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1. Introduction 

The problem of construction of planar Voronoi 
diagrams arises in many areas, one of the most impor- 
tant of which is in nearest neighbor problems. This 
includes clustering [ 141, contour maps [6] and 
(Euclidean) minimum spanning trees [23]. Shamos 
[22] gives several more applications. 

An JZ(N log N) time worst case lower bound can 
be shown for this problem by reducing it to sorting 
[2 11. The challenge is to construct an O(N log N) 
time algorithm. Shamos [213 and Shamos anti Hoey 
[23] describe an O(N log N) time divide-and-conquer 
algorithm for construction of the planar Euclidean 
Voronoi diagram. Lee and Wong [ 161 describe an 
O(N log N) time algorithm for the L1 and L, metrics 
in the plane, and Drysdale pnd Lee [8] present an 
O(N@g N)l/*) t’ rme algorithm for the Voronoi dia- 
gram of N line segments (which they have since im- 
proved to O(N(log N)*) time). Shamos [2 11, Lee and 
Preparata [ 151, and Lipton and Tarjan [ 171 have 
produced fast algorithms for searching a Voronoi dia- 
gram (or any other straight-line planar graph). 

In this paper we describe an O(N log N) time algo- 
rithm for constructing a planar Euclidean Voronoi 
diagram which extends straightforwardly to higher 
dimensions. The fundamental result is that a K-dimen- 
sional Euclidean Voronoi diagram of N points can be 
constructed by transforming the points to K + I-space, 
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constructing the convex hull of the transformed 
points, and then transforming back to K-space. 

Sections 2 through 4 give background material 
which is essential for understanding of the algorithm 
which is given in Section 5. Section 2 describes the 
important features of Voronoi diagrams. Sections 3 
and 4 describe the two major tools used in the algo- 
rithm - convex hulls and the inversion transform. 
Following the planar algorithm of Section 5, we then 
explore fast expected time algorithms and higher 
dimensions. 

2. Definition of planar Voronoi diagrams 

Let S be a set of N planar points. A nearest point 
planar Voronoi diagram of S, as pictured in Fig. 1, is 
a polygonal network of N regions. For each point i 
of S, region i is the set of all points of the plane whit 
are closer to point i than the other N - 1 points of S. 
Thus, given an arbitrary point P in the plane, one can 
determine which of the N points of S is closest to 
by determining which of the N regions contains 
point P. The vertices of these polygonal regions are 
called Voronsipoints and the polygonal bo 
of the regions are called Voronoi polygons. 
Voronoi polygon is bounded, then it is c 
entirely from edges of the Voronoi diagr 
un includes two rays of 

gram is equidistant from the 
are nearest V. This yields a property of Voronoi dia- 
gram5 :vhich is exploited in the algorithm of Section 5. 
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l-g. b. Planar nearest point Voronoi diagram of N points. 

The circle determined by the three nearest neighbors 
entered at V and furthermore will not con- 

tak\ apoy of the other N -. 3 points of S in its interior. 
The, converse is also true: If the circle determined by 
three points of S does not contain any of the N - 3 
ather points of S, then the center of that circle is a 
Voronoi point. The edges of a Voronoi diagram con- 
net t pairs of Voronoi points whose corresponding 
circles meet at two common points of S. The rays 
are determined similarly by one circle from a nearest 
Varcnoi point and one circle from a farthest Voronoi 
point I’described below). 

A farthest point planar Voronoi diagram is also a 
network of polygonal regions. Rut region i is the set 
of all points in the plane which are farther from 
point i tha;l any other point of S. As for the nearest 
point diagram, there is a qet of circles which define 
the Vcronoi points for a farthest point diagram. Each 
farthest point circle passes through three of the N 
points of S but thz interior of a farthest point circle 
contains all of the other N - 3 points rather than 
none of them. I; is important to note that only points 
which b:e vertices of the convex hull of the N points 
of S have nonempty farthest point regions. This is 
because each Voronoi point V of the farthest point 
diagram must be equidistant from the three points 
gf S which are jhthest from V. It is not possible to 
co?struct such a ‘Joronoi point from points of S 
wi’ith are not on the convex hull. 

