserve $\pi(x)$, so does the Markov chain $X_{n}$. If each of the proposal functions (3.5.4) is ergodic in one dimension in the sense of Section 2.1 for each fixed $x_{-i}$, then $X_{n}$ is also ergodic and can be used to estimate components of $\pi(x)$. (See Theorem A. 3 in the Appendix.)

There is no reason why each of the component substeps (3.5.4) that make up a full step in $X_{n}$ has to be one dimensional, although that is the most common case. If coordinates of $\pi(x)$ are highly correlated, it may be more advantageous to update groups of coordinates simultaneously, or overlapping groups of components. See Chapter 4 for examples.

In the more usual case of $d$ one-dimensional substeps in sequence, we can use oversampling for any components of $x$ for which the trajectories of the Markov chain are unusually autocorrelated, have an unusually low acceptance rate, or perhaps are just less expensive to compute in terms of computation time. By oversampling, we mean that proposals (3.5.1) with the acceptance functions (3.5.2) are repeated a fixed number of times in each Markov chain iteration (for example, 5 or 10 or 100 times) and only the last value is used. Oversampling can improve the efficiency of Metropolis and Metropolis-Hastings updates.
3.5.1. "Hidden" variables. In many applications, the probability density $\pi(y)$ is complex but would be much simpler if it could be expressed in terms of a dummy variable $z$. Specifically, assume that $\pi(y)$ either is or can be written in terms of an integral

$$
\begin{equation*}
\pi(y)=\int_{z} \pi_{e}(y, z) d z \tag{3.5.5}
\end{equation*}
$$

where $\pi_{e}(y, z) \geq 0$ and $\pi_{e}(y, z)$ has a simpler form than $\pi(y)$. (In practice, $y$ and $z$ may be vector-valued themselves.) Since

$$
\iint_{y, z} \pi_{e}(y, z) d z d y=\int_{y} \pi(y) d y=1
$$

the function $\pi_{e}(y, z)$ is a probability density on a product space $X \times X_{2}$ for $z \in X_{2}$. We can then consider component-wise updates of $Y$ and $Z$ that lead to a Markov chain $W_{n}=\left(Y_{n}, Z_{n}\right)$ on $X \times X_{2}$. Since

$$
\begin{align*}
E(F(Y)) & =\iint F(y) \pi_{e}(y, z) d y d z=\int_{y} F(y) \pi(y) d y \\
E(G(Z)) & =\iint \pi_{e}(y, z) G(z) d z d y \tag{3.5.6}
\end{align*}
$$

the integral $E(F(Y))$ can be estimated from updating Markov chains of either the form $Y_{n}$ or $W_{n}=\left(Y_{n}, Z_{n}\right)$. If the density $\pi(y)$ in (3.5.5) cannot be evaluated in closed form and has to be estimated in each step by numerical integration, using an updating procedure of the form $W_{n}$ can lead to much simpler algorithms for updating $y$.

In addition, by (3.5.6), the Markov chain $W_{n}=\left(Y_{n}, Z_{n}\right)$ also provides estimates of functions $G(z)$ of the previously "hidden variable" $z$. If the hidden variable $z$ is of high dimension, as is often the case, this can provide a great deal of additional information. Note that we might not have thought of $z$ as a potential variable of interest before noticing the relationship (3.5.5.). (In that case, the extra information may not be of interest.)

By (3.5.5), each value $Z_{n}$ in $W_{n}=\left(Y_{n}, Z_{n}\right)$ is a Monte Carlo simulation of the integral (3.5.5) for one value of $z$. When we would not normally evaluate an integral by a single Monte Carlo simulation, the fact that we are averaging over a long trajectory $\left\{W_{n}\right\}$ usually corrects for this. In practice, given a density of the form (3.5.5), hidden-variable Markov chains $W_{n}=\left(Y_{n}, Z_{n}\right)$ are nearly always almost as efficient as "integrated" chains $Y_{n}$ without the hidden variables $Z_{n}$. It is difficult to find examples in which the chain $W_{n}$
provides a verifiably less efficient estimation procedure of functions $F(Y)$ than the corresponding chain $Y_{n}$.

If we use $z$ as a hidden variable, we will need an updating procedure for $W=(Y, Z)$. If the function $\pi_{e}(y, z)$ is simple, this can usually be done by simple component updates of $y$ for fixed $z$ and then of $z$ for fixed $y$.
3.5.2. "Hiding" variables by using a marginal density. We can also reverse the process in Section 3.5.1. Suppose that we are interested in a density $\pi(y)$ where we can write $y=\left(y_{1}, y_{2}\right) \in Y_{1} \times Y_{2}$, where $y_{1}$ and $y_{2}$ are components of $y$ that are perhaps vector valued. Suppose that we are only interested in the average or median values of functions of $y_{1}$, and that we know how to calculate the marginal density

$$
\begin{equation*}
\pi_{1}\left(y_{1}\right)=\int_{Y_{2}} \pi\left(y_{1}, y_{2}\right) d y_{2} \tag{3.5.7}
\end{equation*}
$$

If we can find good updates of the components of $y_{1}$ for $\pi_{1}\left(y_{1}\right)$, then we can use the density in (3.5.7) and forget about the components in $y_{2}$ entirely.

It is hard to find examples where making use of a hidden variable as in (3.5.5) has a significant negative effect on convergence, or where using the marginal density (3.5.7) makes a significant improvement, but these considerations may make a difference if the problem is delicate or if the convergence for the higher-dimensional process is slow.
3.5.3. Random component updates. There is no requirement that the component steps in the MH algorithm should always be done in the same sequence. We could carry out the updates (3.5.4) in a random order, so that each update of $X_{n}$ updates a single randomly-chosen component of $x$. This is a special case of a random mixture of updates in Section 3.3, which we can call random-component-update MCMC (see the Appendix below).

In this case, the updates do not satisfy the assumptions of the Metropolis-Hastings theorem (Section 2.4), since the proposal density

$$
q(x, d y)=\sum_{a} w_{a} q_{a}(x, d y)
$$

is concentrated on a one-dimensional subset of $R^{d}$, specifically the union of the coordinate axes through $x$ and so does not have a density with respect to $d$-dimensional Lebesgue measure. However, the detailed-balance condition still holds (Section 3.3).
3.6. Gibbs samplers. In many cases, the individual conditional distributions $\pi\left(x_{i} \mid x_{-i}\right)$ are easy to describe even when the structure of $\pi(x)$ is complex.

If we know how to generate random variables with the conditional distribution $\pi\left(y_{i} \mid x_{-i}\right)$, then we can use

$$
\begin{equation*}
q_{i}\left(x_{i}, y_{i}\right)=q_{i}\left(x_{i}, x_{-i}, y_{i}\right)=\pi\left(y_{i} \mid x_{-i}\right) \tag{3.6.1}
\end{equation*}
$$

as a proposal function in (3.5.1). Given $x_{-i}$, this is equivalent to independence sampling from the conditional distribution of $x_{i}$. Since then $a_{i}\left(x_{-i}, x_{i}, y_{i}\right)=1$ in (3.5.2), there are no wait states or rejection steps. This is called a Gibbs sampler or a Gibbs sampler step for $\pi\left(x \mid x_{-i}\right)$. If $d=1$, there is no dependence on $x_{-i}$ and this is the same as classical Monte Carlo sampling.
(Exercise: Explain carefully why there is no benefit for oversampling a Gibbs sampler substep.)

In practice, Gibbs sampler updates tend to be much more efficient than other Metropolis or Metropolis-Hastings updates. The rate of convergence of a components-in-sequence or random-component-update MCMC is often a function of the proportion of updates that are Gibbs samplers. In the context of Bayesian statistics, the use of "conjugate priors" often makes Gibbs sampler component updates easy to find (see Chapter 5 below).
3.7. Knowing when to stop. Often MH trajectories that start in different parts of the parameter space may stay diverged for a very long period of time. One way of measuring the extent to which this may happen is the Gelman scale reduction factor (Gelman et al. 2003, Gilks et al. 1996, specifically Section 8.4 in Chapter 8, p136-139).

In some cases, computation of the function values $f\left(X_{n}\right)$ is more expensive than generating the values $X_{n}$, or we want to assume that the sampled values $f\left(X_{n}\right)$ are approximately independent, or we want to store fewer values for later estimation of medians and credible intervals. In these situations, we can sample values $f\left(X_{n}\right)$ only every $K^{\text {th }}$ step. This is equivalent to oversampling the full Markov chain $X_{n}$. In this case, we distinguish between samples or sampled values and the steps or iterations of the MC Markov chain.

For definiteness, suppose that we run $J$ trajectories each of (iteration) length $n K$, so that each trajectory has $n$ samples. We assume $1<J \ll n$ and $K \geq 1$. These could be either different runs with different starting positions or else consecutive blocks of values in a single run of length $n K J$ iterations.

For a particular parameter of interest, let $\psi_{i j}$ be the $(i K)^{\text {th }}$ iteration (or the $i^{\text {th }}$ sampled value) in the $j^{\text {th }}$ trajectory, where $1 \leq j \leq J$ for separate runs and $1 \leq i \leq n$ within each trajectory. (That is, $\psi_{i j}=F\left(X_{i K, j}\right)$ for a function $F(x)$ and $J$ copies $X_{j}(i)=X_{i, j}$ of the MH process in Section 2.)

Let

$$
a_{j}=\frac{1}{n} \sum_{i=1}^{n} \psi_{i j}=\bar{\psi}_{+j}, \quad 1 \leq j \leq J
$$

be the sample mean of the $j^{\text {th }}$ trajectory. Let $b_{j}=E\left(\psi_{i j}\right)$ be the corresponding theoretical mean. Then

$$
B=\frac{n}{J-1} \sum_{j=1}^{J}\left(a_{j}-\bar{a}\right)^{2} \quad \text { for } \quad \bar{a}=\frac{1}{J} \sum_{j=1}^{J} a_{j}
$$

is the numerator of the one-way ANOVA $F$-test of $H_{0}: b_{j}=b_{0}$, which we can call $B=$ MSMod. In particular

$$
E(B)=\sigma^{2}+\frac{n}{J-1} \sum_{j=1}^{J}\left(b_{j}-\bar{b}\right)^{2} \quad \text { for } \quad \bar{b}=\frac{1}{J} \sum_{j=1}^{J} b_{j}
$$

if each set of sampled values $\psi_{i j}(1 \leq i \leq n)$ are approximately uncorrelated with variance $\sigma^{2}$. We call $B$ the between-sequence variance. Similarly

$$
W=\frac{1}{J} \sum_{j=1}^{J} s_{j}^{2} \quad \text { for } \quad s_{j}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\psi_{i j}-a_{i}\right)^{2}
$$

is the denominator MSE of the same one-way ANOVA test. It satisfies $E(W)=\sigma^{2}$ if each trajectory $\psi_{i j}$ is uncorrelated for fixed $j$. This is called the within-sequence variance. Then

$$
\begin{equation*}
\frac{E(B)-E(W)}{n}=\frac{1}{J-1} \sum_{j=1}^{J}\left(b_{j}-\bar{b}\right)^{2}=s_{b}^{2} \tag{3.7.1}
\end{equation*}
$$

is the sample variance of the $J$ theoretical trajectory means $b_{j}$. Gelman's scale-reduction factor is

$$
\begin{align*}
\widehat{G R}=\frac{W+\frac{B-W}{n}}{W} & =1+\frac{(B-W)}{n W}=1+\frac{(F-1)}{n}  \tag{3.7.2}\\
& =\frac{n-1}{n}+\frac{F}{n}
\end{align*}
$$

where $F=$ MSMod / MSE is the one-way ANOVA test statistic. This can be viewed an estimator of $\left(\sigma^{2}+s_{b}^{2}\right) / \sigma^{2}=1+s_{b}^{2} / \sigma^{2}$ in (3.7.1).

Note that one can have $\widehat{G R}<1$ or $B-W<0$ due to sampling variation. In fact, if the MH Markov chains converges very strongly, then $\psi_{i, j}$ for $i=1,2, \ldots$ will be negatively correlated in $i$ due to their being bound to this stationary distribution. In this case, $B$ can understate the variance $\sigma^{2}$ resulting in $B<W$ and $\widehat{G R}<1$.

