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Convex hull

P conv(P)

Smallest convex set that contains a finite set of points P
Set of all possible convex combinations of points in P∑

λipi , λi ≥ 0,
∑

i λi = 1

We call polytope the convex hull of a finite set of points
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Simplex

The convex hull of k + 1 points that are affinely independent is
called a k -simplex

1-simplex = line segment
2-simplex = triangle
3-simplex = tetrahedron
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Facial structure of a polytope

Supporting hyperplane
H ∩ C 6= ∅ and C is entirely contained in one of
the two half-spaces defined by H

Faces

The faces of a P are the polytopes P ∩ h, h support. hyp.

The face complex

The faces of P form a cell complex C

I ∀f ∈ C, f is a convex polytope
I f ∈ C, f ⊂ g ⇒ g ∈ C
I ∀f ,g ∈ C, either f ∩ g = ∅ or f ∩ g ∈ C
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General position

A point set P is said to be in general position iff no subset of
k + 2 points lie in a k -flat

If P is in general position, all the faces of conv(P) are simplices

The boundary of conv(P) is a simplicial complex

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations



Two ways of defining polyhedra

Convex hull of n points

Intersection of n half-spaces
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Duality between points and hyperplanes

hyperplane h : xd = a · x ′ − b of Rd −→ point h∗ = (a, b) ∈ Rd

point p = (p′, pd) ∈ Rd −→ hyperplane p∗ ⊂ Rd

= {(a, b) ∈ Rd : b = p′ · a− pd}

The mapping ∗

I preserves incidences :

p ∈ h ⇐⇒ pd = a · p′ − b ⇐⇒ b = p′ · a− pd ⇐⇒ h∗ ∈ p∗

p ∈ h+ ⇐⇒ pd > a · p′ − b ⇐⇒ b > p′ · a− pd ⇐⇒ h∗ ∈ p∗+

I is an involution and thus is bijective : h∗∗ = h and p∗∗ = p

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations



Duality between polytopes
Let h1, . . . ,hn be n hyperplanes de Rd and let P = ∩h+

i

ss

h1
h2 *

h3

h∗3

h∗2

h∗1

A vertex s of P is t̄he intersection of k ≥ d hyperplanes h1, . . . ,hk
lying above all the other hyperplanes

=⇒ s∗ is a hyperplane 3 h∗1 , . . . ,h
∗
k

supporting P∗=conv−(h∗1 , . . . ,h
∗
k )

General position :
s is the intersection of d hyperplanes

=⇒ s∗ is a (d − 1)-face (simplex) de P∗
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More generally and under the general position assumption,
if f is a (d − k)-face of P, f = ∩k

i=1hi

p ∈ f ⇔ h∗i ∈ p∗ for i = 1, . . . , k

h∗i ∈ p∗+ for i = k + 1, . . . , n

⇔ p∗support. hyp. of P∗ = conv(h∗1 , . . . , h
∗
n )

3 h∗1 , . . . , h
∗
k

⇔ f ∗ = conv(h∗1 , . . . , h
∗
k ) is a (k − 1)− face of P∗

Duality between P and P∗

I We have defined an involutive correspondence between
the faces of P and P∗ s.t. ∀f ,g ∈ P, f ⊂ g ⇒ g∗ ⊂ f ∗

I As a consequence, computing P reduces to computing a
lower convex hull
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Euler’s formula
The numbers of vertices s, edges a and facets f of a polytope
of R3 satisfy

s − a + f = 2

Schlegel diagram

s = s′
a′ = a + 1
f ′ = f + 1

a′ = a + 1
f ′ = f

s′ = s + 1
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Euler formula : s − a + f = 2

Incidences edges-facets

2a ≥ 3f =⇒ a ≤ 3s − 6
f ≤ 2s − 4

with equality when all facet are triangles
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Beyond the 3rd dimension
Upper bound theorem [McMullen 1970]

If P is the intersection of n half-spaces of Rd

nb faces of P = Θ(nb d
2 c)

General position

all vertices of P are incident to d edges (in the worst-case) and
have distinct xd

⇒ the convex hull of k < d edges incident to a vertex p is a
k -face of P

⇒ any k -face is the intersection of d − k hyperplanes defining
P
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Proof of the upper bound th.