Since a nearest (farthest) print Vorsnoi diagram is 
a 1 lanar graph, the number of Voronoi points is at 
m,st 2N - 4 and the number of edges is at most 
3% -- 6 for N *> 2 [ 131. Shames [2 1,221 and Shamos 

and Hoey [23] give more information on Voronoi 
diagrams. 

3. Convex hulls 

The convex hull of a set of N points is defined 
(nonconstructively) as the smallest convex set which 
contains all of the points. In the plane this is a con- 
vex polygon of at most N sides. Graham [ 111, 
Preparata ccnd Hong [ 191, and Shamos [22] give 
O(N log N) worst case time algorithms for construct- 
ing the convex E;ul! of N points in the plane. Preparata 
and Hong [ 191 Lave also described an O(N log N) 
time algorithm for finding the convex hull of N points 
in 3-space. However, in four dimensions there is an 
SZ(N*) worst case lower bound because the convex 
hull can have 0(N*) edges [ 12, p.1931. Chand and 
Kapur [S ] describe a convex hull algorithm for an 
arbitrary number of dimensions whose complexity 
has yet to be analyzed. 

4. The inversion transform 

The algorithm makes use of a geometric transform 
called inversion. We will first describe the two-dimen- 
siomll case and then generalize to three (and higher) 
dimensions. For more information on inversion the 
reader is referred to [7]. 

The inversion transform is determined by two 
parameters: 

(1) the center of inversion, and 
(2) the radius of inversion. 

For simplicity of exposition it shall be assumed for 
now that the center of inversion is the origin and that 
the radius of inversion is one. (Furthermore, this sec- 
tion describes inversion in terms of polar coordinates 
rather than Cartesian coordinates to more simply 
illustrate its properties.) If a point P has polar cotirdi- 
nates (R, e), then the inversion transform of P is 

(R, 6) + (l/R, 0). 

Inversion maps a vector in the direction 6 to another 
vector in the same direction but with its magnitude 
‘inverted’. Note that inversion is involutory - appli- 
cation of inversion twice yields the original point. An 
important property of inversion is that a circle which 
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Algorithm for construction of a planar Voronoi 
diagram 
1. 

2. 

Let S be a set of N planar points located in the xy 
plane of 3-space. Pick a point P in 3-space which 
is not in the xy plane. 
Choose any radius of inversion R > 0 and then 
invert the N points of S with respect to point P 
and radius R. Call this new set of N points S’. 

passes through the center of inversion transforms to 
a line which does not pass through the center of inver- 
sion, and vice versa. Furthermore, the interior of the 
circle transforms to one of the half-planes determined 
by that line and the exterior of the circle transforms 
to the other half-plane. The properties of inversion in 
three dimensions are analogous. The transform can 
be expressed in spherical coordinates as 

(R&W(l/RJW. 

This transform is involutory, as in two dimensions, 
and it also transforms any sphere which passes 
through the center of inversion to a pikzne which does 
not pass through the center of inversion. The interior 
of the sphere transforms to a half-space bounded by 
that plane and the exterior of the sphere transforms 
to the other half-space. 

5. Planar Voronoi diagram algorithm 

The tools described in the previous sections are 
here combined to produce an O(N log N) time algo- 
rithm for constructing a Voronoi diagram of a set S 
of N planar points. The algorithm takes advantage of 
the fact that the Voronoi points of the nearest point 
diagram can be represented by a set of circles which 
each 

(i) pass through three of the N points of S, and 
(ii) do not contain any of these N points in the 

interior (Section 2). 
The object is to generate the circles and determine 
which pairs of circles correspond to edges of the dia- 
gram. All of this information is readily obtained from 
the convex hull of a set of points S’ which is gener- 
ated by applying inversion to the N points of S. 
Furthermore, the circles which define the farthest 
point diagram can be obtained from the same convex 
hull. 

3. 

4. 

5. 

6. 

