Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

Jean-Daniel Boissonnat

Winter School on Algorithmic Geometry
ENS-Lyon
January 2010

Convex hull

\mathcal{P}

Smallest convex set that contains a finite set of points \mathcal{P}
Set of all possible convex combinations of points in \mathcal{P}

$$
\sum \lambda_{i} p_{i}, \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
$$

We call polytope the convex hull of a finite set of points

Simplex

The convex hull of $k+1$ points that are affinely independent is called a k-simplex

1-simplex $=$ line segment
2-simplex = triangle
3-simplex $=$ tetrahedron

Facial structure of a polytope

Supporting hyperplane

$H \cap C \neq \emptyset$ and C is entirely contained in one of the two half-spaces defined by H

Faces

The faces of a P are the polytopes $P \cap h, h$ support. hyp.

The face complex
The faces of P form a cell complex C

- $\forall f \in C, f$ is a convex polytope
- $f \in C, f \subset g \Rightarrow g \in C$
- $\forall f, g \in C$, either $f \cap g=\emptyset$ or $f \cap g \in C$

General position

A point set \mathcal{P} is said to be in general position iff no subset of $k+2$ points lie in a k-flat

If \mathcal{P} is in general position, all the faces of $\operatorname{conv}(\mathcal{P})$ are simplices
The boundary of $\operatorname{conv}(\mathcal{P})$ is a simplicial complex

Two ways of defining polyhedra

Convex hull of n points

Two ways of defining polyhedra

Convex hull of n points

Intersection of n half-spaces

Duality between points and hyperplanes

hyperplane $h: x_{d}=a \cdot x^{\prime}-b$ of $\mathbb{R}^{d} \longrightarrow$ point $h^{*}=(a, b) \in \mathbb{R}^{d}$

$$
\begin{aligned}
\text { point } p=\left(p^{\prime}, p_{d}\right) \in \mathbb{R}^{d} & \longrightarrow
\end{aligned} \begin{aligned}
& \text { hyperplane } p^{*} \subset \mathbb{R}^{d} \\
& =\left\{(a, b) \in \mathbb{R}^{d}: b=p^{\prime} \cdot a-p_{d}\right\}
\end{aligned}
$$

The mapping *

- preserves incidences :

$$
\begin{aligned}
p \in h & \Longleftrightarrow p_{d}=a \cdot p^{\prime}-b \Longleftrightarrow b=p^{\prime} \cdot a-p_{d} \Longleftrightarrow h^{*} \in p^{*} \\
p \in h^{+} & \Longleftrightarrow p_{d}>a \cdot p^{\prime}-b \Longleftrightarrow b>p^{\prime} \cdot a-p_{d} \Longleftrightarrow h^{*} \in p^{*+}
\end{aligned}
$$

- is an involution and thus is bijective : $h^{* *}=h$ and $p^{* *}=p$

Duality between polytopes

Let h_{1}, \ldots, h_{n} be n hyperplanes de \mathbb{R}^{d} and let $P=\cap h_{i}^{+}$

A vertex s of P is the intersection of $k \geq d$ hyperplanes h_{1}, \ldots, h_{k} lying above all the other hyperplanes
$\Longrightarrow s^{*}$ is a hyperplane $\ni h_{1}^{*}, \ldots, h_{k}^{*}$

$$
\text { supporting } P^{*}=\operatorname{conv}^{-}\left(h_{1}^{*}, \ldots, h_{k}^{*}\right)
$$

General position :
s is the intersection of d hyperplanes
$\Longrightarrow s^{*}$ is a $(d-1)$-face (simplex) de P^{*}

More generally and under the general position assumption, if f is a $(d-k)$-face of $P, f=\cap_{i=1}^{k} h_{i}$

$$
\begin{aligned}
p \in f \Leftrightarrow & h_{i}^{*} \in p^{*} \text { for } i=1, \ldots, k \\
& h_{i}^{*} \in p^{*+} \text { for } i=k+1, \ldots, n \\
\Leftrightarrow & p^{*} \text { support. hyp. of } P^{*}=\operatorname{conv}\left(h_{1}^{*}, \ldots, h_{n}^{*}\right) \\
& \ni h_{1}^{*}, \ldots, h_{k}^{*} \\
\Leftrightarrow & f^{*}=\operatorname{conv}\left(h_{1}^{*}, \ldots, h_{k}^{*}\right) \text { is a }(k-1)-\text { face of } P^{*}
\end{aligned}
$$