1. ≥ dd
2 e edges incident to a vertex p are in h+

p : xd ≥ xd (p)
or in h−p
⇒ p is a xd -max or xd -min vertex of at least one d d

2 e-face of P
⇒ # vertices of P ≤ 2×# d d

2 e-faces of P

2. A k -face is the intersection of d − k hyperplanes defining P

⇒ # k -faces =

(
n

d − k

)
= O(nd−k )

⇒ # d d
2 e-faces = O(nb

d
2 c)

3. The number of faces incident to p depends on d but not on
n
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Representation of a convex hull

Adjacency graph (AG) of the facets

In general position, all the facets are (d − 1)-simplexes

Vertex
Face* v face

Face
Vertex* vertex [d ]
Face* neighbor [d ]

i

f

neighbor(ccw(i))

cw(i)

neighbor(i) ccw(i)
neighbor(cw(i))
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Incremental algorithm

Pi : set of the i points that have been
inserted first

conv(Pi) : convex hull at step i
O

pi

conv(Ei)

e

s

t

f = [p1, ...,pd ] is a red facet iff its supporting hyperplane
separates pi from conv(Pi)

⇐⇒ orient(p1, ...,pd ,pi)× orient(p1, ...,pd ,O) < 0

orient(p0,p1, ...,pd ) =

∣∣∣∣∣∣∣∣
1 1 ... 1
x0 x1 ... xd
y0 y1 ... yd
z0 z1 ... zd

∣∣∣∣∣∣∣∣
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Update of conv(Pi)

I Locate : traverse AG to find
the red facets and the
(d − 2)-faces on the horizon V

I Update: replace the red facets
by the facets conv(pi ,e), e ∈ V

O

pi

conv(Ei)

e

s

t

Correctness

I The AG of the red facets is connected
I The new faces are all obtained as above
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Complexity analysis
I update proportionnal to the number of

red facets

I # new facets = O(nb
d−1

2 c)

I fast locate : insert the points in
lexicographic order and attach a facet to
each point

O

pi

conv(Ei)

e

s

t

T (n,d) = O(n log n) +
∑n

i=1 |conv(i ,d − 1)|
= O(n log n + n × nb d−1

2 c) = O(n log n + nb d+1
2 c)

Optimal in even dimensions

Can be improved to O(n log n) when d = 3

The expected complexity can be improved to O(n log n + nb d
2 c) by

inserting the points in random order (see course 3)

The randomized algorithm can be derandomized [Chazelle 1992]
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Delaunay Triangulations
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Simplex

The convex hull of k + 1 points that are affinely independent is
called a k -simplex

1-simplex = line segment, 2-simplex = triangle,
3-simplex = tetrahedron

Simplicial complex

A finite collection of simplices C called the faces of C such that

I ∀f ∈ C, f is a simplex
I f ∈ C, f ⊂ g ⇒ g ∈ C
I ∀f ,g ∈ C, either f ∩ g = ∅ or f ∩ g ∈ C
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Triangulation of a finite set of points

A triangulation T (P) of a finite set of points P ∈ Rd is a
d-simplicial complex whose vertices are the points of P and
whose domain is conv(P)

There exists many triangulations of a given set of points
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Delaunay triangulation

P = {p1,p2 . . . pn} set of points in general
position (6 ∃ d + 1 points on a same sphere)

t ⊂ P is a Delaunay simplex iff ∃ a sphere σt
s.t.

σt (p) = 0 ∀p ∈ t
σt (q) > 0 ∀q ∈ P \ t

Delaunay theorem
The Delaunay simplices form a triangulation
of P, called the Delaunay triangulation of P
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Proof of the theorem

σ

h(σ)

P

Linearization
σ(x) = x2 − 2c · x + s, s = c2 − r2

σ(x) < 0⇔
{

z < 2c · x + s (h−σ )
z = x2 (P)

⇔ x̂ = (x , x2) ∈ h−σ

Proof of Delaunay’s th.
t a simplex, σt its circumscribing sphere

t ∈ Del(P)⇔ ∀i , p̂i ∈ h+
σt

⇔ t̂ is a face of conv−(P̂)

Del(P) = proj(conv−(P̂))
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Combinatorial complexity

