Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

Jean-Daniel Boissonnat

Winter School on Algorithmic Geometry ENS-Lyon January 2010

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0

Convex hull

Smallest convex set that contains a finite set of points \mathcal{P} Set of all possible convex combinations of points in \mathcal{P} $\sum \lambda_i p_i, \lambda_i \ge 0, \sum_i \lambda_i = 1$

We call polytope the convex hull of a finite set of points

Simplex

The convex hull of k + 1 points that are affinely independent is called a *k*-simplex

1-simplex = line segment 2-simplex = triangle 3-simplex = tetrahedron

Facial structure of a polytope

Supporting hyperplane

 $H \cap C \neq \emptyset$ and *C* is entirely contained in one of the two half-spaces defined by *H*

Faces

The faces of a *P* are the polytopes $P \cap h$, *h* support. hyp.

The face complex

The faces of *P* form a cell complex *C*

- ▶ $\forall f \in C$, f is a convex polytope
- ▶ $f \in C$, $f \subset g \Rightarrow g \in C$
- ▶ $\forall f, g \in C$, either $f \cap g = \emptyset$ or $f \cap g \in C$

A point set \mathcal{P} is said to be in general position iff no subset of k + 2 points lie in a *k*-flat

If \mathcal{P} is in general position, all the faces of $conv(\mathcal{P})$ are simplices The boundary of $conv(\mathcal{P})$ is a simplicial complex

Two ways of defining polyhedra

Convex hull of *n* points

(< ∃) < ∃)</p>

< 17 ▶

Two ways of defining polyhedra

Convex hull of *n* points

Intersection of *n* half-spaces

A (10) × (10) × (10)

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

Duality between points and hyperplanes

hyperplane
$$h: x_d = a \cdot x' - b$$
 of $\mathbb{R}^d \longrightarrow \text{point } h^* = (a, b) \in \mathbb{R}^d$

point
$$p = (p', p_d) \in \mathbb{R}^d$$
 \longrightarrow hyperplane $p^* \subset \mathbb{R}^d$
= { $(a, b) \in \mathbb{R}^d : b = p' \cdot a - p_d$ }

The mapping *

preserves incidences :

$$\begin{array}{ccc} p \in h & \Longleftrightarrow & p_d = a \cdot p' - b \Longleftrightarrow b = p' \cdot a - p_d \Longleftrightarrow h^* \in p^* \\ p \in h^+ & \Longleftrightarrow & p_d > a \cdot p' - b \Longleftrightarrow b > p' \cdot a - p_d \Longleftrightarrow h^* \in p^{*+} \end{array}$$

▶ is an involution and thus is bijective : $h^{**} = h$ and $p^{**} = p$

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> ○ Q ()

Duality between polytopes

Let h_1, \ldots, h_n be *n* hyperplanes de \mathbb{R}^d and let $P = \cap h_i^+$

A vertex *s* of *P* is the intersection of $k \ge d$ hyperplanes h_1, \ldots, h_k lying above all the other hyperplanes

$$\implies s^*$$
 is a hyperplane $\ni h_1^*, \dots, h_k^*$
supporting $P^*=\operatorname{conv}^-(h_1^*, \dots, h_k^*)$

General position : *s* is the intersection of *d* hyperplanes

 \implies s^* is a (d-1)-face (simplex) de P^*

More generally and under the general position assumption, if *f* is a (d - k)-face of *P*, $f = \bigcap_{i=1}^{k} h_i$

$$p \in f \quad \Leftrightarrow \quad h_i^* \in p^* \text{ for } i = 1, \dots, k$$
$$h_i^* \in p^{*+} \text{ for } i = k+1, \dots, n$$

$$\Leftrightarrow \quad p^* \text{support. hyp. of } P^* = \operatorname{conv}(h_1^*, \dots, h_n^*) \\ \ni h_1^*, \dots, h_k^*$$

$$\Leftrightarrow f^* = \operatorname{conv}(h_1^*, \dots, h_k^*) \text{ is a } (k-1) - \text{face of } P^*$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

э

More generally and under the general position assumption, if *f* is a (d - k)-face of *P*, $f = \bigcap_{i=1}^{k} h_i$

$$p \in f \iff h_i^* \in p^* \text{ for } i = 1, \dots, k$$

 $h_i^* \in p^{*+} \text{ for } i = k+1, \dots, n$

$$\Leftrightarrow \quad p^* \text{support. hyp. of } P^* = \operatorname{conv}(h_1^*, \dots, h_n^*) \\ \ni h_1^*, \dots, h_k^*$$

$$\Leftrightarrow f^* = \operatorname{conv}(h_1^*, \dots, h_k^*) \text{ is a } (k-1) - \text{face of } P^*$$

Duality between P and P^*

- We have defined an involutive correspondence between the faces of *P* and *P*^{*} s.t. ∀f, g ∈ P, f ⊂ g ⇒ g^{*} ⊂ f^{*}
- As a consequence, computing P reduces to computing a lower convex hull

Euler's formula

The numbers of vertices *s*, edges *a* and facets *f* of a polytope of \mathbb{R}^3 satisfy

s - a + f = 2

Schlegel diagram

< 同 > < 三 > < 三 >

Euler formula : s - a + f = 2

Incidences edges-facets

$$2a \ge 3f \implies a \le 3s - 6$$

 $f < 2s - 4$

with equality when all facet are triangles

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

Beyond the 3rd dimension Upper bound theorem

[McMullen 1970]

(日)

If *P* is the intersection of *n* half-spaces of \mathbb{R}^d

nb faces of
$$P = \Theta(n^{\lfloor \frac{a}{2} \rfloor})$$

Beyond the 3rd dimension Upper bound theorem

[McMullen 1970]

If *P* is the intersection of *n* half-spaces of \mathbb{R}^d

```
nb faces of P = \Theta(n^{\lfloor \frac{d}{2} \rfloor})
```

General position

all vertices of *P* are incident to *d* edges (in the worst-case) and have distinct x_d

- ⇒ the convex hull of k < d edges incident to a vertex p is a k-face of P</p>
- $\Rightarrow \text{ any } k \text{-face is the intersection of } d k \text{ hyperplanes defining} P$

Proof of the upper bound th.