If $\widehat{G R}$ is close to one, this may be an indication that all $J$ trajectories are sampling from the stationary distribution in an unbiased manner. Gelman suggests, "In practice, we generally run the simulations until the values of $[G R]$ are all less than 1.1 or 1.2 " (Gelman 1996, p138). Of course, the same calculation must be done for every sampled function $f(x)$ of interest, since some parameters in an MCMC simulation may converge much faster than others.

A related measure is

$$
\begin{equation*}
R^{2}=\frac{n \sum_{j=1}^{J}\left(a_{j}-\bar{a}\right)^{2}}{\sum_{j=1}^{J} \sum_{i=1}^{n}\left(\psi_{i j}-\bar{a}\right)^{2}}=\frac{(J-1) B}{J(n-1) W+(J-1) B} \tag{3.7.3}
\end{equation*}
$$

For statistical regressions, this is called the "proportion of the total variability of the $\psi_{i j}$ " that is "explained" by the subchain or trajectory means. Typically $R^{2}$ is small if and only if $\widehat{G R}$ is close to one. Often $\widehat{G R}<1$ and $R^{2}$ is tiny when an MCMC Markov chain converges strongly.

## 4. Skew Transformations.

4.1. Introduction. In some cases the components of $x$ are highly correlated and $\pi(d x)$ is stiff (that is, rapidly changing) as a function of $x$. In that case, the Metropolis-Hastings algorithm is likely to accept only small changes in individual components of $x$. This can cause the MC Markov chain to take an extremely long time to converge.

If this happens, one way of improving convergence is to use a proposal function that is, for example, jointly normal in $x$ with a covariance matrix that is estimated from a preliminary run. Another way (which is the point of this section) is to update key components of $x$ and then make an parallel deterministic changes in other components in an attempt to preserve the values of $\pi(x)$.

For definiteness, assume $x=\left(x_{1}, x_{2}\right)$ where $x_{1} \in R^{d}, x_{2} \in R^{m}$, and $x \in R^{n}$ for $n=d+m$. Consider a Markov transition proposal function
$q(x, d y)$ defined in terms of random variables by

$$
\begin{equation*}
X=\binom{X_{1}}{X_{2}} \rightarrow\binom{Y_{1}}{h\left(X_{1}, X_{2}, Y_{1}\right)} \tag{4.1.1}
\end{equation*}
$$

where $h\left(x_{1}, x_{2}, y_{1}\right)$ is a deterministic function of $x_{1}, x_{2}$, and $y_{1}$. We assume that the random motion $X_{1} \rightarrow Y_{1}$ depends only on $X_{1}$ and not on $X_{2}$. Specifically,

$$
P\left(Y_{1} \in d y_{1} \mid X_{0}=\left(x_{1}, x_{2}\right)\right)=q\left(x_{1}, y_{1}\right) d y_{1}
$$

where $q\left(x_{1}, y_{1}\right)$ is a $d$-dimensional density. We call (4.1.1) a skew transformation of $X \in R^{n}$, since a change from $X_{1}$ to $Y_{1}$ in $R^{d}$ is accompanied by a deterministic change in $X_{2}$ that is a function of $Y_{1}$.

The Markov chain block updates that we have considered so far have been fairly simple: That is, the proposal distribution maps a subinterval of a one-dimensional subspace of $R^{n}$ into the same one-dimensional subspace with the remaining coordinates viewed as a parameter. In contrast, (4.1.1) maps a $d$-dimensional subspace of $R^{n}$ into a possibly different $d$-dimensional submanifold of $R^{n}$.

The mapping (4.1.1) is very similar to a transformation that changes only $X_{1}$ in a different coordinate system, and then changes coordinates back to the original coordinates. These reparametrization updates are a subset of the skew transformations (4.1.1) (see Section 4.3 below). While it is not known whether all transformations (4.1.1) can be obtained by reparametrization in this manner, reparametrization updates are often the easiest to find and work with.

The cases $d=0$ and $m=0$ are not excluded in (4.1.1): The former is a purely deterministic move in $R^{n}$ and the latter a mapping of full rank in $R^{n}$. Note that the transformations of $X_{1}$ and $X_{2}$ in (4.1.1) cannot in general be done independently or in sequence: Update proposals must be Markov, $X_{1}$ would not be available after updating $X_{1}$, and $Y_{1}$ is not available until $X_{1}$ is updated.

For smooth functions $h\left(x_{1}, x_{2}, y_{1}\right)$ in (4.1.1), we now find general sufficient conditions for the existence of an acceptance function $a(x, y)$ such that the corresponding update transition function $p(x, d y)$ satisfies the detailed balance condition (2.3.3).

Let $J_{2} h(x, y)=J_{2} h\left(x_{1}, x_{2}, y_{1}\right)$ be the absolute value of the $m \times m$ Jacobian matrix of $h\left(x_{1}, x_{2}, y_{1}\right)$ with respect to $x_{2}$ and let $\pi(x)$ be a nonnegative integrable function on $R^{n}$. Then

Theorem 4.1.1. Let $p(x, d y)$ be the transition function of the Markov process corresponding to the proposal distribution $q(x, y)$ defined by $q\left(x_{1}, y_{1}\right)$
and (4.1.1) and the acceptance function

$$
\begin{equation*}
a(x, y)=\min \left\{1, \frac{\pi(y) q\left(y_{1}, x_{1}\right)}{\pi(x) q\left(x_{1}, y_{1}\right)} J_{2} h\left(x_{1}, x_{2}, y_{1}\right)\right\} \tag{4.1.2}
\end{equation*}
$$

Then a sufficient condition for $p(x, d y)$ to satisfy the detailed balance condition (2.3.3) in Section 2.3, or equivalently

$$
\begin{equation*}
\pi(x) d x p(x, d y)=\pi(y) d y p(y, d x) \tag{4.1.3}
\end{equation*}
$$

is that, for $\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \in R^{2 n}$,

$$
\begin{equation*}
y_{2}=h\left(x_{1}, x_{2}, y_{1}\right) \quad \text { if and only if } \quad x_{2}=h\left(y_{1}, y_{2}, x_{1}\right) \tag{4.1.4}
\end{equation*}
$$

We will prove Theorem 4.1.1 in Section 4.2. A useful sufficient condition for (4.1.4) is
Corollary 4.1.1. A sufficient condition for (4.1.4) is that there exists a function $R(x)=R\left(x_{1}, x_{2}\right)$ on $R^{n}$ such that

$$
\begin{equation*}
y_{2}=h\left(x_{1}, x_{2}, y_{1}\right) \quad \text { if and only if } \quad R(x)=R(y) \tag{4.1.5}
\end{equation*}
$$

Exercise: Prove Corollary 4.1.1 given Theorem 4.1.1.
We will see in the next section that the class (4.1.4)-(4.1.5) contains a large class of updates defined by temporary reparametrization.

Given (4.1.5), the Jacobian $J_{2} h\left(x_{1}, x_{2}, y_{1}\right)$ in the acceptance function (4.1.2) can be expressed directly in terms of $R(x)$. For fixed ( $x_{1}, y_{1}$ ) and $y_{2}=h\left(x_{1}, x_{2}, y_{1}\right)$, (4.1.4) and (4.1.5) imply

$$
R\left(x_{1}, x_{2}\right)=R\left(y_{1}, h\left(x_{1}, x_{2}, y_{1}\right)\right)
$$

By the chain rule for Jacobians

$$
J_{2} R\left(x_{1}, x_{2}\right)=J_{2} R\left(y_{1}, y_{2}\right) J_{2} h\left(x_{1}, x_{2}, y_{1}\right)
$$

and thus

$$
\begin{equation*}
J_{2} h\left(x_{1}, x_{2}, y_{1}\right)=\frac{J_{2} R\left(x_{1}, x_{2}\right)}{J_{2} R\left(y_{1}, y_{2}\right)} \quad \text { for } \quad y_{2}=h\left(x_{1}, x_{2}, y_{1}\right) \tag{4.1.6}
\end{equation*}
$$

In this case, the acceptance function (4.1.2) can be replaced by the more symmetric relation

$$
\begin{equation*}
a(x, y)=\min \left\{1, \frac{\pi(y) q\left(y_{1}, x_{1}\right) J_{2} R\left(x_{1}, x_{2}\right)}{\pi(x) q\left(x_{1}, y_{1}\right) J_{2} R\left(y_{1}, y_{2}\right)}\right\} \tag{4.1.7}
\end{equation*}
$$

It is possible that, for any smooth function $h\left(x_{1}, x_{2}, y_{1}\right)$ satisfying (4.1.4), there exists a function $R(x)$ satisfying (4.1.5). As far as I know, this is an open question.

We give two examples before proving Theorem 4.1.1.
4.1.1. Examples. (1) Assume $d=1, n=m+1$, and $x=\left(x_{1}, x_{2}\right)$ for $x_{1} \in R^{1}$ and $x_{2} \in R^{m}$. Define a random walk in $R^{n}$ with an arbitrary step in $x_{1}$ and

$$
\begin{equation*}
h\left(x_{1}, x_{2}, y_{1}\right)=x_{2}+\left(y_{1}-x_{1}\right) \tag{4.1.8}
\end{equation*}
$$

in (4.1.1). This corresponds to a random motion $X_{1} \rightarrow Y_{1}$ in $R^{1}$ followed by a parallel shift by the same amount in each component of $X_{2}$. Note that by (4.1.8)

$$
\begin{aligned}
y_{2}-h\left(x_{1}, x_{2}, y_{1}\right) & =y_{2}-y_{1}-\left(x_{2}-x_{1}\right) \\
& =-\left(x_{2}-h\left(y_{1}, y_{2}, x_{1}\right)\right) \\
& =R(y)-R(x)
\end{aligned}
$$

where $R\left(x_{1}, x_{2}\right)=x_{2}-x_{1}$ shifts $x_{2} \in R^{m}$ by $x_{1}$. Thus $h\left(x_{1}, x_{2}, y_{1}\right)$ satisfies (4.1.4) and is also of the form (4.1.5). Since

$$
J_{2} h\left(x_{1}, x_{2}, y_{1}\right)=J_{2} R\left(x_{1}, x_{2}\right)=1
$$

the Jacobian does not appear in the acceptance function (4.1.2).
(2) Assume $d=2$ and $n=m+2$ and write

$$
x=\left(x_{1}, x_{2}\right)=\left(x_{11}, x_{12}, x_{2}\right), \quad x_{2} \in R^{m}
$$

Define a random walk by an arbitrary step in $x_{1}=\left(x_{11}, x_{12}\right)$ and

$$
\begin{equation*}
y_{2}=h\left(x_{1}, x_{2}, y_{1}\right)=y_{11}+\left(y_{12} / x_{12}\right)\left(x_{2}-x_{11}\right) \tag{4.1.9}
\end{equation*}
$$

in (4.1.1). This views $x_{11}$ and $x_{12}$ as like a mean and standard deviation for the components $x_{2 i}$ of $x_{2}$, and updates $x_{2} \rightarrow y_{2}$ accordingly after changes in $x_{11}$ and $x_{12}$. In this case

$$
\begin{aligned}
y_{2}-h\left(x_{1}, x_{2}, y_{1}\right) & =y_{2}-y_{11}-\left(y_{12} / x_{12}\right)\left(x_{2}-x_{11}\right) \\
& =-\left(y_{12} / x_{12}\right)\left(x_{2}-h\left(y_{1}, y_{2}, x_{1}\right)\right) \\
& =y_{12}(R(y)-R(x))
\end{aligned}
$$

where

$$
R(x)=\left(x_{2}-x_{11}\right) / x_{12}
$$

is the normalizing transformation for $x_{2} \in R^{m}$. Thus $h\left(x_{1}, x_{2}, y_{1}\right)$ is also of the form (4.1.4) and (4.1.5). In this case

$$
J_{2} h\left(x_{1}, x_{2}, y_{1}\right)=\left(y_{12} / x_{12}\right)^{m}
$$

and the acceptance function (4.1.2) is

$$
\begin{equation*}
a(x, y)=\min \left\{1, \frac{\pi(y) q\left(y, x_{1}\right)\left(y_{12} / x_{12}\right)^{m}}{\pi(x) q\left(x, y_{1}\right)}\right\} \tag{4.1.10}
\end{equation*}
$$

Since $J_{2} R\left(x_{1}, x_{2}\right)=\left(1 / x_{12}\right)^{m}$, we obtain the same result from (4.1.6).