The combinatorial complexity of the Delaunay triangulation
diagram of n points of Rd is the same as the combinatorial
complexity of a convex hull of n points of Rd+1

Hence, by the Upper Bound Theorem [Mc Mullen 1970]

it is Θ
(

nb
d+1

2 c
)
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Algorithm for constructing DT
Input : a set P of n points of Rd

1 Lift the points of P onto the paraboloid xd+1 = x2 of Rd+1:
pi → p̂i = (pi ,p2

i )

2 Compute conv({p̂i})
3 Project the lower hull conv−({p̂i}) onto Rd

Complexity : Θ(n log n + nb
d+1

2 c)

Main predicate

p0

p1
p2

p4

insphere(p0, . . . ,pd+1) = orient(p̂0, . . . , p̂d+1)

= sign

∣∣∣∣∣∣
1 . . . 1
p0 . . . pd+1
p2

0 . . . p2
d+1

∣∣∣∣∣∣
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Local characterization

f
q1 q2

σ1

σ2

Pair of regular simplices

σ2(q1) ≥ 0 and σ1(q2) ≥ 0

⇔ ĉ1 ∈ h+
σ2

and ĉ2 ∈ h+
σ1

Theorem
A triangulation such that all pairs of simplexes are regular is a
Delaunay triangulation

Proof
The PL function whose graph is obtained by lifting the triangles is
locally convex and has a convex support
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Optimality properties of the Delaunay triangulation

Among all possible triangulations of P, Del(P)

1. maximizes the smallest angle (in the plane) [Lawson]

2. minimizes the radius of the maximal smallest ball
enclosing a simplex ) [Rajan]

3. minimizes the roughness (Dirichlet’s energy) [Rippa]
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Optimizing the angular vector (d = 2)

Angular vector of a triangulation T (P)

ang (T (P)) = (α1, . . . , α3t ), α1 ≤ . . . ≤ α3t

Optimality

Any triangulation of a given point set P whose angular vector is
maximal (for lexicographic order) is a Delaunay triangulation of
P

Affects matrix conditioning in FE methods

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations



Constructive proof using flips

a

b

c

d

a

b

d

c

t3

t4

a4

c4
d4

a3

b3

d3

a1

t1

c1

b1

c2

d2

t2

b2

While ∃ a non regular pair (t3, t4)

/* t3 ∪ t4 is convex */

replace (t3, t4) by (t1, t2)

Regularize⇔ improve ang (T (P))

ang (t1, t2) ≥ ang (t3, t4)

a1 = a3 + a4, d2 = d3 + d4,
c1 ≥ d3, b1 ≥ d4, b2 ≥ a4, c2 ≥ a3

I The algorithm terminates since the number of triangulations of P
is finite and ang(T (P)) cannot decrease

I The obtained triangulation is a Delaunay triangulation of P
I If a triangulation of P maximixes the angular vector, all its edges

are regular; hence, it is a DT of P
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Minimizing the maximal min-containment radius [Rajan]

r ′t = radius of the smallest
ball containing t

Q(T ) = maxt∈T r ′t

ct = c′t ct c′t

rt r′t

Th. : for a given P, for all T (P), Q(Del(P)) ≤ Q(T (P))

Interpolation error [Waldron 98]

If g is the linear interpolation of f over a simplex t ,

‖f − g‖∞ ≤ ct
r
′2
t
2

ct = bound on the absolute curvature of f in t
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Minimizing the maximal min-containment radius

maxt∈Del r ′t∈T ≤ maxt∈T r ′t ct = c′t ct c′t

rt r′t

Proof
σt (x) = ‖x − ct‖2 − r2

t , σT (x) = σt (x) if x ∈ t ⊂ T

1. ∀x ∈ conv(P) : 0 > σDel(x) ≥ σT (x) see next slide

2. minx∈t σt (x) = −r ′2t ⇐ if ct 6∈ t : σt (x) ≥ ‖c′t − ct‖2 − r2
t = −r ′2t

3. xT = arg minσT (x), xDel = arg minσDel(x)

σT (xT ) = −r ′2T ≤ σT (xDel) ≤ σDel(xDel) = −r ′2Del
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Proof of 1 : 0 > σDel(x) ≥ σT (x)