- 1. $\geq \lfloor \frac{d}{2} \rfloor$ edges incident to a vertex *p* are in $h_p^+ : x_d \geq x_d(p)$ or in h_p^-
 - \Rightarrow *p* is a *x_d*-max or *x_d*-min vertex of at least one $\lceil \frac{d}{2} \rceil$ -face of *P*
 - \Rightarrow # vertices of $P \leq 2 \times \# \lfloor \frac{d}{2} \rfloor$ -faces of P
- 2. A *k*-face is the intersection of d k hyperplanes defining P $\Rightarrow \# k \text{-faces} = \binom{n}{d-k} = O(n^{d-k})$ $\Rightarrow \# \lceil \frac{d}{2} \rceil \text{-faces} = O(n^{\lfloor \frac{d}{2} \rfloor})$
- 3. The number of faces incident to *p* depends on *d* but not on *n*

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Representation of a convex hull

Adjacency graph (AG) of the facets

In general position, all the facets are (d - 1)-simplexes

・ 戸 ト ・ ヨ ト ・ ヨ ト

3

Incremental algorithm

 \mathcal{P}_i : set of the *i* points that have been inserted first

 $conv(\mathcal{P}_i)$: convex hull at step *i*

 $f = [p_1, ..., p_d]$ is a red facet iff its supporting hyperplane separates p_i from conv(\mathcal{P}_i)

 \iff orient $(p_1,...,p_d,p_i)$ × orient $(p_1,...,p_d,O)$ < 0

orient
$$(p_0, p_1, ..., p_d) = \begin{vmatrix} 1 & 1 & ... & 1 \\ x_0 & x_1 & ... & x_d \\ y_0 & y_1 & ... & y_d \\ z_0 & z_1 & ... & z_d \end{vmatrix}$$

Update of $conv(\mathcal{P}_i)$

- Locate : traverse AG to find the red facets and the (d-2)-faces on the horizon V
- ► Update: replace the red facets by the facets conv(p_i, e), e ∈ V

(4) (3) (4) (3)

Update of $conv(\mathcal{P}_i)$

- Locate : traverse AG to find the red facets and the (d-2)-faces on the horizon V
- ► Update: replace the red facets by the facets conv(p_i, e), e ∈ V

Correctness

- The AG of the red facets is connected
- The new faces are all obtained as above

Complexity analysis

- update proportionnal to the number of red facets
- # new facets = $O(n^{\lfloor \frac{d-1}{2} \rfloor})$
- fast locate : insert the points in lexicographic order and attach a facet to each point

(4月) (1日) (日)

$$T(n,d) = O(n\log n) + \sum_{i=1}^{n} |\operatorname{conv}(i,d-1)|$$

= $O(n\log n + n \times n^{\lfloor \frac{d-1}{2} \rfloor}) = O(n\log n + n^{\lfloor \frac{d+1}{2} \rfloor})$

Complexity analysis

- update proportionnal to the number of red facets
- # new facets = $O(n^{\lfloor \frac{d-1}{2} \rfloor})$
- fast locate : insert the points in lexicographic order and attach a facet to each point

$$T(n,d) = O(n\log n) + \sum_{i=1}^{n} |\operatorname{conv}(i,d-1)|$$

= $O(n\log n + n \times n^{\lfloor \frac{d-1}{2} \rfloor}) = O(n\log n + n^{\lfloor \frac{d+1}{2} \rfloor})$

Optimal in even dimensions

Can be improved to $O(n \log n)$ when d = 3

The expected complexity can be improved to $O(n \log n + n^{\lfloor \frac{d}{2} \rfloor})$ by inserting the points in random order (see course 3)

The randomized algorithm can be derandomized [Chazelle 1992]

Delaunay Triangulations

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

< 回 > < 回 > < 回 >

Simplex

The convex hull of k + 1 points that are affinely independent is called a *k*-simplex

1-simplex = line segment, 2-simplex = triangle, 3-simplex = tetrahedron

・ロ・ ・ 四・ ・ 回・ ・ 回・

-

Simplex

The convex hull of k + 1 points that are affinely independent is called a *k*-simplex

1-simplex = line segment, 2-simplex = triangle, 3-simplex = tetrahedron

Simplicial complex

A finite collection of simplices C called the faces of C such that

- ▶ $\forall f \in C$, *f* is a simplex
- ► $f \in C$, $f \subset g \Rightarrow g \in C$
- ▶ $\forall f, g \in C$, either $f \cap g = \emptyset$ or $f \cap g \in C$

Triangulation of a finite set of points

A triangulation $T(\mathcal{P})$ of a finite set of points $\mathcal{P} \in \mathbb{R}^d$ is a *d*-simplicial complex whose vertices are the points of \mathcal{P} and whose domain is $\operatorname{conv}(\mathcal{P})$

There exists many triangulations of a given set of points

A (10) A (10) A (10)

Delaunay triangulation

 $\mathcal{P} = \{p_1, p_2 \dots p_n\}$ set of points in general position ($\not \exists d + 1$ points on a same sphere)

 $t \subset \mathcal{P}$ is a Delaunay simplex iff \exists a sphere σ_t s.t.