Cc:&uct the convex hull of the points in S’ in 
O(“: log N) time (by the algorithm of Preparnta 
and Hong [19]). All N of the points of S’&$ll be 
on the convex hull because inversion about P 
maps all points of the xy plane to a sphere with P 
at ::he apex (Fig. 2). 
Comment: The convex hull has only O(N) faces 
Fi and edges Eii because a planar graph of N > 2 
vertices has at most 2N - 4 regions (faces) and at 
most 3N - 6 edges [ 131. Each of the O(N) faces 
corresponds to a Voronoi point of either the near- 
est or farthest point Voronoi diagram. Each of the 
O(N) edges corresponds to an edge (or ray) of the 
nearest or farthest point Voronoi diagram. 
Each of the O(N) faces Fi of the convex hull 
determines a plane in 3-space. Invert these planes 
(with respect to center of inversion P and radius R.) 
obtaining O(N) spheres which intersect the xy 
plane in O(N) circles. The centers of these circles 
are the Voronoi points Vi. To distinguish nearest 
and farthest Voronoi points perform the followfing 
simple test: 

For each face Fi (corresponding to Voronoi 
point Vi) associate the half-space Hi which con- 
tains the convex hull and whose boundary plane 
contains face Fi- If half-space Hi contains point P, 
then Vi is a Voronoi point of the nearest point 
Voronoi diagram. Otherwise, Vi is a Voronoi 
point of the farthest point diagram. 
To construct the diagram one needs to know how 
to connect the Voronoi points with line segments 
and how to construct the rays bounding the 
infinite Voronoi regions. This is simple because 
each edge Eii of the convex hull corresponds to an 
edge (or ray) of the nearest or farthest point dia- 
gram, and vice versa. The only problem is to deter- 
mine for each edge Eij whether it ccrresponds to a 
segment of the nearest point diagram, a segment 
of the farthest point diagram, or a ray (for both 
diagrams). Let Fi and Fi be the faces boundmg 
edge Eij of the convex hull and let Vi and Vj be 
the corresponding Voronoi points. 
If Vi and Vj are both nearest Voronoi points, then 
there is a line segment connecting Vi and Vj in the 
nearest point diagram. 
If Vi and Vj are both farthest Vortinoi points, then 
there is a line segment connecting Vi and Vj in the 
farthest point diagram. 
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Fig. 2. Planar Voronoi diagram and corresponding convex hull. 

m If Vi is a closest Voronoi point and Vi is a farthest 
Voronsi point, then Vi and Vj determine a ray in 
both the nearest and farthest point Voronoi dia- 
grams. The points Vi and Vj determine a line, and 
the desired ray for the nearest point Voronoi dia- 
gram is the part of that line which starts at point 
Vi and does not include point Vj. The ray starting 
at point Vj whkh does not include point Vi is for 
the farthest point Voronoi diagram. 

Although it is clear that the above algorithm 
requires only O(N log N) time and O(N) stor:.!ge, it is 
nor immediately obvious that it actually constructs 
the nearest (or farthest) point Voronoi diagram. It 
remains to be explained 

(1) why the centers of the circles (generated in 
Step 5 above) are the Voronoi points and 

(2) why the connection rules (Step 6) for Voronoi 
points work. . 

‘W will now outline the proof for the case of the 
nearest point diagram. The argument for the farthest 

(lint diagram is similar. 
To prove that the circles generated in Step 5 are 

centered at the Voronoi points it is sufficient to show 

(a) these circles each pass through three of the N 

ontain any of the otae;’ N - 3 points 
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Part (a) follows from the fact that inversion is 
involutory (Section 4). Fart (b) is shown by contra- 
diction: If the circle passing through points A, B 
and C of S contains another point Q E S in its interior, 
then the convex hull of the transformed points S’ 
will not contain a (nearest Voronoi point) face 
A’B’C’ because of the presetlce of point Q’. To prove 
that Step 5 generates all of the Voronoi points we 
simply use the reverse argument. If Vi is a Voronoi 
point, then the sphere defining the circle for Vi trans- 
forms (by inversion) to a plane containing a face of 
the convex hull of S’. 