### 4.1.2. Domain-dependent steps in skew transformations.

Suppose that the update $X_{1} \rightarrow Y_{1}$ in (4.1.1) is defined by a random walk with a position-dependent step size as in Section 3.1.2, so that

$$
\begin{equation*}
X=\binom{X_{1}}{X_{2}} \rightarrow\binom{Y_{1}}{k\left(X_{1}, X_{2}, Y_{1}\right)}=\binom{X_{1}+h_{X} W}{k\left(X_{1}, X_{2}, X_{1}+h_{X} W\right)} \tag{4.1.11}
\end{equation*}
$$

where $h_{X}>0$ and $W$ is a random variable with distribution $f_{W}(x)$. The transformation $X_{1} \rightarrow Y_{1}$ has transition function

$$
\begin{equation*}
q\left(x_{1}, y_{1}\right)=\left(\frac{1}{h_{x}}\right)^{d} f_{W}\left(\frac{y_{1}-x_{1}}{h_{x}}\right) \tag{4.1.12}
\end{equation*}
$$

as in (3.1.5). Since $k\left(x_{1}, x_{2}, y_{1}\right)$ in (4.1.11) does not depend explicitly on $h_{x}$, the Jacobian factor in (4.1.2) is unaffected. Thus the random walk satisfies the detailed balance condition with acceptance function

$$
\begin{align*}
a(x, y) & =\min \left\{1, \frac{\pi(y) q\left(y_{1}, x_{1}\right) J_{2} k\left(x_{1}, x_{2}, y_{1}\right)}{\pi(x) q\left(x_{1}, y_{1}\right)}\right\}  \tag{4.1.13}\\
& =\min \left\{1, \frac{\pi(y)}{\pi(x)}\left(\frac{h_{X}}{h_{Y}}\right)^{d} \frac{f_{W}\left(\left(x_{1}-y_{2}\right) / h_{Y}\right)}{f_{W}\left(\left(y_{1}-x_{2}\right) / h_{X}\right)} J_{2} k\left(x_{1}, x_{2}, y_{1}\right)\right\}
\end{align*}
$$

as in (3.1.6).
4.2. Proof of Theorem 4.1.1. The proposal transition function defined by (4.1.1) can be written

$$
\begin{equation*}
q(x, d y)=q\left(x_{1}, y_{1}\right) d y_{1} \delta_{\left[h\left(x_{1}, x_{2}, y\right)\right]}\left(d y_{2}\right) \tag{4.2.1}
\end{equation*}
$$

where (4.2.1) means that the measure $q(x, d y)$ on $R^{n}$ satisfies

$$
\int_{y \in X} \phi(y) q(x, d y)=\int \phi\left(y_{1}, h\left(x_{1}, x_{2}, y_{1}\right)\right) q\left(x_{1}, y_{1}\right) d y_{1}
$$

for measurable functions $\phi(y)=\phi\left(y_{1} \cdot y_{2}\right) \geq 0$.
The Markov chain with transition function $p(x, d y)$ defined in Theorem 2.1.1 for $q(x, d y)$ and $a(x, y)$ is the chain that, for a given value of $x$, "proposes" a value $y$ with distribution (4.2.1) (which implies $y_{2}=h\left(x_{1}, x_{2}, y_{1}\right)$ ) and then either "accepts" the value $y$ and moves to that point, which takes place with probability $a(x, y)$, or else "rejects" the value $y$ and remains at the point $x$, which takes place with probability $1-a(x, y)$. This means

$$
p(x, d y)=a(x, y) q\left(x_{1}, y_{1}\right) d y_{1} \delta_{\left[h\left(x, y_{1}\right)\right]}\left(d y_{2}\right)+A(x) \delta_{x}(d y)
$$

where

$$
A(x)=1-\int a(x, y) q(x, d y)=1-\int a\left(x, y_{1}, h\left(x, y_{1}\right)\right) q\left(x_{1}, y_{1}\right) d y_{1}
$$

We now find sufficient conditions on $h\left(x_{1}, x_{2}, y_{1}\right)$ in (4.1.1) and $a(x, y)$ in (4.1.2) for the detailed balance condition (4.1.3).

First, note that the two measures $\pi(x) d x p(x, d y)$ and $\pi(y) d y p(y, d x)$ in (4.1.3) are measures that are concentrated in $(n+d)$-dimensional submanifolds of $R^{2 n}$. We first require that these two manifolds be the same. The first measure is concentrated on the set of points

$$
\begin{equation*}
\mathcal{D}_{1}=\left\{\left(x_{1}, x_{2}, y_{1}, y_{2}\right): y_{2}=h\left(x_{1}, x_{2}, y_{1}\right)\right\} \tag{4.2.2}
\end{equation*}
$$

while the second measure is concentrated on

$$
\begin{equation*}
\mathcal{D}_{2}=\left\{\left(x_{1}, x_{2}, y_{1}, y_{2}\right): x_{2}=h\left(y_{1}, y_{2}, x_{1}\right)\right\} \tag{4.2.3}
\end{equation*}
$$

The condition $\mathcal{D}_{1}=\mathcal{D}_{2}$ is exactly the symmetry condition (4.1.4).
As in the proof of Lemma 2.4.1, the detailed balance condition (4.1.3) follows from the relation

$$
\begin{equation*}
\pi(x) d x a(x, y) q(x, d y)=\pi(y) d y a(y, x) q(y, d x) \tag{4.2.4}
\end{equation*}
$$

In general, two measures $\mu_{1}(d x d y)$ and $\mu_{2}(d x d y)$ are the same in $R^{2 n}$ if and only if

$$
\iint \phi(x, y) \mu_{1}(d x d y)=\iint \phi(x, y) \mu_{2}(d x d y)
$$

for all measurable functions $\phi(x, y) \geq 0$. The integral of $\phi(x, y)$ with respect to the left-hand measure in (4.2.4) is

$$
\begin{align*}
& \iint \phi(x, y) \pi(x) a(x, y) q(x, d y) d x \\
& =\iiint \phi\left(x_{1}, x_{2}, y_{1}, h\left(x_{1}, x_{2}, y_{1}\right)\right) \pi\left(x_{1}, x_{2}\right)  \tag{4.2.5}\\
& \quad \times a\left(x_{1}, x_{2}, y_{1}, h\left(x_{1}, x_{2}, y_{1}\right)\right) q\left(x_{1}, y_{1}\right) d x_{1} d x_{2} d y_{1}
\end{align*}
$$

The integral with respect to the second measure in (4.2.4) is

$$
\begin{align*}
& \iint \phi(x, y) \pi(y) a(y, x) q(y, d x) d y \\
& \left.=\iiint \phi\left(x_{1}, h\left(y_{1}, y_{2}, x_{1}\right), y_{1}, y_{2}\right)\right) \pi\left(y_{1}, y_{2}\right)  \tag{4.2.6}\\
& \quad \times a\left(y_{1}, y_{2}, x_{1}, h\left(y_{1}, y_{2}, x_{1}\right)\right) q\left(y_{1}, x_{1}\right) d y_{1} d y_{2} d x_{1}
\end{align*}
$$

The substitution $x_{2}=h\left(y_{1}, y_{2}, x_{1}\right)\left(y_{2}=h\left(x_{1}, x_{2}, y_{1}\right)\right)$ in (4.2.6), viewing $\left(x_{1}, y_{1}\right)$ as fixed, implies

$$
\begin{align*}
& \iint \phi(x, y) \pi(y) a(y, x) q(y, d x) d y \\
& =\iiint \phi\left(x_{1}, x_{2}, y_{1}, h\left(x_{1}, x_{2}, y_{1}\right)\right) \pi\left(y_{1}, h\left(x_{1}, x_{2}, y_{1}\right)\right) \\
& \left.\quad \times a\left(y_{1}, h\left(x_{1}, x_{2}, y_{1}\right), x_{1}, x_{2}\right)\right) q\left(y_{1}, x_{1}\right) J_{2} h\left(x_{1}, x_{2}, y_{1}\right) d x_{1} d x_{2} d y_{1} \\
& =\int_{\mathcal{D}_{1}} \phi(x, y) \pi(y) a(y, x) q\left(y_{1}, x_{1}\right) J_{2} h\left(x_{1}, x_{2}, y_{1}\right) d x_{1} d x_{2} d y_{1} \tag{4.2.7}
\end{align*}
$$

where $J_{2} h\left(x_{1}, x_{2}, y_{1}\right)$ is the Jacobian function in (4.1.2). It follows from (4.2.5) and (4.2.7) that the two measures in (4.2.4) are the same if

$$
\begin{equation*}
\pi(x) a(x, y) q\left(x_{1}, y_{1}\right)=\pi(y) a(y, x) q\left(y_{1}, x_{1}\right) J_{2} h\left(x_{1}, x_{2}, y_{1}\right) \tag{4.2.8}
\end{equation*}
$$

for all $(x, y) \in \mathcal{D}$ for $\mathcal{D}=\mathcal{D}_{1}=\mathcal{D}_{2}$ in (4.2.2)-(4.2.3). I now claim that

$$
\begin{equation*}
a(x, y)=\min \left\{1, \frac{\pi(y) q\left(y_{1}, x_{1}\right) J_{2} h\left(x_{1}, x_{2}, y_{1}\right)}{\pi(x) q\left(x_{1}, y_{1}\right)}\right\} \tag{4.2.9}
\end{equation*}
$$

in (4.1.2) satisfies (4.2.8). By (4.1.4)

$$
h\left(x_{1}, h\left(y_{1}, y_{2}, x_{1}\right), y_{1}\right)=y_{2}
$$

and the chain rule for Jacobians with $x_{2}=h\left(y_{1}, y_{2}, x_{1}\right)$ implies

$$
\begin{equation*}
J_{2} h\left(x_{1}, x_{2}, y_{1}\right) J_{2} h\left(y_{1}, y_{2}, x_{1}\right)=1 \tag{4.2.10}
\end{equation*}
$$

It follows from (4.2.9) that

$$
\pi(x) a(x, y) q\left(x_{1}, y_{1}\right)=\min \left\{\pi(x) q\left(x_{1}, y_{1}\right), \pi(y) q\left(y_{1}, x_{1}\right) J_{2} h\left(x_{1}, x_{2}, y_{1}\right)\right\}
$$

and hence

$$
\pi(y) a(y, x) q\left(y_{1}, x_{1}\right)=\min \left\{\pi(y) q\left(y_{1}, x_{1}\right), \pi(x) q\left(x_{1}, y_{1}\right) J_{2} h\left(y_{1}, y_{2}, x_{1}\right)\right\}
$$

Hence by (4.2.10)

$$
\begin{aligned}
& \pi(y) a(y, x) q\left(y_{1}, x_{1}\right) J_{2} h\left(x_{1}, x_{2}, y_{1}\right) \\
& \quad=\min \left\{\pi(y) q\left(y_{1}, x_{1}\right) J_{2} h\left(x_{1}, x_{2}, y_{1}\right), \pi(x) q\left(x_{1}, y_{1}\right)\right\}
\end{aligned}
$$

The relation (4.2.8) follows from the fact that the right-hand sides of the first and third of the three equations above are the same.

It follows as in the proof of Theorem 2.4.1 that the maximal pointwise solution of (4.2.8) for functions $0 \leq a(x, y) \leq 1$ is the acceptance function (4.2.9).
Remark. The notion of skew transformation is similar to the ideas of partial resampling and generalized multigrid methods discussed in Liu and Sabatti (2000) and in Sections 8.1 and 8.3 of Liu (2001). See also the remarks at the end of the next section.