 $\sigma_t(p) = 0 \ \forall p \in t$ $\sigma_t(q) > 0 \ \forall q \in \mathcal{P} \setminus t$

• Image: A image:

Delaunay triangulation

 $\mathcal{P} = \{p_1, p_2 \dots p_n\}$ set of points in general position ($\not\exists d + 1$ points on a same sphere)

 $t \subset \mathcal{P}$ is a Delaunay simplex iff \exists a sphere σ_t s.t. $\sigma_t(p) = 0 \ \forall p \in t$ $\sigma_t(q) > 0 \ \forall q \in \mathcal{P} \setminus t$

Delaunay theorem

The Delaunay simplices form a triangulation of \mathcal{P} , called the Delaunay triangulation of \mathcal{P}

A (1) < A (1) < A (1) </p>

Proof of the theorem

Linearization $\sigma(x) = x^2 - 2c \cdot x + s, s = c^2 - r^2$

$$\sigma(x) < 0 \Leftrightarrow \left\{ egin{array}{ll} z < 2c \cdot x + s & (h_\sigma^-) \ z = x^2 & (\mathcal{P}) \end{array}
ight. \ \Leftrightarrow \hat{x} = (x, x^2) \in h_\sigma^- \end{array}
ight.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

Proof of the theorem

$$egin{aligned} \sigma(x) < 0 &\Leftrightarrow \left\{ egin{aligned} z < 2c \cdot x + s & (h_\sigma^-) \ z = x^2 & (\mathcal{P}) \end{aligned}
ight. &\Leftrightarrow \hat{x} = (x, x^2) \in h_\sigma^- \end{aligned}$$

Proof of Delaunay's th.

t a simplex, σ_t its circumscribing sphere

$$t \in \mathrm{Del}(\mathcal{P}) \Leftrightarrow \forall i, \hat{p}_i \in h_{\sigma_t}^+$$

 $\Leftrightarrow \hat{t} ext{ is a face of } ext{conv}^-(\hat{\mathcal{P}})$

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Proof of the theorem

Linearization $\sigma(x) = x^2 - 2c \cdot x + s, s = c^2 - r^2$

$$\sigma(x) < 0 \Leftrightarrow \left\{ egin{array}{ll} z < 2c \cdot x + s & (h_\sigma^-) \ z = x^2 & (\mathcal{P}) \end{array}
ight. \ \Leftrightarrow \hat{x} = (x, x^2) \in h_\sigma^- \end{array}
ight.$$

Proof of Delaunay's th.

t a simplex, σ_t its circumscribing sphere

$$t \in \mathrm{Del}(\mathcal{P}) \Leftrightarrow \forall i, \hat{p}_i \in h_{\sigma_t}^+$$

$$\Leftrightarrow \hat{t}$$
 is a face of $\operatorname{conv}^-(\hat{\mathcal{P}})$

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

$$\mathrm{Del}(\mathcal{P}) = \mathrm{proj}(\mathrm{conv}^-(\hat{\mathcal{P}}))$$

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

Combinatorial complexity

The combinatorial complexity of the Delaunay triangulation diagram of *n* points of \mathbb{R}^d is the same as the combinatorial complexity of a convex hull of *n* points of \mathbb{R}^{d+1}

Hence, by the Upper Bound Theorem it is $\Theta\left(n^{\lfloor \frac{d+1}{2} \rfloor}\right)$

[Mc Mullen 1970]

Algorithm for constructing DT

Input : a set \mathcal{P} of *n* points of \mathbb{R}^d

- 1 Lift the points of \mathcal{P} onto the paraboloid $x_{d+1} = x^2$ of \mathbb{R}^{d+1} : $p_i \rightarrow \hat{p}_i = (p_i, p_i^2)$
- 2 Compute $conv(\{\hat{p}_i\})$
- 3 Project the lower hull $\operatorname{conv}^{-}(\{\hat{p}_i\})$ onto \mathbb{R}^d

```
Complexity : \Theta(n \log n + n^{\lfloor \frac{d+1}{2} \rfloor})
```


Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

Local characterization

Pair of regular simplices

$$\sigma_2(q_1) \geq 0$$
 and $\sigma_1(q_2) \geq 0$

$$\Leftrightarrow \hat{c}_1 \in h_{\sigma_2}^+ \text{ and } \hat{c}_2 \in h_{\sigma_1}^+$$

Theorem

A triangulation such that all pairs of simplexes are regular is a Delaunay triangulation

Proof

The PL function whose graph is obtained by lifting the triangles is locally convex and has a convex support

A (10) A (10) A (10)

Optimality properties of the Delaunay triangulation

Among all possible triangulations of \mathcal{P} , $Del(\mathcal{P})$

- 1. maximizes the smallest angle (in the plane) [Lawson]
- 2. minimizes the radius of the maximal smallest ball enclosing a simplex) [Rajan]
- 3. minimizes the roughness (Dirichlet's energy) [Rippa]

(4月) (4日) (4日)

Optimizing the angular vector (d = 2)

Angular vector of a triangulation $T(\mathcal{P})$

ang $(T(\mathcal{P})) = (\alpha_1, \ldots, \alpha_{3t}), \alpha_1 \leq \ldots \leq \alpha_{3t}$

Optimality

Any triangulation of a given point set ${\cal P}$ whose angular vector is maximal (for lexicographic order) is a Delaunay triangulation of ${\cal P}$

Affects matrix conditioning in FE methods

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○
Constructive proof using flips

While \exists a non regular pair (t_3 , t_4)

/* $t_3 \cup t_4$ is convex */

replace (t_3, t_4) by (t_1, t_2)

(日)

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

Constructive proof using flips

While \exists a non regular pair (t_3 , t_4)

/* $t_3 \cup t_4$ is convex */

replace (t_3, t_4) by (t_1, t_2)

(日)

Regularize \Leftrightarrow improve ang $(T(\mathcal{P}))$

 $ang(t_1, t_2) \ge ang(t_3, t_4)$

$$a_1 = a_3 + a_4, \, d_2 = d_3 + d_4, \ c_1 \ge d_3, \ b_1 \ge d_4, \ b_2 \ge a_4, \ c_2 \ge a_3$$

- ► The algorithm terminates since the number of triangulations of P is finite and ang(T(P)) cannot decrease
- The obtained triangulation is a Delaunay triangulation of \mathcal{P}
- If a triangulation of P maximixes the angular vector, all its edges are regular; hence, it is a DT of P

Minimizing the maximal min-containment radius [Rajan]

 r'_t = radius of the smallest ball containing t

 $Q(T) = \max_{t \in T} r'_t$

Th. : for a given \mathcal{P} , for all $T(\mathcal{P})$, $Q(\text{Del}(\mathcal{P})) \leq Q(T(\mathcal{P}))$