Step 6 of the algorithm obtains the edges of the 
Voronoi diagram directly from the edges of the 
(three-dimensional) convex hull. An edge Eij of the 
convex hull which separates (nearest point) faces Fi 
and Fj maps to a line segment between Voronoi 
points Vi and Vj. But the circles corresponding to 
Voronoi points Vi and Vj meet at two of the N points 
of S because the corresponding faces Fi and Fi share 
an edge Eii. This is exactly the characterization given 
for edges of the Voronoi diagram in Section 2. Sim- 
ilarly, the rays are determined by edges Eij where Vi 
is a nearest Voronoi point and Vj is a farthest Voronoi 
point (or vice versa). In this case, too, the circles cor- 
responding to Vi and Vj meet at two of the N points 
of S. Thus, since the Voronoi points and edges (and 
rays) connecting the Voronoi points are correctly 
generated by the above algorithm, the Voronoi dia- 
gram is constructed in O(N log N) time. 
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6. Fast expecteal-time algorithms 

The most expensive part of the a.l,gorithm for con- 
struction of a Voronoi diagram is the construction of 
the convex hull. Thus, if the convex hull can be con- 
structed in fast expected time, then the Voronoi dia- 
gram can be constructed in fist expected time. How- 
ever, the O(N) expected time algorithms of Bentley 
and Shamos [ 11, Eddy [9] or Floyd [lo] do not 
apply because their result depends on a sublinear 
expected number of points on the convex hull, and 
for the Voronoi diagram algorithm there are always 
N vertices on the convex hull. 

Bentley, Weide and Yao [2], on the other hap.d, 
describe how a planar Voronoi diagram can be con- 
structed in linear expected time. The only condition 
is that the probability density of the underlying dis- 
tribution must be bounded above and below by 
(nonzero) constants. The algorithm does not make 
use of inversion. instead, it applies an extension of 
Weide’s [24] technique for an O(N) expected time 
sort to the planar Voronoi diagram problem. 

‘7. Higher dimensions 

The K-dimensional Voronoi diagram algorithm is 
an extension of the planar algorithm. One first em- 
beds the N K-dimensional points of S in K + l-space 
and then inverts them to N K + l-dimensional points 
S’. The convex hull of S’ is constructed and th?n the 
Voronoi diagram is obtained by transforming the 
parts of the convex hull back to K-space. The trans- 
form back to K-space first inverts each hyperface of 
the convex hull to obtain a set of K + l-spheres 
whose intersection with K-space is a set of K-spheres. 
These K-spheres each pass through K + 1 points of S 
and are centered at the Voronoi points. The other 
components of the K-dimensional Voronoi diagram 
are obtained by connection rules similar to those in 
Step 6 of the algorithm in Section 5. For example, if 
the K-sphere for Voronoi point Vi passes through K 
of the i( t 1 points determining the K-sphere for 
Voronoi point Vj, then a l-dimensional edge is drawn 
betwe<,n Vi and Vj. If the spheres for a set of three or 
more Voronoi points share K - 1 points of S, then a 
2-dimensional edge is drawn between the Voronoi 
points of that set. (A 2-dimensional edge between L 

points is a convex polygon with L vertices.) The rules 
for three alld higher dimensional edges are similar. 
The time complexity of the K-dimensional Voronoi 
diagram algorithm is dominated by the time to con- 
struct a K + I-dime*lsional convex hull of N points. 
In particular, a Voronoi diagram in 3-space cofre- 
sponds to a convex hull in 4-space, which may have 
Q(N*) edges (Section 3). Preparata’s sl(N*) worst 
case lower bound for the 3-dimensional Voronoi dia- 
gram [ 181 is thus not unexpected. 

8. Conclusion 

The use of a geometric transform has been shown 
to be very useful f. _ c+ construction of a fast algorithm 
for generating a planar Voronoi diagram. Geometric 
transforms enable fast algorithms for other geometric 
problems also. The intersection of N half-spaces in E3 
can be constructed in O(N log N) time +:hrough use of 
a duality transform between points and planes [3,20, 
251. The Euclidean diameter of a set of N points in 
3-spasm can be determined in O(N log N) time through 
use of the same duality transform applied to a convex 
hl;ll 141. The union of a set of N arbitrary planar 
Arcles can be constructed in O(N log N) time by 
using inversion to transform the circles to a set of N 
half&spaces which are then intersected in O(N log N) 
time. Geometric transforms are becoming a powerful 
tool in the construction of geometric algorithms. 
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