### 4.3. Temporary reparametrization as a skew transformation.

Let $x=\left(x_{1}, x_{2}\right)$ for $x_{1} \in R^{d}, x_{2} \in R^{m}$, and $x \in R^{n}$ as in the previous section. In principle, a natural way to carry out a transformation

$$
\begin{equation*}
X=\binom{X_{1}}{X_{2}} \rightarrow\binom{Y_{1}}{h\left(X_{1}, X_{2}, Y_{1}\right)} \tag{4.3.1}
\end{equation*}
$$

where $P\left(Y_{1} \in d y_{1} \mid X_{0}=x\right)=q\left(x, y_{1}\right) d y_{1}$ is to change coordinates in $R^{n}$ in such a way to fix the first $d$ components, then carry out a component update of the first $d$ coordinates only, and then change coordinates back. Specifically, let

$$
S(x)=S\left[\binom{x_{1}}{x_{2}}\right]=\binom{x_{1}}{S_{2}\left(x_{1}, x_{2}\right)}
$$

be a one-one continuously-differentiable nonsingular mapping of $R^{n}$ into itself that fixes the first $d$ coordinates. Suppose that we make a proposal $X_{1} \rightarrow Y_{1}$ that changes only the first $d$ new coordinates:

$$
\begin{equation*}
S\left[\binom{X_{1}}{X_{2}}\right]=\binom{X_{1}}{S_{2}(X)} \rightarrow\binom{Y_{1}}{S_{2}(X)} \tag{4.3.2}
\end{equation*}
$$

Set $S_{22}\left(x_{2} ; x_{1}\right)=S_{2}\left(x_{1}, x_{2}\right)$ when we view $S_{2}\left(x_{1}, x_{2}\right)$ as a transformation of $x \in R^{m}$ with $x_{1} \in R^{d}$ as a parameter. Then the mapping (4.3.1) in the original coordinates is

$$
\begin{equation*}
X=\binom{X_{1}}{X_{2}} \rightarrow S^{-1}\left[\binom{Y_{1}}{S_{2}(X)}\right]=\binom{Y_{1}}{S_{22}^{-1}\left(S_{22}\left(X_{2} ; X_{1}\right) ; Y_{1}\right)} \tag{4.3.3}
\end{equation*}
$$

This is a skew transformation of the form (4.1.1) for

$$
\begin{equation*}
h\left(X_{1}, X_{2}, Y_{1}\right)=S_{22}^{-1}\left(S_{22}\left(X_{2} ; X_{1}\right) ; Y_{1}\right) \tag{4.3.4}
\end{equation*}
$$

If $Y_{2}=h\left(X_{1}, X_{2}, Y_{1}\right)$, then by (4.3.4) and (4.3.3)

$$
S_{2}\left(Y_{1}, Y_{2}\right)=S_{22}\left(h\left(X, Y_{1}\right) ; Y_{1}\right)=S_{22}\left(X_{2}, X_{1}\right)=S_{2}\left(X_{1}, X_{2}\right)
$$

Since $S(X)$ is one-one, this implies that if $Y_{2}=h\left(X, Y_{1}\right)$ for $Y=\left(Y_{1}, Y_{2}\right)$ if and only $S_{2}(Y)=S_{2}(X)$. In particular, the function $h\left(x_{1}, x_{2}, y_{1}\right)$ in the reparametrization transformation (4.3.3) satisfies the symmetry conditions (4.1.4)-(4.1.5) for $R(x)=S_{2}(x)$. It then follows from Theorem 2.1.1 that

Theorem 4.3.1. Let $q(x, d y)$ be the proposal distribution defined by (4.3.3) for the reparametrization (4.3.2). Then the associated Markov transition function $p(x, d y)$ for a density $\pi(x)$ and the acceptance function

$$
a(x, y)=\min \left\{1, \frac{\pi(y) q\left(y, x_{1}\right) J_{2} S\left(x_{1}, x_{2}\right)}{\pi(x) q\left(x, y_{1}\right) J_{2} S\left(y_{1}, y_{2}\right)}\right\}
$$

satisfies the detailed balanced condition (4.1.3). In particular, the Markov chain associated with (4.3.1) has $\pi(x)$ as a stationary measure.
Remarks. (1) If $h\left(X, Y_{1}\right)$ in (4.3.3) is replaced by a Gibbs sampler step from the density $\pi(x)$ restricted to the "fiber"

$$
\begin{equation*}
\left\{Y: S_{2}(Y)=S_{2}(X)\right\} \tag{4.3.5}
\end{equation*}
$$

then (4.3.1)-(4.3.3) is essentially the same as the covariance-adjusted Markov chain of Liu (1998) (referenced in Chen et al. 2000).
(2) Liu and Sabatti (2000) define a similar procedure called Grouped Move Multi-Grid Monte Carlo by Chen et al. (2000). Here (4.3.5) are the orbits of a locally compact group $G$ acting on $X$. The transformation $h\left(X, Y_{1}\right)$ in (4.3.3) is either a Gibbs-sampler step from the measure induced on (4.3.5) by $\pi(x) d x$ and Haar measure on $G$ or else related Metropolis-Hastings updates (Chen et al. 2000, Liu 2001). See Liu and Sabatti (2000) for examples. Possible choices of the group $G$ for $X=R^{n}$ would be the Lie group $R^{m}$ itself or the nilpotent Lie group of shift and scale transformations acting on $R^{m}$. This in fact is the same as the examples (4.1.8)-(4.1.10) except that the transformations in Section 3.1 are deterministic within fibers rather than random.

## 5. Bayesian Models in Statistics.

5.1. Introduction. The Metropolis-Hastings algorithm is often used in Bayesian analyses in statistics. In fact, the MH algorithm is a large part of the reason for the increased popularity of Bayesian methods in the last 50 years.

For definiteness, assume that one has an observation of a vector-valued random variable $X$ (which might, for example, be repeated observations of vector-vectored random variables of lower dimension). Assume that the distribution of $X$ depends on a parameter $\theta$ that we want to estimate. Both $X$ and $\theta$ may be vector valued. Assume for definiteness that the theoretical distribution of $X$ is given by the density $G(X, \theta)$, so that

$$
\begin{equation*}
E(f(X))=\int f(x) G(x, \theta) d x \tag{5.1.1}
\end{equation*}
$$

for functions $f(x) \geq 0$. "Likelihood methods" in statistics for estimating $\theta$ are based on the idea that, for given observed data $X$, those values of $\theta$ for which $G(X, \theta)$ is relatively large are more likely to be close to the "true" value of $\theta$ that generated the random data $X$. This approach assumes that $x$ in $G(x, \theta)$ is held constant at the observed value $X$ and that the parameter $\theta$ is the true variable. To emphasize this difference in viewpoint, we use the term "likelihood" instead of "probability density" and generally use a different letter for $G$, for example

$$
\begin{equation*}
L(X \mid \theta)=G(X, \theta) \tag{5.1.2}
\end{equation*}
$$

Note that, strictly speaking, (5.1.2) is an abuse of notation, since "|" in (5.1.2) usually denotes conditioning with respect to a random variable and $\theta$ in (5.1.1) is a parameter, not a random variable.

The Bayesian approach is to go one step further and, in fact, set up a structure in which $\theta$ can be treated a random variable instead of a parameter, and more specifically in such a way that $\theta$ and $X$ are random variables on the same probability space. To do this, we first introduce an arbitrary "prior distribution" or "prior density" $\pi_{0}(\theta)$ for $\theta$ and write

$$
\begin{equation*}
L(X, \theta)=\pi_{0}(\theta) L(X \mid \theta) \tag{5.1.3}
\end{equation*}
$$

Then
(i) $\int L(x, \theta) d x=\pi_{0}(\theta) \int L(x \mid \theta) d x=\pi_{0}(\theta) \int G(x, \theta) d x=\pi_{0}(\theta)$
(ii) $\iint L(x, \theta) d x d \theta=\int \pi_{0}(\theta) d \theta=1$

Thus (i) $L(x, \theta)$ in (5.1.3) is a joint probability density for two random variables $X$ and $\theta$ (which are usually are random vectors) and (ii) for the joint density $L(x, \theta)$, the marginal density of $\theta$ is $L(\theta)=\pi_{0}(\theta)$. By the usual formula for conditional density

$$
L(X \mid \theta)=\frac{L(X, \theta)}{L(\theta)}=\frac{\pi_{0}(\theta) L(X \mid \theta)}{\pi_{0}(\theta)}
$$

so that, given (5.1.3), $L(X \mid \theta)$ in (5.1.2) is indeed a conditional density.
Given $L(X, \theta)$, it is natural to consider the conditional distribution of the random variable $\theta$ given the observed data $X$, which is

$$
\begin{align*}
& \pi_{1}(\theta \mid X)=L(\theta \mid X)=\frac{L(X, \theta)}{\int L(s, X) d s}  \tag{5.1.4}\\
& \quad=\frac{\pi_{0}(\theta) L(X \mid \theta)}{\int \pi_{0}(s) L(X \mid s) d s}=C_{X} \pi_{0}(\theta) L(X \mid \theta)
\end{align*}
$$

where $C_{X}$ depends only on $X$. Note that $C_{X}$ in (5.1.4) depends on the marginal density of $X$ given the prior $\pi_{0}(\theta)$ in (5.1.3), and so in particular does not depend on $\theta$.

The function $\pi_{1}(\theta \mid X)=L(\theta \mid X)$ in (5.1.4) is called the posterior density of $\theta$ given $X$. The basic idea of Bayesian statistics is to make inferences about the unknown value of $\theta$ given data $X$ based on this conditional density. For example, given (5.1.4), the Bayes estimator of $\theta$ is the average of $\theta$ over $\pi_{1}(\theta \mid X)$, or equivalently

$$
\begin{align*}
\widehat{\theta} & =\widehat{\theta}_{B}=E(\theta \mid X)=\int \theta \pi_{1}(\theta \mid X) d \theta  \tag{5.1.5}\\
& =C_{X} \int \theta \pi_{0}(\theta) L(\theta, X) d \theta
\end{align*}
$$

An important advantage of Bayesian methods is that recipes like (5.1.5) give you well-defined estimators of unknown paraments almost without thinking in situations in which a classical estimator is not clear, or even worse if there are multiple conceivable classical estimates that give widely different answers.

The main disadvantage of Bayesian methods is that all inferences depend on the prior $\pi_{0}(\theta)$. Only in rare cases is there a natural candidate for $\pi_{0}(\theta)$. In principle, inferences should always be done for more than one choice for $\pi_{0}(\theta)$. If the resulting inferences are not close, then the problem should be rethought, or else you should gather more data.

The degree of confidence that one might have in a Bayesian estimator such as $\widehat{\theta}_{B}$ can be measured by the distribution of $\pi_{1}(\theta \mid X)$ about $\widehat{\theta}_{B}$. For example, if $Q$ is a set of values of $\theta$ such that

$$
\widehat{\theta}_{B} \in Q \quad \text { and } \quad \int_{Q} \pi_{1}(\theta) d \theta \geq 0.95
$$

then we can say that we are " $95 \%$ posterior sure" that $Q$ contains the true value of $\theta$. A set $Q$ with these properties is called a " $95 \%$ credible region" for $\theta$. This is the Bayesian analog of the classical $95 \%$ confidence interval or confidence region, in which $\theta$ is treated as a parameter and not as an unobserved value of a random variable. However, the terms "credible region" and "confidence region" are sometimes used interchangeably.

### 5.2. A useful identity for component updates.

It follows from basic principles that

$$
\begin{equation*}
\pi\left(\theta_{1}, \theta_{2}\right)=\pi\left(\theta_{2} \mid \theta_{1}\right) \pi\left(\theta_{1}\right) \tag{5.2.1}
\end{equation*}
$$

for any probability density $\pi\left(\theta_{1}, \theta_{2}\right)$ for possibly-multidimensional parameters $\theta_{1}$ and $\theta_{2}$, where $\pi\left(\theta_{1}\right)=\int_{\theta_{2}} \pi\left(\theta_{1}, \theta_{2}\right) d \theta_{2}$ is the marginal density for $\theta_{1}$. This also holds for arbitrary measures in the form

$$
\begin{equation*}
\pi\left(d\left(\theta_{1}, \theta_{2}\right)\right)=\pi\left(d \theta_{2} \mid \theta_{1}\right) \pi\left(d \theta_{1}\right) \tag{5.2.2}
\end{equation*}
$$

where $\pi\left(d \theta_{1}\right)=\int_{\theta_{2}} \pi\left(d\left(\theta_{1}, \theta_{2}\right)\right)$. If $\left(\theta_{1}, \theta_{2}\right)$ have a discrete distribution, this follows from the basic definition

$$
\begin{equation*}
P\left(\theta_{2}=b \mid \theta_{1}=a\right)=\frac{P\left(\theta_{1}=a, \theta_{2}=b\right)}{P\left(\theta_{1}=a\right)} \tag{5.2.3}
\end{equation*}
$$

if $P\left(\theta_{1}=a\right)>0$. Multiplying both sides by $P\left(\theta_{1}=a\right)$ yields

$$
\begin{equation*}
P\left(\theta_{2}=b, \theta_{1}=a\right)=P\left(\theta_{1}=a \mid \theta_{2}=b\right) P\left(\theta_{1}=a\right) \tag{5.2.4}
\end{equation*}
$$

Note that (5.2.4) holds even if $P\left(\theta_{1}=a\right)=0$, since then both sides of (5.2.4) equal zero. The general cases of (5.2.1) and (5.2.2) follow by approximating the joint distributions by discrete distributions.