Minimizing the maximal min-containment radius [Rajan]

 r'_t = radius of the smallest ball containing t

$$Q(T) = \max_{t \in T} r'_t$$

Th. : for a given \mathcal{P} , for all $T(\mathcal{P})$, $Q(\text{Del}(\mathcal{P})) \leq Q(T(\mathcal{P}))$

Interpolation error

[Waldron 98]

If g is the linear interpolation of f over a simplex t,

$$\|f-g\|_\infty \leq c_t \, rac{r_t^{\prime\,2}}{2}$$

 c_t = bound on the absolute curvature of f in t

Minimizing the maximal min-containment radius

 $\max_{t\in \text{Del}} r'_{t\in T} \leq \max_{t\in T} r'_t$

Proof

$$\sigma_t(x) = \|x - c_t\|^2 - r_t^2, \qquad \sigma_T(x) = \sigma_t(x) \text{ if } x \in t \subset T$$

- 1. $\forall x \in \operatorname{conv}(\mathcal{P}) : 0 > \sigma_{\operatorname{Del}}(x) \ge \sigma_{\mathcal{T}}(x)$ see next slide
- 2. $\min_{x \in t} \sigma_t(x) = -r'_t^2 \quad \Leftarrow \text{ if } c_t \notin t : \sigma_t(x) \ge \|c'_t c_t\|^2 r_t^2 = -r'_t^2$
- 3. $x_T = \arg \min \sigma_T(x), \qquad x_{\text{Del}} = \arg \min \sigma_{\text{Del}}(x) \\ \sigma_T(x_T) = -r'_T^2 \le \sigma_T(x_{\text{Del}}) \le \sigma_{\text{Del}}(x_{\text{Del}}) = -r'_{\text{Del}}^2$

Proof of 1 : $0 > \sigma_{\text{Del}}(x) \ge \sigma_T(x)$

$$\sigma_t(x) = x^2 - 2c_t \cdot x + s (s = c_t^2 - r_t^2)$$

= f(x) - g(x)

where $f(x) = x^2$ and $g_t(x) = 2c_t \cdot x - s$

Geometric interpretation

 $\sigma_t(x)$ maximal

- $\Leftrightarrow g_t(x)$ minimal
- $\Leftrightarrow \mathcal{G}_t = h_{\sigma_t} \text{ supports } \operatorname{conv}(\hat{\mathcal{P}})$

・ロト ・四ト ・ヨト ・ヨト

- $\Leftrightarrow \sigma_t \text{ is empty}$
- $\Leftrightarrow t \in \mathrm{Del}(\mathcal{P})$

Proof of 1 : $0 > \sigma_{\text{Del}}(x) \ge \sigma_T(x)$

$$\sigma_t(x) = x^2 - 2c_t \cdot x + s (s = c_t^2 - r_t^2)$$

= f(x) - g(x)

where $f(x) = x^2$ and $g_t(x) = 2c_t \cdot x - s$

Geometric interpretation

 $\sigma_t(x)$ maximal

- $\Leftrightarrow g_t(x)$ minimal
- $\Leftrightarrow \mathcal{G}_t = h_{\sigma_t} \text{ supports } \operatorname{conv}(\hat{\mathcal{P}})$

・ロト ・四ト ・ヨト ・ヨト

- $\Leftrightarrow \sigma_t \text{ is empty}$
- $\Leftrightarrow t \in \mathrm{Del}(\mathcal{P})$

Minimum roughness of Delaunay triangulations

Input : *n* points $p_1, ..., p_n$ of \mathbb{R}^2 and for each p_j a real f_j

Roughness of a triangulation $T(\mathcal{P})$:

$$R(T) = \sum_{i} \int_{T_i} \left(\left(\frac{\partial \phi_i}{\partial x} \right)^2 + \left(\frac{\partial \phi_i}{\partial y} \right)^2 \right) dx dy$$

 ϕ_i = linear interpolation of the f_j over triangle $T_i \in T$

Theorem (Rippa)

Among all possible triangulations of \mathcal{P} , $Del(\mathcal{P})$ is one with minimum roughness

Voronoi Diagrams

(日) (日) (

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

Euclidean Voronoi diagrams

Voronoi cell
$$V(p_i) = \{x : \|x - p_i\| \le \|x - p_j\|, \forall j\}$$

Voronoi diagram (\mathcal{P}) = { cell complex whose cells are the $V(p_i)$ and their faces, $p_i \in \mathcal{P}$ }

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Vor $(p_1, ..., p_n)$ is the minimization diagram of the *n* functions $\delta_i(x) = (x - p_i)^2$

• (10) • (10)

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

Vor $(p_1, ..., p_n)$ is the minimization diagram of the *n* functions $\delta_i(x) = (x - p_i)^2$

 $\arg \min(\delta_i) = \arg \max(h_i)$ where $h_{p_i}(x) = 2 p_i \cdot x - p_i^2$

The minimization diagram of the δ_i is also the maximization diagram of the affine functions $h_i(x)$

< 同 > < 三 > < 三 >

Vor $(p_1, ..., p_n)$ is the minimization diagram of the *n* functions $\delta_i(x) = (x - p_i)^2$

 $\arg\min(\delta_i) = \arg\max(h_i)$ where $h_{p_i}(x) = 2 p_i \cdot x - p_i^2$

The minimization diagram of the δ_i is also the maximization diagram of the affine functions $h_i(x)$

The faces of Vor(\mathcal{P}) are the projection of the faces of $\mathcal{V}(\mathcal{P}) = \bigcap_i h_{p_i}^+$ $h_{p_i}^+ = \{x : x_{d+1} > 2p_i \cdot x - p_i^2\}$

Vor $(p_1, ..., p_n)$ is the minimization diagram of the *n* functions $\delta_i(x) = (x - p_i)^2$

 $\arg\min(\delta_i) = \arg\max(h_i)$ where $h_{p_i}(x) = 2 p_i \cdot x - p_i^2$

The minimization diagram of the δ_i is also the maximization diagram of the affine functions $h_i(x)$

The faces of Vor(\mathcal{P}) are the projection of the faces of $\mathcal{V}(\mathcal{P}) = \bigcap_i h_{p_i}^+$ $h_{p_i}^+ = \{x : x_{d+1} > 2p_i \cdot x - p_i^2\}$

Note !