σ

h(σ)

P
σt (x) = x2 − 2ct · x + s (s = c2

t − r2
t )

= f (x)− g(x)

where f (x) = x2 and gt (x) = 2ct · x − s

Geometric interpretation

σt (x) maximal

⇔ gt (x) minimal
⇔ Gt = hσt supports conv(P̂)
⇔ σt is empty
⇔ t ∈ Del(P)
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Minimum roughness of Delaunay triangulations

Input : n points p1, ...pn of R2 and for each pj a real fj

Roughness of a triangulation T (P) :

R(T ) =
∑

i
∫

Ti

((
∂φi
∂x

)2
+
(
∂φi
∂y

)2
)

dx dy

φi = linear interpolation of the fj over triangle Ti ∈ T

Theorem (Rippa)

Among all possible triangulations of P, Del(P) is one with
minimum roughness
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Voronoi Diagrams
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Euclidean Voronoi diagrams

Voronoi cell V (pi) = {x : ‖x − pi‖ ≤ ‖x − pj‖, ∀j}

Voronoi diagram (P) = { cell complex whose cells are the V (pi)
and their faces, pi ∈ P }
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Voronoi diagrams and polytopes

Vor(p1, . . . , pn) is the minimization diagram of the
n functions δi(x) = (x − pi)

2

arg min(δi) = arg max(hi)
where hpi (x) = 2 pi · x − p2

i

The minimization diagram of the δi is also the
maximization diagram of the affine functions hi(x)

The faces of Vor(P) are the projection of
the faces of V(P) =

T
i h+

pi

h+
pi

= {x : xd+1 > 2pi · x − p2
i }

1 2 3 4

1 2 1 3 4

Note !

hpi (x) = 0 is the hyperplane tangent to Q : xd+1 = x2 at (x , x2)
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Dual triangulation

V(P) = h+
p1
∩ . . . ∩ h+

pn ←→ D(P) = conv−({φ(p1), . . . , φ(pn)})
l l

Voronoi Diagram of P ←→ Delaunay Triangulation of P
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Affine Diagrams
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Motivations

I To extend Voronoi diagrams to spheres (or weighted
points)

I molecular biology : how to compute a union of balls ?
I sampling theory : the offset of a set of points captures

topological information on the sapled object (see Course F.
Chazal)

I to improve the quality of a mesh (see Course M. Yvinec)
I To characterize the class of affine diagrams
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Power diagrams of spheres

Power of a point to a sphere

x

c

t

σ σ(x) = (x − t)2 = (x − c)2 − r2

σ(x) < 0⇐⇒ x ∈ int(σ)
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Bisector of two spheres = hyperplane

σi(x) = σj(x)⇐⇒6 x2 − 2ci · x + si =6 x2 − 2cj · x + sj

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations



Laguerre (power) diagram

Sites : a set S of n spheres σ1, . . . , σn

Distance of a point x to σi
σi(x) = (x − ci)

2 − r2
i

Lag(S) is the cell complex
whose cells are the

Lag(σi) = {x : σi(x) ≤ σj(x), ∀j}

Note !
I Lag(σi) may be empty
I ci may not belong to Lag(σi)

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations



Laguerre (power) diagram

Sites : a set S of n spheres σ1, . . . , σn

Distance of a point x to σi
σi(x) = (x − ci)

2 − r2
i

Lag(S) is the cell complex
whose cells are the

Lag(σi) = {x : σi(x) ≤ σj(x), ∀j}

Note !
I Lag(σi) may be empty
I ci may not belong to Lag(σi)

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations



Laguerre diagrams and polytopes

σi(x) = (x − ci)
2 − r 2

i

hσi (x) = 2 ci · x − c2
i + r 2

i

arg minσi(x) = arg min((x − ci)
2 − r 2

i )
= arg max(hσi (x))
hσi (x) = 2 ci · x − c2

i + r 2
i )

Lag(S) is the minimization diagram of the σi

⇔ the maximization diagram
of the affine functions hσi (x)