A useful fact for component updates is that a form of (5.2.1)-(5.2.2) holds for posterior distributions. If $\left(\theta_{1}, \theta_{2}, X\right)$ have a discrete distribution, we have

$$
\begin{align*}
& P\left(\theta_{1}=a, \theta_{2}=b, X=x\right) \\
& \quad=P\left(\theta_{2}=b \mid \theta_{1}=a, X=x\right) P\left(\theta_{1}=a, X=x\right) \tag{5.2.5}
\end{align*}
$$

if $P\left(\theta_{2}=b, X=x\right)>0$. If we divide the first and third terms in (5.2.5) by $P(X=x)$, we obtain

$$
\begin{aligned}
& P\left(\theta_{1}=a, \theta_{2}=b \mid X=x\right) \\
& \quad=P\left(\theta_{2}=b \mid \theta_{1}=a, X=x\right) P\left(\theta_{1}=a \mid X=x\right)
\end{aligned}
$$

This implies

$$
\begin{equation*}
\pi\left(\theta_{1}, \theta_{2} \mid X\right)=\pi\left(\theta_{2} \mid \theta_{1}, X\right) \pi\left(\theta_{1} \mid X\right) \tag{5.2.6}
\end{equation*}
$$

by approximating the probability density $\pi\left(\theta_{1}, \theta_{2}, X\right)$ by discrete distributions in $\left(\theta_{1}, \theta_{2}, X\right)$. Note that the first factor on the right-hand side of (5.2.6) is the posterior density of $\theta_{2}$ viewing $\left(\theta_{1}, X\right)$ as data. The same argument also lead to the more general form

$$
\begin{equation*}
\pi\left(d\left(\theta_{1}, \theta_{2}\right) \mid X\right)=\pi\left(d \theta_{2} \mid \theta_{1}, X\right) \pi\left(d \theta_{1} \mid X\right) \tag{5.2.7}
\end{equation*}
$$

## 5.3. "Hidden" variables in a likelihood.

In many applications, the likelihood $L(X \mid \theta)$ is complex but would be much simpler if an unobserved random variable $Z$ could be observed or treated as data. (See also Section 3.5.1.) For example, assume

$$
\begin{equation*}
L(X \mid \theta)=\int_{z} G(X, z, \theta) d z \tag{5.3.1}
\end{equation*}
$$

where $G(x, z, \theta) \geq 0$. Then

$$
\int_{x} L(x \mid \theta) d x=\iint G(x, z, \theta) d z d x=1
$$

so that $G(x, z, \theta)$ is a probability density in $(x, z)$ for fixed $\theta$ with respect to $d z d x$, and can be viewed as the joint probability density of two random variables, $X$ and $Z$. Note that we might not have thought of $Z$ as a potential random variable before noticing the relationship (5.3.1.)

Using the same prior density $\pi_{0}(\theta)$ for $\theta$ for both $L(X \mid \theta)$ in (5.3.1) and $G(x, z, \theta)$, then

$$
\begin{equation*}
L(x, z, \theta)=\pi_{0}(\theta) G(x, z, \theta) \tag{5.3.2}
\end{equation*}
$$

is a joint probability of three random variables $X, Z$, and $\theta$. With respect to this joint density,

$$
\begin{align*}
& \text { (i) } L(X, Z \mid \theta)=\frac{L(X, Z, \theta)}{L(\theta)}=\frac{\pi_{0}(\theta) G(X, Z, \theta)}{\pi_{0}(\theta)}=G(X, Z, \theta)  \tag{i}\\
& \text { (ii) } \int_{z} L(X, z \mid \theta) d z=\int_{z} G(X, z, \theta) d z=L(X \mid \theta) \\
& \text { (iii) } L(Z \mid \theta)=\int_{x} L(x, Z \mid \theta) d x=\int_{x} G(x, Z, \theta) d x \tag{5.3.4}
\end{align*}
$$

Thus (i) $G(X, Z, \theta)$ is the likelihood of $(X, Z)$ as a function of $\theta$, (ii) the marginal density of $X$ with respect to $L(X, Z \mid \theta)$ is $L(X \mid \theta)$, and (iii) the marginal $L(Z \mid \theta)$ can be calculated in terms of $G(x, z, \theta)$ by integrating out $x$ instead of $z$ in (5.3.1).

The variables $z$ in (5.3.1) and (5.3.2) can be viewed as either unobserved data or else as additional parameters, although (5.3.1) may be more suggestive of unobserved data. The process of going from data $X$ with likelihood $L(X \mid \theta)$ to $(X, Z)$ with likelihood $L(X, Z \mid \theta)$ is called data augmentation.

As in Section 3.5.1, any Metropolis-Hastings Markov chain $W_{n}=$ $\left(\theta_{n}, Z_{n}\right)$ generated from (5.3.2) provides not only estimates of $\theta$ but also
provides estimates of both the marginal distribution of $Z$ and the conditional distribution of $Z$ given $\theta$. That is, any MCMC that treats a "hidden variable" $Z$ as a parameter also provides estimates of $Z$. If the hidden variable $Z$ is of high dimension, as is often the case, this can provide a great deal of additional information. If the integrals in (5.3.1) have to be integrated numerically, updates of $W_{n}=\left(\theta_{n}, Z_{n}\right)$ may also be much easier to generate. Section 5.2 implies the identity

$$
\begin{equation*}
P(X, Z \mid \theta)=P(X \mid Z, \theta) P(Z \mid \theta) \tag{5.3.5}
\end{equation*}
$$

although, in this case, this follows immediately from (5.3.4) and (5.3.1).
Remark. Note the we do not need a prior for $Z$. This is not surprising if we view $Z$ as unobserved data. If instead we view $Z$ as additional parameter(s), one could say that its prior is implicit in (5.3.2). However, in any event, supplying an (additional) prior for $Z$ will lead to incorrect formulas.

An Example. Suppose that we are given DNA sequence data $\mathfrak{D}$ from $n$ individuals from the same species. Assume that $\mathfrak{D}$ depends only on the DNA sequence of the most recent common ancestor (MRCA) of the $n$ individuals and the mutation rate on the pedigree that connects the $n$ individuals with their MRCA. Assume that there are no repeat mutations at the same site in the pedigree and let $X$ be the number of DNA sites in the sample that are polymorphic; that is, at which there is more than one base in the $n$ sequences.

Then, under reasonable assumptions about DNA mutation, including the assumption that the DNA sequences are not subject to Darwinian selection at the polymorphic sites, the likelihood $L(X \mid \theta)$ for the number of polymorphic sites $X$ is Poisson with mean $\theta \operatorname{Len}(Z)$, where $Z$ is the unobserved pedigree of the $n$ individuals since their MRCA, $\operatorname{Len}(Z)$ is the total length of the pedigree $Z$, and $\theta$ is a scaled mutation rate. Given these assumptions and the pedigree $Z$, the number of polymorphic sites is Poisson with a mean proportion to the total length of the pedigree, so that

$$
\begin{equation*}
L(X \mid \theta)=\int_{z} L_{P}(X, \theta \operatorname{Len}(z)) g(z) d z \tag{5.3.6}
\end{equation*}
$$

where $L_{P}(X, A)$ in (5.3.6) is the Poisson likelihood (see (5.5.1) below) with mean $A$. The integral $g(z) d z$ is the integral over all possible pedigrees of a sample of $n$ individuals. This is very complex, but is easy to simulate using Kingman's coalescent algorithm.

If we could observe $Z$, then we could use the much simpler likelihood $L_{P}(X, \theta \operatorname{Len}(Z))$. While $Z$ is not known, we can consider it as a hidden variable with joint likelihood

$$
L(X, Z \mid \theta)=L_{P}(X, \theta \operatorname{Len}(Z)) g(Z)
$$

and joint posterior density

$$
\begin{equation*}
\pi_{1}(\theta, Z \mid X)=L_{P}(X, \theta \operatorname{Len}(Z)) g(Z) \pi_{0}(\theta) \tag{5.3.7}
\end{equation*}
$$

by Lemma 5.3.1. Since Poisson random variables are easy to simulate, we have Gibbs-sampler updates for both $\theta$ and $Z$ and hence an estimation procedure for $\theta$ given the number of polymorphic sites $X$.
5.4. Sampling from the prior. Given the form of the distribution $g(\theta)=$ $\pi_{0}(\theta) L(X \mid \theta)$ in (5.1.4), a plausible choice for updating $\theta$ in the MH algorithm might be the proposal function

$$
\begin{equation*}
q(\theta, y)=\pi_{0}(y) \tag{5.4.1}
\end{equation*}
$$

This is independence sampling from the prior distribution for $\theta$ (where we now assume $\int \pi_{0}(\theta) d \theta=1$ ). The acceptance function (5.1.4) becomes

$$
a(\theta, y)=\min \left\{1, \frac{g(y) / q(y)}{g(\theta) / q(\theta)}\right\}=\min \left\{1, \frac{L(X \mid y)}{L(X \mid \theta)}\right\}
$$

This nicely separates the effect of the prior distribution $\pi_{0}(\theta)$ and likelihood $L(X \mid \theta)$ on the Markov chain $X_{n}$. However, (5.4.1) is rarely useful since it does not take into account the nature of the model $L(X, \theta)$.
5.5. Conjugate priors. The joint density $\pi_{0}(\theta) L(X \mid \theta)$ takes a simple form in many important cases in statistics. For example, suppose that $X$ has a Poisson distribution with mean $\theta$, so that the likelihood is

$$
\begin{equation*}
L(X \mid \theta)=e^{-\theta} \frac{\theta^{X}}{X!}, \quad X=0,1,2,3, \ldots \tag{5.5.1}
\end{equation*}
$$

Suppose that we choose a gamma density with parameters $(\alpha, \beta)$ for the prior density $\pi_{0}(\theta)$ :

$$
\begin{equation*}
\pi_{0}(\theta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta \theta}, \quad 0 \leq \theta<\infty \tag{5.5.2}
\end{equation*}
$$

We can write $\pi_{0}(\theta) \approx \mathcal{G}(\alpha, \beta)$ symbolically. Then the posterior density

$$
\begin{aligned}
\pi_{1}(\theta \mid X) & =C_{X} \pi_{0}(\theta) L(X \mid \theta)=C_{X} \theta^{\alpha-1} e^{-\beta \theta} e^{-\theta} \theta^{X} \\
& =C_{X}(\alpha, \beta) \theta^{X+\alpha-1} e^{-(1+\beta) \theta}
\end{aligned}
$$

is also a gamma distribution. Symbolically

$$
\pi_{1}(\theta)=\pi(\theta \mid X) \approx \mathcal{G}(\alpha+X, \beta+1)
$$

In particular, if $L(X \mid \theta)$ is the Poisson likelihood (5.5.1) and $\pi_{0}(\theta)$ is the gamma density (5.5.2), then the posterior density $\pi_{1}(\theta)$ is a gamma density with different parameters.

When this happens for an arbitrary family of densities (here, the gamma densities (5.5.2) ), we say that family of densities is a conjugate prior for the likelihood, here for the Poisson likelihood (5.5.1). Colloquially, we say that the family of gamma densities is a conjugate prior for Poisson sampling. There are only a few cases where conjugate priors for likelihoods are known, but they cover many of the most important distributions in statistics (see e.g. DeGroot 1989, Chapter 6).