 $h_{p_i}(x) = 0$ is the hyperplane tangent to $\mathcal{Q} : x_{d+1} = x^2$ at (x, x^2)

Dual triangulation

$$\mathcal{V}(\mathcal{P}) = \begin{array}{ccc} h_{p_1}^+ \cap \ldots \cap h_{p_n}^+ & \longleftrightarrow & \mathcal{D}(\mathcal{P}) = \operatorname{conv}^-(\{\phi(p_1), \ldots, \phi(p_n)\}) \\ \uparrow & \uparrow \\ \\ \text{Voronoi Diagram of } \mathcal{P} & \longleftrightarrow & \text{Delaunay Triangulation of } \mathcal{P} \end{array}$$

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

Affine Diagrams

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

< 172 ▶

< 2 > < 2

Motivations

- To extend Voronoi diagrams to spheres (or weighted points)
 - molecular biology : how to compute a union of balls ?
 - sampling theory : the offset of a set of points captures topological information on the sapled object (see Course F. Chazal)
 - to improve the quality of a mesh (see Course M. Yvinec)
- To characterize the class of affine diagrams

Power diagrams of spheres

$$\sigma(x) = (x - t)^2 = (x - c)^2 - r^2$$

$$\sigma(x) < 0 \iff x \in int(\sigma)$$

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

Bisector of two spheres = hyperplane

$$\sigma_i(\mathbf{x}) = \sigma_j(\mathbf{x}) \iff \mathbf{x}^2 - 2\mathbf{c}_i \cdot \mathbf{x} + \mathbf{s}_i = \mathbf{x}^2 - 2\mathbf{c}_j \cdot \mathbf{x} + \mathbf{s}_j$$

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

Laguerre (power) diagram

Sites : a set S of n spheres $\sigma_1, \ldots, \sigma_n$

Distance of a point *x* to σ_i $\sigma_i(x) = (x - c_i)^2 - r_i^2$

Lag(S) is the cell complex whose cells are the

 $\operatorname{Lag}(\sigma_i) = \{ \boldsymbol{x} : \sigma_i(\boldsymbol{x}) \leq \sigma_j(\boldsymbol{x}), \forall j \}$

A B F A B F

Laguerre (power) diagram

Sites : a set S of n spheres $\sigma_1, \ldots, \sigma_n$

Distance of a point *x* to σ_i $\sigma_i(x) = (x - c_i)^2 - r_i^2$

Lag(S) is the cell complex whose cells are the

 $\operatorname{Lag}(\sigma_i) = \{ \boldsymbol{x} : \sigma_i(\boldsymbol{x}) \leq \sigma_j(\boldsymbol{x}), \forall j \}$

Note !

- $Lag(\sigma_i)$ may be empty
- c_i may not belong to $Lag(\sigma_i)$

(日)

Laguerre diagrams and polytopes

$$\sigma_i(x) = (x - c_i)^2 - r_i^2$$

$$h_{\sigma_i}(x) = 2 c_i \cdot x - c_i^2 + r_i^2$$

$$egin{argmin} rgmin \sigma_i(x) &= rgmin((x-c_i)^2-r_i^2)\ &= rgmax(h_{\sigma_i}(x))\ h_{\sigma_i}(x) &= 2\,c_i\cdot x-c_i^2+r_i^2) \end{split}$$

Lag(S) is the minimization diagram of the σ_i \Leftrightarrow the maximization diagram of the affine functions $h_{\sigma_i}(x)$

A B F A B F

The faces of Lag(S) are the vertical projections of the faces of L(S) = ∩_i h⁺_{σi}

Space of spheres

 σ hypersphere of \mathbb{R}^d

→ point
$$\hat{\sigma} = (c, s = c^2 - r^2) \in \mathbb{R}^{d+1}$$

→ the polar hyperplane $h_{\sigma} = \hat{\sigma}^* \subset \mathbb{R}^{d+1}$:
 $x_{d+1} = 2c \cdot x - s$

(日本)(日本)(日本)

1. The spheres of radius 0 are mapped onto the paraboloid $Q: x_{d+1} = x^2$

2. The vertical projection of $h_{\sigma_i} \cap \mathcal{Q}$ onto $x_{d+1} = 0$ is σ_i

3. $\sigma(x) = x^2 - 2c \cdot x + s$ is the (signed) vertical distance from the lift of *x* onto h_{σ} to the lift \hat{x} of *x* onto Q

4.
$$\sigma(x) < 0 \Leftrightarrow \hat{x} = (x, x^2) \in h_{\sigma}^{-}$$

Orthogonality between spheres

A distance between spheres

$$d(\sigma_1, \sigma_2) = \sqrt{(c_1 - c_2)^2 - r_1^2 - r_2^2}$$

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

< 同 > < 三 > < 三

Orthogonality between spheres

A distance between spheres

$$d(\sigma_1, \sigma_2) = \sqrt{(c_1 - c_2)^2 - r_1^2 - r_2^2}$$

Orthogonality

$$d(\sigma_1, \sigma_2) = 0 \Leftrightarrow (c_1 - c_2)^2 = r_1^2 + r_2^2$$

$$\Leftrightarrow \sigma_1 \perp \sigma_2 \qquad (Pythagore)$$

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

Orthogonality between spheres

A distance between spheres

$$d(\sigma_1, \sigma_2) = \sqrt{(c_1 - c_2)^2 - r_1^2 - r_2^2}$$

Orthogonality

$$d(\sigma_1, \sigma_2) = 0 \Leftrightarrow (c_1 - c_2)^2 = r_1^2 + r_2^2$$

$$\Leftrightarrow \sigma_1 \perp \sigma_2 \qquad (Pythagore)$$

In the space of spheres

$$egin{aligned} d(\sigma_1,\sigma_2) = 0 & \Leftrightarrow & s_2 = 2\,c_1\cdot c_2 - c_1^2 & \Leftrightarrow & \hat{\sigma}_2 \in h_{\sigma_1} \ < & < & h_{\sigma_1}^- \end{aligned} \quad (s_i = c_i^2 - r_i^2)$$