I The faces of Lag(S) are the vertical projections of the faces
of L(S) =

⋂
i h+
σi
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Space of spheres

σ hypersphere of Rd

→ point σ̂ = (c, s = c2 − r2) ∈ Rd+1

→ the polar hyperplane hσ = σ̂∗ ⊂ Rd+1 :
xd+1 = 2c · x − s

σ

h(σ)

P

1. The spheres of radius 0 are mapped onto the paraboloid
Q : xd+1 = x2

2. The vertical projection of hσi ∩Q onto xd+1 = 0 is σi

3. σ(x) = x2 − 2c · x + s is the (signed) vertical distance from the lift
of x onto hσ to the lift x̂ of x onto Q
4. σ(x) < 0⇔ x̂ = (x , x2) ∈ h−σ
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Orthogonality between spheres

A distance between spheres

d(σ1, σ2) =
√

(c1 − c2)2 − r2
1 − r2

2

Orthogonality

d(σ1, σ2) = 0⇔ (c1 − c2)2 = r2
1 + r2

2
⇔ σ1 ⊥ σ2 (Pythagore)

In the space of spheres

d(σ1, σ2) = 0 ⇔ s2 = 2 c1 · c2 − c2
1 ⇔ σ̂2 ∈ hσ1 (si = c2

i − r2
i )

< < h−σ1

σ

h(σ)

P
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The vertical projection of the dual complex R(S) of L(S) is called the
regular triangulation of S

L(S) = h+
σ1
∩ . . . ∩ h+

σn
←→ R(S) = conv−({σ̂1, . . . , σ̂n})

l l
Laguerre diagram of S ←→ Laguerre triangulation of S

(σ̂i = h∗σi
= (ci , c2

i − r2
i ) ∈ Rd+1)
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S = {σ1, ...σn} where σi is the sphere of center ci and radius ri

P = {c1, ..., cn}

Characteristic property

t ⊂ P is a simplex of the regular triangulation of S
iff there exists a sphere σt s.t.

I d(σt , σi) = 0 ∀ci ∈ t (σt = orthosphere of t)
I d(σt , σj) > 0 ∀cj ∈ P \ t
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Regular triangulation
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Regular triangulation
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Regular triangulation
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Complexity and algorithm

nb of faces = Θ
(

nb
d+1

2 c
)

(Upper Bound Th.)

can be computed in time Θ
(

n log n + nb
d+1

2 c
)

Main predicate

power test(σ0, . . . , σd+1) = sign

∣∣∣∣∣∣
1 . . . 1
c0 . . . cd+1

c2
0 − r2

0 . . . c2
d+1 − r2

d+1

∣∣∣∣∣∣
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Affine diagrams and regular subdivisions

Definition

Affine diagrams are defined as the maximization diagrams of a
finite set of affine functions
They are also called regular subdvisions

I Voronoi and Laguerre diagrams are affine diagrams
I Any affine Voronoi diagram of Rd is the Laguerre diagram

of a set of spheres of Rd

I Delaunay and Laguerre triangulations are regular
triangulations

I Any regular triangulation is a Laguerre triangulation, i.e.
dual to a Laguerre diagram
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Examples of affine diagrams

1. The intersection of a power diagram with an affine
subspace

2. A Voronoi diagram with the following quadratic distance
function

‖x − a‖Q = (x − a)tQ(x − a) Q = Qt

3. k -th order Voronoi diagrams
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Order k Voronoi Diagrams

Order 2 Voronoi Diagram
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A k -order Voronoi diagram is a power diagram
Let P1,P2, . . . denote the subsets of k points of P

σi(x) =
1
k

∑
j∈Pi

(x − pj)
2 = x2 − 2

k

∑
j∈Pi

pj · x +
1
k

∑
j∈Pi

p2
j

The k nearest neighbors of x are the points of Pi iff

∀j , σi(x) ≤ σj(x)

σi is the sphere centered at 1
k
∑k

j=1 pij
σk (0) = 1

k
∑k

j=1 p2
ij

Combinatorial complexity

The number of vertices and faces of the k first Voronoi
diagrams is

O
(

kd
d+1

2 e nb
d+1

2 c
)
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Molecules

I The union of n balls of Rd can be represented as a
subcomplex of the regular triangulation called the
alpha-shape

I It can be computed in time Θ(n log n + nb
d+1

2 c)
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Interfaces entre protéines [Cazals & Janin 2006]