As a second example, suppose that $\pi_{0}(\theta)$ is the beta density

$$
\begin{equation*}
\pi_{0}(\theta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1} \quad \text { for } \quad 0 \leq \theta \leq 1 \tag{5.5.3}
\end{equation*}
$$

(Symbolically, $\pi_{0}(\theta) \approx \mathcal{B}(\alpha, \beta)$.) If we toss a biased coin $n$ times with probability of heads $\operatorname{Pr}(H)=\theta$ and observe $X=k$ heads in a particular order, then the joint density of $(\theta, X)$ is

$$
\pi_{0}(\theta)\binom{n}{X} \theta^{X}(1-\theta)^{n-X}=C(\alpha, \beta, n, X) \theta^{X+\alpha-1}(1-\theta)^{n-X+\beta-1}
$$

Thus $\pi_{1}(\theta \mid X) \approx \mathcal{B}(\alpha+X, \beta+n-X)$. This means that the family of beta densities is a conjugate prior for binomial sampling.

It follows from a similar argument that the family of Dirichlet densities

$$
\begin{equation*}
\pi_{0}(\theta)=\frac{\Gamma(\alpha)}{\prod_{i=1}^{d} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{d} \theta_{i}^{\alpha_{i}-1}, \quad \alpha_{i}>0, \quad \sum_{i=1} \alpha_{i}=\alpha \tag{5.5.4}
\end{equation*}
$$

where $\theta=\left(\theta_{1}, \ldots, \theta_{d}\right)$ with $\theta_{i}>0$ and $\sum_{i=1}^{d} \theta_{i}=1$ is a conjugate prior for multinomial sampling:

$$
\begin{equation*}
\operatorname{Pr}(X=i \mid \theta)=\theta_{i}, \quad X \in\{1,2, \ldots, d\} \tag{5.5.5}
\end{equation*}
$$

(Exercise: Prove that (5.5.4) is a conjugate prior for the likelihood (5.5.5)).
The advantage of conjugate priors in the MH algorithm is that if one knows how to generate independent random variates $\theta_{n}$ efficiently from the
prior famility (for example, the gamma density (5.5.1) or the beta density (5.5.3)), then one can do Monte Carlo sampling from the posterior density for any observed $X$.

This means that we always have available at least one numerically efficient candidate for MH sampling. If $\theta$ is one part of a larger parameter vector and the prior family is the conditional distribution, this would be a Gibbs sampler step. Efficient methods are available for simulating independent random variables with arbitrary gamma, beta, normal, uniform, and exponential distributions. See for example Devroye (1986), Press et al. (1992), and Fishman (1995) in the references.
5.6. "Improper" priors and quasi-stability. An alternative justification of Bayesian methods can be given as follows. Given a statistical model and data $X$, the likelihood $L(X \mid \theta)$ should give most of our information about $\theta$. Classical (non-Bayesian) statistical methods are often based on the Maximum Likelihood Estimator (MLE) of $\theta$, which is that value $\widehat{\theta}=\widehat{\theta}(X)$ at which $L(\theta, X)$ attains its maximum value over $\theta$.

An alternative approach might be to consider the measure $L(\theta, X) d \theta$ instead and ask where most of the mass of this measure is concentrated. This leads to the measure

$$
\begin{equation*}
\pi_{2}(\theta) d \theta=\pi_{2}(\theta \mid X) d \theta=L(X \mid \theta) d \theta \tag{5.6.1}
\end{equation*}
$$

instead of $\pi_{1}(\theta)=\pi_{1}(\theta \mid X)$. The measure $\pi_{2}(\theta) d \theta$ is called the "Bayesian posterior with uniform improper prior" if $\int_{X} d \theta=\infty$ and "with uniform (proper) prior" if $\int_{X} d \theta<\infty$ (within the normalization constant $\int_{X} d \theta$ ). In general, MCMC in the sense of

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} F\left(X_{k}\right)=\int_{X} F(\theta) \pi_{2}(\theta) d \theta \quad \text { a.s. }
$$

will fail if

$$
\begin{equation*}
\int \pi_{2}(\theta) d \theta=\int L(X \mid \theta) d \theta=\infty \tag{5.6.2}
\end{equation*}
$$

If $X_{n}$ is ergodic, (5.6.2) implies that $X_{n}$ is null recurrent with

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} F\left(X_{k}\right)=0 \quad \text { a.s. } \tag{5.6.3}
\end{equation*}
$$

whenever $\int|F(\theta)| \pi_{2}(\theta) d \theta<\infty$. When this happens, the Markov chain $X_{n}$ is said to "converge to infinity".

If in fact (5.6.2) is the case, then any estimator of a function of $\theta$ based on Bayesian methods can be considered to be an artifact of the prior $\pi_{0}(\theta)$, since the closer that the prior $\pi_{0}(\theta)$ is to the "uniform improper prior" $\pi_{0}(\theta)=1$, the closer that the estimator is to the situation (5.6.3). Note that (5.6.3) implies that median estimators of $\theta$ are infinite as well as mean-based estimators. However, it is still possible for a well-behaved classical MLE $\widehat{\theta}(X)$ to exist.

An argument against the improper prior (5.6.1) or against uniform priors in general is that " $d \theta$ " in (5.6.1) is not invariant under changes of variable unless it is a discrete measure. For example, if $\psi=\theta^{2}$, then $\theta=\sqrt{\psi}$ and $L(\theta) d \theta=L(\psi) d \psi / 2 \sqrt{\psi}$. Then the "natural" measure $d \theta$ has been changed to $d \psi / 2 \sqrt{\psi}$. This problem does not arise with the posterior distribution $\pi_{1}(\theta)=$ $\pi_{0}(\theta) L(X \mid \theta)$ as long as one views the prior and posterior distributions $\pi_{0}(d \theta)$ and $\pi_{1}(d \theta)$ as measures instead of as functions.

Of course, the strongest argument against an improper prior (5.6.1) with (5.6.2) is (5.6.3). In that case, if $n$ is sufficiently large, all parameter values estimated by the sample-path averages (5.6.3) will be zero.

It often happens in practice that (5.6.3) appears to converges to reasonable values for most components of a high-dimensional $X_{n}$ with an improper prior. This is because the components of $X_{n}$ often converge on different time scales. That is, some component or components of $X_{n}$ converge to infinity, but other components are nearly independent of the first set of components, and adjust themselves to the first set of components in a fast enough time scale that the averages (5.6.3) give stable reasonable estimates for those components. Phenomena of this sort are called quasi-stability.

A related problem is that an improper prior for one component, for which the likelihood is obviously integrable without a normalizable prior distribution, can mysteriously lead to unstable behavior in other components even for other components with normalized priors. This is another aspect of quasi-stability.

## Appendix. Ergodic theory and random mixtures.

A.1. Ergodic theorems. As before, let $X_{n}$ be a Markov chain with state space $X \subseteq R^{d}$ defined on a state space $X$. Assume (i) $\pi(x) d x$ is a stationary probability measure for a transition function $p(x, d y)$ of $X_{n}$, (ii) $X_{n}=X_{n}(\omega)$ are $X$-valued random variables on a probability space $(\Omega, \mathcal{F}, P)$, and (iii) $X_{0}$ has distribution $\pi(x) d x$. Then by induction

$$
\begin{equation*}
E\left(f\left(X_{n}\right)\right)=\int_{X} f(y) \int_{X} \pi(x) p^{n}(x, d y) d x=\int_{X} f(y) \pi(y) d y=E\left(f\left(X_{0}\right)\right) \tag{A.1}
\end{equation*}
$$

for measurable $f(y) \geq 0$, so that $X_{n}$ also has distribution $\pi(x) d x$. The Birkhoff ergodic theorem (see below for the exact statement and references) implies that if $\int_{X}|f(y)| \pi(y) d y<\infty$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f\left(X_{0}(\omega)\right)+f\left(X_{1}(\omega)\right)+\cdots+f\left(X_{n-1}(\omega)\right)}{n}=g(\omega) \text { a.s. } P(d \omega) \tag{A.2}
\end{equation*}
$$

Here in the following, a.s. ("almost surely") and a.e. ("almost everywhere") mean with the exception of a set of probability or measure zero.

The Markov chain $X_{n}$ is called ergodic if the limiting random variable $g(\omega)$ in (A.2) is always constant. In that case, $g(\omega)=E(f)=$ $\int_{X} f(y) \pi(y) d y$ a.s.

To obtain more information about the limiting random variable $g(\omega)$, we need more information about the probability space $(\Omega, \mathcal{F} P)$. By the Kolmogorov consistency theorem (Kolmogorov 1950, Chung 2001), it is sufficient to assume that that $\Omega$ is the infinite product space

$$
\begin{equation*}
\Omega=X^{\infty}=\left\{\omega: \omega=\left(x_{0}, x_{1}, x_{2}, \ldots\right)\right\} \tag{A.3}
\end{equation*}
$$

with $X_{n}(\omega)=x_{n} \in X$ and $\mathcal{F}=\mathcal{B}\left(X_{1}, X_{2}, \ldots\right)$. That is, $X_{n}$ are the coordinate functions on $\Omega$ and $\mathcal{F}$ is the smallest $\sigma$-algebra of subsets of $\Omega$ for which the coordinate functions are measurable.

Given $\Omega$ in (A.3), we define the unilateral shift

$$
\theta\left(\left(x_{0}, x_{1}, x_{2}, \ldots\right)\right)=\left(x_{1}, x_{2}, x_{3}, \ldots\right)
$$

for $\omega \in \Omega$. Note that this implies $X_{1}(\omega)=X_{0}(\theta(\omega))$ and, by induction, $X_{n}(\omega)=X_{0}\left(\theta^{n}(\omega)\right)$ for $n \geq 0$.

The random variables $X_{0}(\omega)$ and $X_{n}(\omega)$ have the same probability distribution by (A.1). More generally, for any measurable set $B \in \mathcal{F}$,

$$
\begin{equation*}
\theta^{-1}(B)=\{\omega: \theta(\omega) \in B\} \in \mathcal{F} \quad \text { and } \quad P\left(\theta^{-1}(B)\right)=P(B) \tag{A.4}
\end{equation*}
$$

In this case, this is equivalent to the condition

$$
\begin{equation*}
\left(X_{0}, X_{1}, \ldots, X_{m}\right) \approx\left(X_{n}, X_{n+1}, \ldots, X_{n+m}\right) \text { for all } m, n \geq 0 \tag{A.5}
\end{equation*}
$$

for the $(m+1)$-dimensional joint distributions, which follows from the fact that $X_{n}$ is a Markov chain with a stationary distribution $\pi(x) d x$.

A mapping $\theta: \Omega \rightarrow \Omega$ for a probability space $(\Omega, \mathcal{F}, P)$ is called a measure-preserving transformation (m.p.t.) $\theta^{-1}(B) \in \mathcal{F}$ for any $B \in \mathcal{F}$ and (A.4) holds. The m.p.t. $\theta(\omega)$ is ergodic if $B=\theta^{-1}(B)$ implies either
$P(B)=0$ or $P(B)=1$. This is equivalent to the condition that if $f(\theta(\omega))=$ $f(\omega)$ a.s., then $f(\omega)=$ const. a.s. (Exercise: Prove the equivalence.)

In general, let $T f(\omega)=f(\theta(\omega))$ for $\mathcal{F}$-measurable functions $f(\omega)$ on $\Omega$. The full statement of the Birkhoff ergodic theorem (Halmos 1956, Garsia 2001) is

Theorem A.1. (Birkhoff Ergodic Theorem) Define $T f(\omega)=f(\theta(\omega))$ as above where $\theta(\omega)$ is an arbitrary measure-preserving transformation on a probability space $(\Omega, \mathcal{F}, P)$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f(\omega)+T f(\omega)+\cdots+T^{n-1} f(\omega)}{n}=g(\omega) \quad \text { a.s. } P(d \omega) \tag{A.6}
\end{equation*}
$$

for any measurable function $f(\omega)$ with $E(|f|)<\infty$.
Corollary A.1. The limiting function $g(\omega)$ in (A.6) satisfies $T g(\omega)=g(\omega)$ a.s. The limit is a.s. constant for all $f \in L^{1}(\Omega, \mathcal{F}, P)$ if and only if $\theta(\omega)$ is ergodic, in which case the limit is $E(f)$.
The operator $T f(\omega)=f(\theta(\omega))$ in Theorem A. 1 satisfies
(i) $f(\omega) \geq 0$ implies $T f(\omega) \geq 0$
(ii) $T 1(\omega)=1$ for $1(\omega) \equiv 1$
(iii) $\int_{\Omega}|T f(\omega)| P(d \omega) \leq \int_{\Omega}|f(\omega)| P(d \omega)$
for all $f \in L^{1}(\Omega, \mathcal{F}, P)$.
If $T f$ is an arbitrary linear operator on $L^{1}(\Omega, \mathcal{F}, P)$ that satisfies (A.7), we say that $T$ is ergodic if $T f(\omega)=f(\omega)$ a.e. implies $f(\omega)$ is a.s. constant on $\Omega$. If $T f(\omega)=f(\theta(\omega))$ for a m.p.t. $\theta(\omega)$, this is equivalent to $\theta(\omega)$ being ergodic.