The vertical projection of the dual complex $\mathcal{R}(S)$ of $\mathcal{L}(S)$ is called the regular triangulation of S

$$\mathcal{L}(\mathcal{S}) = h_{\sigma_1}^+ \cap \ldots \cap h_{\sigma_n}^+ \quad \longleftrightarrow \quad \mathcal{R}(\mathcal{S}) = \operatorname{conv}^-(\{\hat{\sigma}_1, \ldots, \hat{\sigma}_n\})$$

$$\uparrow$$
Laguerre diagram of $\mathcal{S} \quad \longleftrightarrow \quad$ Laguerre triangulation of \mathcal{S}

$$(\hat{\sigma}_i = h^*_{\sigma_i} = (c_i, c_i^2 - r_i^2) \in \mathbb{R}^{d+1})$$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

크

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

 $S = \{\sigma_1, ..., \sigma_n\}$ where σ_i is the sphere of center c_i and radius r_i $\mathcal{P} = \{c_1, ..., c_n\}$

Characteristic property

 $t \subset \mathcal{P}$ is a simplex of the regular triangulation of S iff there exists a sphere σ_t s.t.

$$\blacktriangleright d(\sigma_t, \sigma_i) = 0 \ \forall c_i \in t \qquad (\sigma_t =$$

$$\blacktriangleright d(\sigma_t, \sigma_j) > \mathbf{0} \ \forall c_j \in \mathcal{P} \setminus t$$

 $(\sigma_t = \text{orthosphere of } t)$

Regular triangulation

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

< □ > < □ > < □ > < □ > < □ >

Regular triangulation

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

< □ > < □ > < □ > < □ > < □ >

Regular triangulation

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

Complexity and algorithm

nb of faces =
$$\Theta\left(n^{\lfloor \frac{d+1}{2} \rfloor}\right)$$
 (Upper Bound Th.)
can be computed in time $\Theta\left(n\log n + n^{\lfloor \frac{d+1}{2} \rfloor}\right)$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Complexity and algorithm

nb of faces = $\Theta\left(n^{\lfloor \frac{d+1}{2} \rfloor}\right)$ (Upper Bound Th.) can be computed in time $\Theta\left(n\log n + n^{\lfloor \frac{d+1}{2} \rfloor}\right)$

Main predicate

power_test
$$(\sigma_0, \dots, \sigma_{d+1}) = \text{sign} \begin{vmatrix} 1 & \dots & 1 \\ c_0 & \dots & c_{d+1} \\ c_0^2 - r_0^2 & \dots & c_{d+1}^2 - r_{d+1}^2 \end{vmatrix}$$

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □

Affine diagrams and regular subdivisions

Definition

Affine diagrams are defined as the maximization diagrams of a finite set of affine functions They are also called regular subdvisions

< 同 > < 回 > < 回 >

Affine diagrams and regular subdivisions

Definition

Affine diagrams are defined as the maximization diagrams of a finite set of affine functions They are also called regular subdvisions

- Voronoi and Laguerre diagrams are affine diagrams
- ► Any affine Voronoi diagram of ℝ^d is the Laguerre diagram of a set of spheres of ℝ^d
- Delaunay and Laguerre triangulations are regular triangulations
- Any regular triangulation is a Laguerre triangulation, i.e. dual to a Laguerre diagram

(4月) (4日) (4日)

Examples of affine diagrams

1. The intersection of a power diagram with an affine subspace

(日)
Examples of affine diagrams

- 1. The intersection of a power diagram with an affine subspace
- 2. A Voronoi diagram with the following quadratic distance function

$$\|x-a\|_Q = (x-a)^t Q(x-a) \qquad Q = Q^t$$

< 同 > < 三 > < 三

Examples of affine diagrams

- 1. The intersection of a power diagram with an affine subspace
- 2. A Voronoi diagram with the following quadratic distance function

$$\|x-a\|_Q = (x-a)^t Q(x-a) \qquad Q = Q^t$$

3. *k*-th order Voronoi diagrams

• (1) • (1) • (1)

Order k Voronoi Diagrams

Order 2 Voronoi Diagram

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

▲□ ▶ ▲ □ ▶ ▲ □

A *k*-order Voronoi diagram is a power diagram Let $\mathcal{P}_1, \mathcal{P}_2, \ldots$ denote the subsets of *k* points of \mathcal{P}

$$\sigma_{i}(x) = \frac{1}{k} \sum_{j \in \mathcal{P}_{i}} (x - p_{j})^{2} = x^{2} - \frac{2}{k} \sum_{j \in \mathcal{P}_{i}} p_{j} \cdot x + \frac{1}{k} \sum_{j \in \mathcal{P}_{i}} p_{j}^{2}$$

The *k* nearest neighbors of *x* are the points of \mathcal{P}_i iff

 $\forall j, \quad \sigma_i(\mathbf{x}) \leq \sigma_j(\mathbf{x})$

$$\sigma_i$$
 is the sphere centered at $\frac{1}{k} \sum_{j=1}^{k} p_{i_j}$
 $\sigma_k(0) = \frac{1}{k} \sum_{j=1}^{k} p_{i_j}^2$

- (日) (三) (三) (三) (三)