Interface antigène-anticorps
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Bregman divergences
F a strictly convex and differentiable function defined over a
convex set X

DF (p,q) = F (p)− F (q)− 〈p− q,∇F (q)〉

F

X
pq

p̂

q̂

Hq

DF (p||q)

Not a distance but DF (x,y) ≥ 0 and DF (x,y) = 0 ⇐⇒ x = y
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Examples

I F (x) = x2 : Squared Euclidean distance

DF (p,q) = F (p)− F (q)− 〈p− q,∇F (q)〉
= p2 − q2 − 〈p− q,2q〉 = ‖p− q‖2

I F (p) =
∑

p(x) log2 p(x) (Shannon entropy)
DF (p,q) =

∑
x p(x) log2

p(x)
q(x) (K-L divergence)

I F (p) = −∑x log p(x) (Burg entropy)
DF (p,q) =

∑
x ( p(x)

q(x) log p(x)
q(x) − 1) (Itakura-Saito)
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Bisectors

DF (p,q) = F (p)− F (q)− 〈p− q,∇F (q)〉

Two types of bisectors

Hpq : DF (x,p) = DF (x,q) (hyperplane)

H∗pq : DF (p,x) = DF (q,x) (hypersurface)

Bregman diagrams

I Accordingly, we can define two types of Bregman diagrams
I By Legendre duality : DF (x,y) = DF∗(y′,x′)
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Bregman Voronoi diagrams

The 1st type Bregman diagram of P = {p1, . . . ,pn} is the
minimization diagram of the n functions DF (x,pi), i = 1, . . . ,n

Since arg min(DF (x,pi)) = arg max(hi(x) = 〈x− pi ,p′i〉−F (pi))

the Bregman diagram of the first type of a set P of n points pi is
affine

The 2nd type Bregman diagram of P is the (curved)
minimization diagram of the n functions DF (pi ,x), i = 1, . . . ,n
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Bregman Voronoi diagrams from Laguerre diagramms

The 1st type Bregman Voronoi diagram of n sites of X is
identical to the Laguerre diagram of n Euclidean hyperspheres
centered at the p′i

DF (x,pi ) ≤ DF (x,pj )

⇐⇒ −F (pi )− 〈x− pi ,p′i 〉) ≤ −F (pj )− 〈x− pj ,p′j 〉)

⇐⇒ 〈x, x〉 − 2〈x,p′i 〉 − 2F (pi ) + 2〈pi ,p′i 〉 ≤ 〈x, x〉 − 2〈x,p′j 〉 − 2F (pj ) + 2〈pj ,p′j 〉

⇐⇒ 〈x− p′i , x− p′i 〉 − r2
i ≤ 〈x− p′j , x− p′j 〉 − r2

j

where r2
l = 〈p′l ,p

′
l 〉+ 2(F (pl )− 〈pl ,p′l 〉)
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Bregman spheres σ(c, r) = {x ∈ X | DF (x,c) = r}

Lemma
The lifted image σ̂ onto F of a Bregman
sphere σ is contained in a hyperplane Hσ

Conversely, the intersection of any
hyperplane H with F projects vertically
onto a Bregman sphere

F

X
pq

p̂

q̂

Hq

DF (p||q)
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1st and 2nd types Bregman balls
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Bregman triangulations

P̂ : the lifted image of P onto the graph F of F

T the lower convex hull of P̂

The vertical projection of T is called the Bregman triangulation
BTF (P) of P

Characteristic property

The Bregman sphere circumscribing any simplex of BTF (P)
does not enclose any point of P
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Primal space Gradient space

1st type BVD(P) = Laguerre diagram of (P ′)

l ∗

geodesic BT (P) ↔ regular triangulation of (P ′)

l

BT (P)

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations



(a) Ordinary Delaunay (b) Exponential loss (c) Hellinger-like divergence
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Properties of Bregman triangulations

I BT (P) is the geometric dual of BD(P)

I Characteristic property : The Bregman sphere
circumscribing any simplex of BT (P) is empty

I Optimality : BT (P) = minT∈T (P) maxτ∈T r(τ)
(r(τ) = radius of the smallest Bregman ball containing τ )

[Rajan]
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