The Hopf ergodic theorem (Garsia 2001) states that if (A.7) holds for an arbitrary linear operator $T$ on $L^{1}(\Omega, \mathcal{F}, P)$, then the conclusions of Theorem A. 1 also hold.
A.2. The von Neumann ergodic theorem. It follows from interpolation theorems in harmonic analysis (Zygmund 1959) that (A.7) implies

$$
\begin{equation*}
\int_{\Omega} T f(\omega)^{2} P(d \omega) \leq \int_{\Omega} f(\omega)^{2} P(d \omega) \tag{A.8}
\end{equation*}
$$

If $g(\omega)$ is the limiting random variable in (A.6), it follows from Minkowski's inequality and Fatou's theorem that

$$
\begin{equation*}
\int_{\Omega} g(\omega)^{2} P(d \omega) \leq \int_{\Omega} f(\omega)^{2} P(d \omega) \tag{A.9}
\end{equation*}
$$

If $T f=f$, then $T^{n} f=f$ for all $n \geq 0$ by induction and the left-hand side of (A.6) is constant. This implies $f=g$, which of course implies equality in (A.8). A very useful converse is contained in the following:

Theorem A.2. (von Neumann Ergodic Theorem) Let $T$ be a linear operator on a Hilbert space $\mathcal{H}$ such that $\|T f\| \leq\|f\|$ for all $f \in \mathcal{H}$. Then, for any $f \in \mathcal{H}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\frac{f+T f+\cdots+T^{n-1} f}{n}-g\right\|=0 \tag{A.10}
\end{equation*}
$$

for some $g \in \mathcal{H}$. If $\|f\|=\|g\|$, then $T f=f$ and $f=g$.
(Riesz-Nagy 1955, Garsia 2001, Halmos 1956).
If $T$ satisfies the Hopf conditions (A.7), then it follows from the same arguments that one has both almost-sure convergence in (A.6) as well as quadratic-mean convergence (A.10) for $\mathcal{H}=L^{2}(\Omega, \mathcal{F}, P)$. The importance of Theorem A. 2 is the second conclusion: Namely, that if

$$
\int_{\Omega} g(\omega)^{2} P(d \omega)=\int_{\Omega} f(\omega)^{2} P(d \omega)
$$

in (A.6), then one must have had $g(\omega)=f(\omega)$ almost surely and hence $T^{n} f=f$ for all $n \geq 0$.

## A.3. Ergodic families and products of contractions.

A set of measure-preserving transformations $\left\{\theta_{a}(\omega)\right\}$ is called an ergodic family on a measure space $(\Omega, \mathcal{F}, P)$ if, whenever $\theta_{a}(B)=B$ within null sets for all $a$ and some $B \in \mathcal{F}$, then either $P(B)=0$ or $P(B)=1$ (Sawyer 1966; the idea also appears in Riesz-Nagy 1956). A generalization of the Birkhoff ergodic theorem is
Theorem A.3. Let $T=T_{1} T_{2} \ldots T_{m}$ where $T_{a} f(\omega)=f\left(\theta_{a}(\omega)\right)$ where $\left\{\theta_{a}\right.$ : $1 \leq a \leq m\}$ is an ergodic family on $(\Omega, \mathcal{F}, P)$. Then, for any $f \in L^{1}(\Omega, \mathcal{F}, P)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f(\omega)+T f(\omega)+\cdots+T^{n-1} f(\omega)}{n}=E(f) \quad \text { a.s. } P(d \omega) \tag{A.11}
\end{equation*}
$$

Proof. Since $T_{a} f(\omega)=f\left(\theta_{a}(\omega)\right)$ for measure-preserving transformations $\theta_{a}(\omega), T f(\omega)=f(\theta(\omega))$ is of the same form for

$$
\theta(\omega)=\theta_{m}\left(\theta_{m-1}\left(\ldots \theta_{1}(\omega) \ldots\right)\right)
$$

Hence by the Birkhoff ergodic theorem

$$
\lim _{n \rightarrow \infty} \frac{f(\omega)+T f(\omega)+\cdots+T^{n-1} f(\omega)}{n}=g(\omega) \quad \text { a.s. }
$$

for a random variable $g(\omega)$ that satisfies $g(\theta(\omega))=g(\omega)$ a.s. It only remains to show that $g(\omega)$ is a.s. constant.

Since $g(\theta(\omega))=g(\omega)$ a.s., $h(\omega)=\phi(g(\omega))$ for a bounded measurable function $\phi(x)$ also satisfies $h(\theta(\omega))=h(\omega)$ a.s. and hence $T h(\omega)=h(\theta(\omega))=$ $h(\omega)$ a.s. Since $\phi(x)$ is bounded, $h(\omega)$ is also bounded. Hence

$$
\begin{aligned}
E\left(h^{2}\right) & =E\left((T h)^{2}\right)=E\left(\left(\left(T_{1} T_{2} \ldots T_{m-1}\right) T_{m} h\right)^{2}\right) \\
& \leq E\left(\left(T_{m} h\right)^{2}\right) \leq E\left(h^{2}\right)
\end{aligned}
$$

by multiple applications of (A.8). This implies $E\left(\left(T_{m} h\right)^{2}\right)=E\left(h^{2}\right)$ and hence $T_{m} h=h$ a.s. by the von Neumann ergodic theorem (Theorem A.2). By induction, $T_{m} h=T_{m-1} h=\ldots=T_{1} h=h$ a.s. Since $\left\{T_{a}\right\}$ is an ergodic family, $h(\omega)=\phi(g(\omega))=C_{\phi}$ a.s. for all bounded measurable functions $\phi(x)$.

In particular this holds if $\phi(x)=I_{(-\infty, \lambda]}(x)$ for all real $\lambda$, which implies that $I_{(-\infty, \lambda]}(g(\omega))=C(\lambda)$ a.s. For each $\lambda$, either $C(\lambda)=0$ and $g(\omega)>\lambda$ a.s., or else $C(\lambda)=1$ and $g(\omega) \leq \lambda$ a.s. Let $\lambda_{0}=\sup \{r: C(r)=0\}$ for rational $r$. Then $g(\omega)=\lambda_{0}$ a.s., which completes the proof of Theorem A.3.

## A.4. Ergodic families and components-in-sequence MCMC.

We next show how Theorem A. 3 applies to the components-in-sequence MCMC defined in Section 12. In Section 12, $T_{a} f(\omega)$ is the result of a onedimensional Metropolis-Hastings Markov-chain update of the $a^{\text {th }}$ component of $X_{n} \in R^{m}$, treating the remaining components $x_{-a} \in R^{m-1}$ as parameters. The update is defined in such a way that the one-dimensional conditional density $\pi_{i}\left(x_{i}, x_{-i}\right)$ is a stationary measure of the update.

We first show that $T_{a}$ acting on $R^{m}$ has $\pi(x) d x$ as a stationary measure. By definition, $T_{a} f(x)$ is the Markov operator on $R^{1}$ corresponding to the onedimensional transition function $p_{i}\left(x_{i}, x_{-i}, d y\right)$ in (3.5.4). The corresponding transition function on $R^{m}$ is

$$
\begin{equation*}
p_{i}\left(x, x_{i}, d y\right)=p_{i}\left(x_{i}, x_{-i}, y_{i}\right) d y_{i} \delta\left(x_{-i}, d y_{-i}\right) \tag{A.12}
\end{equation*}
$$

for $x \in R^{m}$. Then for measurable $g(x) \geq 0$ on $R^{m}$

$$
\begin{aligned}
\iint g & (y) p_{i}\left(x, x_{-i}, d y\right) \pi(d x) \\
& =\iiint \int g\left(y_{i}, y_{-i}\right) p_{i}\left(x_{i}, x_{-i}, y_{i}\right) d y_{i} \delta\left(x_{-i}, d y_{-i}\right) \pi(d x) d x_{-i} d x_{i} \\
& =\iiint g\left(y_{i}, x_{-i}\right) p_{i}\left(x_{i}, x_{-i}, y_{i}\right) \pi_{i}\left(x_{i} \mid x_{-i}\right) d x_{i} \pi_{i}\left(x_{-i}\right) d x_{-i} d y_{i} \\
& =\iint g\left(y_{i}, x_{-i}\right) \pi_{i}\left(y_{i} \mid x_{-i}\right) \pi_{i}\left(x_{-i}\right) d x_{-i} d y_{i} \\
& =\int g(x) \pi(x) d x
\end{aligned}
$$

This implies that $T_{a}$ is $\pi(x) d x$-preserving on $R^{m}$.
Hence by induction $T=T_{1} T_{2} \ldots T_{m}$ also has $\pi(x) d x$ as a stationary measure. This implies that the limits in (A.11) exist a.s., but does not yet prove that the limits are a.s. constant.

For this, we need to show that the $T_{a}(1 \leq a \leq m)$ form an ergodic family. By assumption, each operator $T_{a} f(x)$ is ergodic in the single variable $x_{a}$ for fixed $x_{-a} \in R^{m-1}$. (We assumed in Section 12 that the acceptance functions $A_{a}(x)>0$ a.s., so that the one-dimensional Metropolis updates are ergodic if the one-dimensional proposals are ergodic.)

If $T_{a} f=f$, it follows from Fubini's theorem, for a.e. $x_{-a} \in R^{m-1}$, that $f(x)$ is a.s. constant in $x_{a}$. It follows by induction that if $T_{a} f=f$ a.s. for $1 \leq a \leq m$, then $f(x)$ is a.s. constant. This completes the proof that $T_{a}(1 \leq a \leq m)$ form an ergodic family on $R^{m}$, and hence completes the proof that Theorem A. 3 applies to the components-in-sequence updates in Section 12.
A.5. Ergodic families and random mixtures. Let $\left\{p_{a}(x, d y): a \in I\right\}$ be set of Markov transition functions on a state space $X$ that have the same stationary measure $\pi(x) d x$. Define a random process $X_{n}$ on $X$ by, at each $n$, choosing a value of $a \in I$ at random with probability $w_{a}>0$ and then $X_{n}$ by

$$
\begin{equation*}
P\left(X_{n+1} \in d y \mid X_{n}=x, a\right)=p_{a}(x, d y) \tag{A.13}
\end{equation*}
$$

Since the values of $a$ are chosen independently with probabilities $w_{a}$ at each $n$, it follows that

$$
\begin{equation*}
P\left(X_{n+1} \in d y \mid X_{n}=x\right)=\sum_{a} w_{a} p_{a}(x, d y) \tag{A.14}
\end{equation*}
$$

The sample paths $\left\{X_{n}(\omega)\right\}$ of the Markov chains defined by (A.14) and implicityly by (A.13) are the same, but (A.13) can be used to define a Markov chain $\left\{\left(X_{n}(\omega), A_{n}(\omega)\right\}\right.$ that also has information about the states $a \in I$.

We consider the Markov chain $X_{n}$ modeled by (A.14) first. Since the right-hand side of (A.14) also has $\pi(x) d x$ as a stationary measure, it follows from Theorem A. 1 that, if $\operatorname{Pr}\left(X_{0} \in d x\right)=\pi(x) d x$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f\left(X_{0}(\omega)\right)+f\left(X_{1}(\omega)\right)+\cdots+f\left(X_{n-1}(\omega)\right)}{n}=g(\omega) \tag{A.15}
\end{equation*}
$$

almost surely for any $f(x)$ with $\int f(y) \pi(y) d y<\infty$. Then
Theorem A.4. Suppose that $\left\{p_{a}(x, d y)\right\}$ is an ergodic family in the sense of Theorem A.3. Then the limit in (A.15) is a.s. constant, and in particular equal to the constant $E(f)=\sum_{a} w_{a} \int f(y) \pi(y) d y$.