A *k*-order Voronoi diagram is a power diagram Let $\mathcal{P}_1, \mathcal{P}_2, \ldots$ denote the subsets of *k* points of \mathcal{P}

$$\sigma_{i}(x) = \frac{1}{k} \sum_{j \in \mathcal{P}_{i}} (x - p_{j})^{2} = x^{2} - \frac{2}{k} \sum_{j \in \mathcal{P}_{i}} p_{j} \cdot x + \frac{1}{k} \sum_{j \in \mathcal{P}_{i}} p_{j}^{2}$$

The k nearest neighbors of x are the points of \mathcal{P}_i iff

 $\forall j, \sigma_i(x) \leq \sigma_j(x)$

$$\sigma_i$$
 is the sphere centered at $\frac{1}{k} \sum_{j=1}^{k} p_{i_j}$
 $\sigma_k(0) = \frac{1}{k} \sum_{j=1}^{k} p_{j_j}^2$

Combinatorial complexity

The number of vertices and faces of the *k* first Voronoi diagrams is

$$O\left(k^{\left\lceil \frac{d+1}{2} \right\rceil} n^{\left\lfloor \frac{d+1}{2} \right\rfloor}\right)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Molecules

- ► The union of *n* balls of ℝ^d can be represented as a subcomplex of the regular triangulation called the alpha-shape
- ► It can be computed in time $\Theta(n \log n + n^{\lfloor \frac{d+1}{2} \rfloor})$

Molecules

- ► The union of *n* balls of ℝ^d can be represented as a subcomplex of the regular triangulation called the alpha-shape
- ► It can be computed in time $\Theta(n \log n + n^{\lfloor \frac{d+1}{2} \rfloor})$

Interfaces entre protéines

[Cazals & Janin 2006]

Interface antigène-anticorps

Bregman divergences

 ${\it F}$ a strictly convex and differentiable function defined over a convex set ${\cal X}$

 $D_F(\mathbf{p},\mathbf{q}) = F(\mathbf{p}) - F(\mathbf{q}) - \langle \mathbf{p} - \mathbf{q}, \nabla_F(\mathbf{q}) \rangle$

Not a distance but $D_F(\mathbf{x}, \mathbf{y}) \ge 0$ and $D_F(\mathbf{x}, \mathbf{y}) = 0 \iff \mathbf{x} = \mathbf{y}$

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

Examples

• $F(x) = x^2$: Squared Euclidean distance

$$\begin{array}{rcl} D_F(\mathbf{p},\mathbf{q}) &=& F(\mathbf{p}) - F(\mathbf{q}) - \langle \mathbf{p} - \mathbf{q}, \boldsymbol{\nabla}_F(\mathbf{q}) \rangle \\ &=& \mathbf{p}^2 - \mathbf{q}^2 - \langle \mathbf{p} - \mathbf{q}, 2\mathbf{q} \rangle = \|\mathbf{p} - \mathbf{q}\|^2 \end{array}$$

イロト イヨト イヨト イヨト

크

Examples

• $F(x) = x^2$: Squared Euclidean distance

$$\begin{array}{rcl} D_F(\mathbf{p},\mathbf{q}) &=& F(\mathbf{p}) - F(\mathbf{q}) - \langle \mathbf{p} - \mathbf{q}, \boldsymbol{\nabla}_F(\mathbf{q}) \rangle \\ &=& \mathbf{p}^2 - \mathbf{q}^2 - \langle \mathbf{p} - \mathbf{q}, 2\mathbf{q} \rangle = \|\mathbf{p} - \mathbf{q}\|^2 \end{array}$$

$$F(p) = \sum p(x) \log_2 p(x)$$
$$D_F(p,q) = \sum_x p(x) \log_2 \frac{p(x)}{q(x)}$$

(Shannon entropy) (K-L divergence)

Examples

• $F(x) = x^2$: Squared Euclidean distance

$$\begin{array}{rcl} D_F(\mathbf{p},\mathbf{q}) &=& F(\mathbf{p}) - F(\mathbf{q}) - \langle \mathbf{p} - \mathbf{q}, \boldsymbol{\nabla}_F(\mathbf{q}) \rangle \\ &=& \mathbf{p}^2 - \mathbf{q}^2 - \langle \mathbf{p} - \mathbf{q}, 2\mathbf{q} \rangle = \|\mathbf{p} - \mathbf{q}\|^2 \end{array}$$

$$F(p) = \sum p(x) \log_2 p(x)$$
 (Shannon entropy)

$$D_F(p,q) = \sum_x p(x) \log_2 \frac{p(x)}{q(x)}$$
 (K-L divergence)

►
$$F(p) = -\sum_{x} \log p(x)$$
 (Burg entropy)
 $D_F(p,q) = \sum_{x} (\frac{p(x)}{q(x)} \log \frac{p(x)}{q(x)} - 1)$ (Itakura-Saito)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Bisectors

$$D_F(\mathbf{p},\mathbf{q}) = F(\mathbf{p}) - F(\mathbf{q}) - \langle \mathbf{p} - \mathbf{q}, \nabla_F(\mathbf{q})
angle$$

Two types of bisectors

$$\begin{aligned} H_{pq} &: D_F(\mathbf{x}, \mathbf{p}) &= D_F(\mathbf{x}, \mathbf{q}) \quad \text{(hyperplane)} \\ H_{pq}^* &: D_F(\mathbf{p}, \mathbf{x}) &= D_F(\mathbf{q}, \mathbf{x}) \quad \text{(hypersurface)} \end{aligned}$$

Bregman diagrams

- Accordingly, we can define two types of Bregman diagrams
- By Legendre duality : $D_F(\mathbf{x}, \mathbf{y}) = D_{F^*}(\mathbf{y}', \mathbf{x}')$

|→ 同 → モ → モ → モ → のへで

Bregman Voronoi diagrams

The 1st type Bregman diagram of $\mathcal{P} = {\mathbf{p}_1, ..., \mathbf{p}_n}$ is the minimization diagram of the *n* functions $D_F(\mathbf{x}, \mathbf{p}_i)$, i = 1, ..., n

Bregman Voronoi diagrams

The 1st type Bregman diagram of $\mathcal{P} = \{\mathbf{p}_1, \dots, \mathbf{p}_n\}$ is the minimization diagram of the *n* functions $D_F(\mathbf{x}, \mathbf{p}_i), i = 1, \dots, n$

Since
$$\arg\min(D_F(\mathbf{x},\mathbf{p}_i)) = \arg\max(h_i(\mathbf{x}) = \langle \mathbf{x} - \mathbf{p}_i, \mathbf{p}'_i \rangle - F(\mathbf{p}_i))$$

the Bregman diagram of the first type of a set \mathcal{P} of *n* points \mathbf{p}_i is affine

Bregman Voronoi diagrams

The 1st type Bregman diagram of $\mathcal{P} = \{\mathbf{p}_1, \dots, \mathbf{p}_n\}$ is the minimization diagram of the *n* functions $D_F(\mathbf{x}, \mathbf{p}_i), i = 1, \dots, n$

Since $\arg \min(D_F(\mathbf{x}, \mathbf{p}_i)) = \arg \max(h_i(\mathbf{x}) = \langle \mathbf{x} - \mathbf{p}_i, \mathbf{p}'_i \rangle - F(\mathbf{p}_i))$

the Bregman diagram of the first type of a set \mathcal{P} of *n* points \mathbf{p}_i is affine

The 2nd type Bregman diagram of \mathcal{P} is the (curved) minimization diagram of the *n* functions $D_F(\mathbf{p}_i, \mathbf{x}), i = 1, ..., n$

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

(日)

æ

Bregman Voronoi diagrams from Laguerre diagramms

The 1st type Bregman Voronoi diagram of *n* sites of \mathcal{X} is identical to the Laguerre diagram of *n* Euclidean hyperspheres centered at the \mathbf{p}'_i

Bregman Voronoi diagrams from Laguerre diagramms

The 1st type Bregman Voronoi diagram of *n* sites of \mathcal{X} is identical to the Laguerre diagram of *n* Euclidean hyperspheres centered at the \mathbf{p}'_i

$$D_{F}(\mathbf{x}, \mathbf{p}_{i}) \leq D_{F}(\mathbf{x}, \mathbf{p}_{j})$$

$$\iff -F(\mathbf{p}_{i}) - \langle \mathbf{x} - \mathbf{p}_{i}, \mathbf{p}_{i}' \rangle) \leq -F(\mathbf{p}_{j}) - \langle \mathbf{x} - \mathbf{p}_{j}, \mathbf{p}_{j}' \rangle)$$

$$\iff \langle \mathbf{x}, \mathbf{x} \rangle - 2\langle \mathbf{x}, \mathbf{p}_{i}' \rangle - 2F(\mathbf{p}_{i}) + 2\langle \mathbf{p}_{i}, \mathbf{p}_{i}' \rangle \leq \langle \mathbf{x}, \mathbf{x} \rangle - 2\langle \mathbf{x}, \mathbf{p}_{j}' \rangle - 2F(\mathbf{p}_{j}) + 2\langle \mathbf{p}_{j}, \mathbf{p}_{j}' \rangle$$

$$\iff \langle \mathbf{x} - \mathbf{p}_{i}', \mathbf{x} - \mathbf{p}_{i}' \rangle - r_{i}^{2} \leq \langle \mathbf{x} - \mathbf{p}_{j}', \mathbf{x} - \mathbf{p}_{j}' \rangle - r_{j}^{2}$$

where $r_l^2 = \langle \mathbf{p}_l', \mathbf{p}_l' \rangle + 2(F(\mathbf{p}_l) - \langle \mathbf{p}_l, \mathbf{p}_l' \rangle)$

< 同 > < 回 > < 回 > <

Bregman spheres

 $\sigma(\mathbf{C}, r) = \{\mathbf{X} \in \mathcal{X} \mid D_F(\mathbf{X}, \mathbf{C}) = r\}$

Lemma

The lifted image $\hat{\sigma}$ onto \mathcal{F} of a Bregman sphere σ is contained in a hyperplane H_{σ}

Conversely, the intersection of any hyperplane H with \mathcal{F} projects vertically onto a Bregman sphere

1st and 2nd types Bregman balls

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

ъ

Bregman triangulations

 $\hat{\mathcal{P}}$: the lifted image of $\mathcal P$ onto the graph $\mathcal F$ of F

 ${\mathcal T}$ the lower convex hull of $\hat{\mathcal P}$

The vertical projection of \mathcal{T} is called the Bregman triangulation $BT_F(\mathcal{P})$ of \mathcal{P}

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0

Bregman triangulations

 $\hat{\mathcal{P}}$: the lifted image of \mathcal{P} onto the graph \mathcal{F} of F

 ${\mathcal T}$ the lower convex hull of $\hat{{\mathcal P}}$

The vertical projection of \mathcal{T} is called the Bregman triangulation $BT_F(\mathcal{P})$ of \mathcal{P}

Characteristic property

The Bregman sphere circumscribing any simplex of $BT_F(\mathcal{P})$ does not enclose any point of \mathcal{P}

・ 同 ト ・ ヨ ト ・ ヨ ト

Primal space

Gradient space

↑ *

▲御▶ ▲理▶ ▲理▶

∃ 990

1st type $BVD(\mathcal{P})$ = Laguerre diagram of (\mathcal{P}')

geodesic $BT(\mathcal{P}) \quad \leftrightarrow \quad \text{regular triangulation of } (\mathcal{P}')$

 $\hat{\downarrow}$ BT(\mathcal{P})

Winter School on Algorithmic Geometry Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

(C) Hellinger-like divergence

(b) Exponential loss

Properties of Bregman triangulations

- $BT(\mathcal{P})$ is the geometric dual of $BD(\mathcal{P})$
- Characteristic property : The Bregman sphere circumscribing any simplex of BT(P) is empty
- Optimality : $BT(\mathcal{P}) = \min_{T \in \mathcal{T}(\mathcal{P})} \max_{\tau \in T} r(\tau)$ ($r(\tau) =$ radius of the smallest Bregman ball containing τ) [Rajan]