Proof. As in Section A.1, it is sufficient to assume that $\Omega=X^{\infty}$ is the infinite product in (A.3) and $X_{n}(\omega)=X_{0}\left(\theta^{n}(\omega)\right)$ where $\theta(\omega)$ is the unilateral shift on $\Omega$. Also, by Corollary A.1, $g(\theta(\omega))=g(\omega)$ a.s.

Similarly, $\phi(g(\theta(\omega)))=\phi(g(\omega))$ a.s. for any bounded measurable function $\phi(x)$. Since $X_{n}$ is Markov with the transition function $p(x, d y)$ in (A.14),

$$
\begin{equation*}
h(x)=E\left(\phi(g) \mid X_{0}=x\right)=\sum_{a} w_{a} \int_{y} h(y) p_{a}(x, d y) \tag{A.16}
\end{equation*}
$$

Now $h(x)$ is bounded because $\phi(g)$ is bounded, and by Cauchy's inequality

$$
\begin{align*}
& \int h(x)^{2} \pi(x) d x=\int\left(\sum_{a} w_{a} \int h(y) p_{a}(x, d y)\right)^{2} \pi(x) d x  \tag{A.17}\\
& \leq \int \sum_{a} w_{a}\left(\int h(y) p_{a}(x, d y)\right)^{2} \pi(x) d x \leq \sum_{a} w_{a} \iint h(y)^{2} p_{a}(x, d y) \pi(x) d x \\
& =\sum_{a} w_{a} \int h(y)^{2} \pi(y) d y=\int h(y)^{2} \pi(y) d y<\infty
\end{align*}
$$

since $\int p_{a}(x, d y) \pi(x) d x=\pi(y) d y$ for all $a$. Thus the inequalities in (A.17) are all equalities, which implies

$$
\begin{equation*}
T_{a} h(x)=\int h(y) p_{a}(x, d y)=h(x) \text { for } \pi(x) d x \text { a.e. } x, \text { all } a \tag{A.18}
\end{equation*}
$$

Hence $h(x)=E\left(\phi(g) \mid X_{0}=x\right)=C(\phi)$ a.e. $\pi(x) d x$, since $p_{a}(x, d y)$ is an ergodic family.

By a similar argument, if $\psi\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ is bounded,

$$
\begin{align*}
& E\left(\psi\left(X_{0}, \ldots, X_{n}\right) \phi(g(\omega))\right)=E\left(\psi\left(X_{0}, \ldots, X_{n}\right) \phi\left(g\left(\theta^{n}(\omega)\right)\right)\right.  \tag{A.19}\\
& =E\left(\psi\left(X_{0}, \ldots, X_{n}\right) E\left(\phi(g) \mid X_{0}=X_{n}\right)\right)=E\left(\psi\left(X_{0}, \ldots, X_{n}\right)\right) C(\phi)
\end{align*}
$$

Since functions of the form $\phi\left(X_{0}, X_{1}, \ldots, X_{n}\right)$ for all $n$ are dense in $L^{2}(\Omega, \mathcal{F}, P)$, it follows from (A.19) that

$$
\begin{equation*}
E\left(\phi(g)^{2}\right)=E(\phi(g)) C(\phi)=E(\phi(g))^{2} \tag{A.20}
\end{equation*}
$$

and $\phi(g(\omega))=C(\phi)$ a.s. for all bounded measurable functions $\phi(x)$. Since we can take $\phi(x)=I_{(-\infty, \lambda]}(x)$ for arbitrary real $\lambda$, we conclude $g(\omega)=C(g)=$ $E(g)=E(f)$ a.s. as in the proof of Theorem A.3. This completes the proof of Theorem A.4.

We can also model the Markov chain $Z_{n}=\left(X_{n}, A_{n}\right)$ formed by the Markov chain $X_{n}$ together with the choice of transition function $A_{n}$ in (A.13). First, we extend the probability space $\Omega$ in (A.3) by setting

$$
\begin{equation*}
\Omega^{e}=\left\{w: w=\left(z_{0}, z_{1}, z_{2}, \ldots\right), \quad z_{i}=\left(x_{i}, a_{i}\right)\right\} \tag{A.21}
\end{equation*}
$$

where $x_{i} \in X$ and $a_{i} \in I$ (Halmos 1956). Define $X_{n}(w)=x_{n}$ and $A_{n}(w)=$ $a_{n}$ as before. The transition function $p\left(z_{1}, d z_{2}\right)$ corresponding to independent choices $A_{n}=a \in I$ in (A.13) is

$$
\begin{equation*}
\operatorname{Pr}\left(X_{n+1} \in d y, A_{n+1}=b \mid X_{n}=x, A_{n}=a\right)=p_{a}(x, d y) w_{b} \tag{A.22}
\end{equation*}
$$

Then $A_{1}, A_{2}, \ldots$ are independent with $\operatorname{Pr}\left(A_{i}=a\right)=w_{a}$, and the conditional distribution of $X_{n+1}$ given $X_{n}$ and $A_{n}=a$ is given by (A.13) or (A.22).

It is easy to check that $\pi(x) d x w_{a}$ is a stationary measure for (A.22), and thus by Theorem A. 1

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f\left(X_{0}, A_{0}\right)(w)+f\left(X_{1}, A_{1}\right)(w)+\cdots+f\left(X_{n-1}, A_{n-1}\right)(w)}{n}=g(w) \tag{A.23}
\end{equation*}
$$

converges a.s. whenever

$$
E\left(\left|f\left(X_{0}, A_{0}\right)\right|\right)=\sum_{a} w_{a} E\left(\left|f\left(X_{0}, a\right)\right|\right)<\infty
$$

Note that the left-hand side of (A.23) depends on $A$ even if $f(x, a)$ does not depend on $a$, since the components $A_{i}$ of $A$ for $i<n$ determine the current value of $X_{n}$. By using similar arguments as in the proof of Theorem A.4, we can show

Theorem A.5. Suppose that $\left\{p_{a}(x, d y)\right\}$ is an ergodic family in the sense of Theorem A. 3 or Theorem A.4. Then the limit in (A.23) is a.s. constant, and in particular equal to the constant $E(f)=\sum_{a} w_{a} C_{a}$ for $C_{a}=$ $\int f(y, a) \pi(y) d y$.
Proof. If we define $\theta(w)$ on $\Omega^{e}$ by $\theta\left(\left(z_{0}, z_{1}, \ldots\right)\right)=\left(z_{1}, z_{2}, \ldots\right)$, then by Corollary A. 1 the limit $g(w)$ in (A.23) satisfies $g(w)=g(\theta(w))$ a.s. Define

$$
h(x, a)=E\left(\phi(g(w)) \mid X_{0}=x, A_{0}=a\right)
$$

as in (A.16) for any bounded real function $\phi(r) \geq 0$. Then $h(x, a)$ is bounded since $\phi(y)$ is bounded, and, since $\phi(g(w))=\phi(g(\theta(w)))$ a.s.,

$$
\begin{align*}
h(x, a) & =\sum_{b} \int_{X} h(y, b) p_{a}(x, d y) w_{b} \\
& =\int_{X} \bar{h}(y) p_{a}(x, d y) \tag{A.24}
\end{align*}
$$

for $\bar{h}(x)=\sum_{a} w_{a} h(x, a)$. Since (A.24) is the same equation as (A.16), we conclude $\bar{h}(x)=C(g, \phi)$ a.s. by arguing as in (A.17)-(A.18), and by arguing as in (A.19)-(A.20) that $g(w)=C(g)=E(g)=E(f)$ a.s. This completes the proof of Theorem A.5.
A.6. Random-components-update MCMC. In Section 12, $T_{a} f(\omega)=$ $f\left(\theta_{a}(\omega)\right)$ is the result of a one-dimensional Metropolis-Hastings Markov-chain update of the $a^{\text {th }}$ component of $X_{n} \in R^{m}$, treating the remaining components $x_{-a} \in R^{m-1}$ as parameters. The update is defined in such a way that the one-dimensional conditional density $\pi_{i}\left(x_{i}, x_{-i}\right)$ is a stationary measure of the update. Random-component-update MCMC is defined by, at each time step, choosing $a$ at random with probability $w_{a}>0$ and applying that update.

This is exactly of the form described in the previous section, so that Theorem A. 4 applies if the set $\left\{\theta_{a}(\omega)\right\}$ is an ergodic family.

If we generalize (A.22) to

$$
\begin{equation*}
\operatorname{Pr}\left(X_{n+1} \in d y, A_{n+1}=b \mid X_{n}=x, A_{n}=a\right)=p_{a}(x, d y) w_{b}(y) \tag{A.19}
\end{equation*}
$$

then the proof of Theorem A. 4 does not carry over, since in general

$$
\sum_{a} \int \pi(x) w_{a}(x) p_{a}(x, d y) d x \neq \pi(y) d y
$$

The arguments in the previous subsection would apply if we chose the $a^{\text {th }}$ block of coordinates (or the $a^{\text {th }}$ coordinate) with probability $w_{a}>0$ and then a particular update of those coordinates with probability $w_{a b}\left(x_{-a}\right)$, since then the update in the $a^{\text {th }}$ block of coordinates would be ergodic by Theorem A.4.

## References.

1. Chib, Siddhartha, and Edward Greenberg (1995) Understanding the Metropolis-Hastings algorithm. American Statistician 49, 327-335.
2. Chen, Ming-Hui, Qi-Man Shao, and J. G. Ibrahim (2000) Monte Carlo methods in Bayesian computation. Springer Series in Statistics, Springer-Verlag.
3. Chung, Kai Lai (2001) A course in probability theory, 3rd edition. Academic Press.
4. DeGroot, M. (1989) Probability and statistics. Addison-Wesley.
5. Devroye, L. (1986) Non-uniform random variate generation. SpringerVerlag, New York.
6. Fishman, George S. (1995) Monte Carlo: Concepts, algorithms, and applications. Springer Series in Operations Research, Springer-Verlag.
7. Garsia, Adriano (1970) Topics in almost everywhere convergence. Markham Publishing.
8. Gelman, A. (1996) Inference and monitoring convergence. Chapter 8 in Gilks et al. (1996).
9. Gelman, A, J. Carlin, H. Stern, and D. Rubin (2003) Bayesian data analysis, 2nd edition. Chapman \& Hall/CRC, Boca Raton.
10. Gilks, W. R., S. Richardson, and D. J. Spiegelhalter (1996) Markov chain Monte Carlo in practice. Chapman \& Hall/CRC, Boca Raton.
11. Halmos, P. R. (1956) Lectures on ergodic theory. Chelsea, New York.
12. Hastings, W. K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97-109.
13. Kolmogorov, A. N. (1950) Foundations of the theory of probability. Chelsea Publishing, New York.
14. Liu, Jun S. (1998) Covariance adjustment for Markov chain Monte Carlo - A general framework and the covariance-adjusted data augmentation algorithm. Technical Report, Bell Laboratories, Lucent Technologies, reference by Chen et al. 2000.
15. Liu, Jun S. (2001) Monte Carlo strategies in scientific computing. Springer Series in Statistics, Springer-Verlag.
16. Liu, J., and C. Sabatti (2000) Generalized Gibbs sampler and multigrid Monte Carlo for Bayesian computation. Biometrika 87 (2), 353-369.
17. Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller (1953) Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087-1092.
18. Von Neumann, J. (1951) Various techniques used in connection with random digits. Monte Carlo Method, Applied Mathematics Series 12, National Bureau of Standards, Washington, D.C.
19. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992) Numerical recipes in C: the art of scientific computing, 2nd edition. Cambridge University Press, Cambridge, England.
20. Riesz, F., and B. Sz.-Nagy (1955) Functional Analysis. Frederick Ungar Publishing, New York.
21. Sawyer, S. A. (1966) Maximal inequalities of weak type. Annals of Math. 84, 157-174.
22. Tierney, L (1994) Markov chains for exploring posterior distributions. Annals of Statistics 22, 1701-1728, with discussion 1728-1762.
23. Zygmund, A. (1959) Trigonometric series. Cambridge University Press.