More generally and under the general position assumption, if f is a $(d-k)$-face of $P, f=\cap_{i=1}^{k} h_{i}$

$$
\begin{aligned}
p \in f \Leftrightarrow & h_{i}^{*} \in p^{*} \text { for } i=1, \ldots, k \\
& h_{i}^{*} \in p^{*+} \text { for } i=k+1, \ldots, n \\
\Leftrightarrow & p^{*} \text { support. hyp. of } P^{*}=\operatorname{conv}\left(h_{1}^{*}, \ldots, h_{n}^{*}\right) \\
& \ni h_{1}^{*}, \ldots, h_{k}^{*} \\
\Leftrightarrow & f^{*}=\operatorname{conv}\left(h_{1}^{*}, \ldots, h_{k}^{*}\right) \text { is a }(k-1)-\text { face of } P^{*}
\end{aligned}
$$

Duality between P and P^{*}

- We have defined an involutive correspondence between the faces of P and P^{*} s.t. $\forall f, g \in P, f \subset g \Rightarrow g^{*} \subset f^{*}$
- As a consequence, computing P reduces to computing a lower convex hull

Euler's formula

The numbers of vertices s, edges a and facets f of a polytope of \mathbb{R}^{3} satisfy

$$
s-a+f=2
$$

Schlegel diagram

Euler formula : $s-a+f=2$

Incidences edges-facets

$$
2 a \geq 3 f \quad \Longrightarrow \quad \begin{aligned}
& a \leq 3 s-6 \\
& f \leq 2 s-4
\end{aligned}
$$

with equality when all facet are triangles

Beyond the 3rd dimension

Upper bound theorem
If P is the intersection of n half-spaces of \mathbb{R}^{d}

$$
\text { nb faces of } P=\Theta\left(n^{\left\lfloor\frac{d}{2}\right\rfloor}\right)
$$

Beyond the 3rd dimension

Upper bound theorem
If P is the intersection of n half-spaces of \mathbb{R}^{d}

$$
\text { nb faces of } P=\Theta\left(n^{\left\lfloor\frac{d}{2}\right\rfloor}\right)
$$

General position

all vertices of P are incident to d edges (in the worst-case) and have distinct x_{d}
\Rightarrow the convex hull of $k<d$ edges incident to a vertex p is a k-face of P
\Rightarrow any k-face is the intersection of $d-k$ hyperplanes defining P

Proof of the upper bound th.

1. $\geq\left\lceil\frac{d}{2}\right\rceil$ edges incident to a vertex p are in $h_{p}^{+}: x_{d} \geq x_{d}(p)$ or in h_{p}^{-}
$\Rightarrow p$ is a x_{d}-max or x_{d}-min vertex of at least one $\left\lceil\frac{d}{2}\right\rceil$-face of P
\Rightarrow \# vertices of $P \leq 2 \times \#\left\lceil\frac{d}{2}\right\rceil$-faces of P
2. A k-face is the intersection of $d-k$ hyperplanes defining P

$$
\begin{aligned}
& \Rightarrow \# k \text {-faces }=\binom{n}{d-k}=O\left(n^{d-k}\right) \\
& \Rightarrow \#\left\lceil\frac{d}{2}\right\rceil \text {-faces }=O\left(n^{\left.\frac{d}{2}\right\rfloor}\right)
\end{aligned}
$$

3. The number of faces incident to p depends on d but not on n

Representation of a convex hull

Adjacency graph (AG) of the facets
In general position, all the facets are ($d-1$)-simplexes

Vertex

$$
\text { Face* } \quad v_{-} \text {face }
$$

Face

$$
\begin{array}{ll}
\text { Vertex* } & \text { vertex }[d] \\
\text { Face* } & \text { neighbor }[d]
\end{array}
$$

Incremental algorithm

\mathcal{P}_{i} : set of the i points that have been inserted first $\operatorname{conv}\left(\mathcal{P}_{i}\right):$ convex hull at step i

$f=\left[p_{1}, \ldots, p_{d}\right]$ is a red facet iff its supporting hyperplane separates p_{i} from $\operatorname{conv}\left(\mathcal{P}_{i}\right)$
$\Longleftrightarrow \operatorname{orient}\left(p_{1}, \ldots, p_{d}, p_{i}\right) \times \operatorname{orient}\left(p_{1}, \ldots, p_{d}, O\right)<0$
$\operatorname{orient}\left(p_{0}, p_{1}, \ldots, p_{d}\right)=\left|\begin{array}{cccc}1 & 1 & \ldots & 1 \\ x_{0} & x_{1} & \ldots & x_{d} \\ y_{0} & y_{1} & \ldots & y_{d} \\ z_{0} & z_{1} & \ldots & z_{d}\end{array}\right|$

Update of $\operatorname{conv}\left(\mathcal{P}_{i}\right)$

- Locate : traverse AG to find the red facets and the $(d-2)$-faces on the horizon V
- Update: replace the red facets by the facets $\operatorname{conv}\left(p_{i}, e\right), e \in V$

Update of $\operatorname{conv}\left(\mathcal{P}_{i}\right)$

- Locate : traverse AG to find the red facets and the $(d-2)$-faces on the horizon V
- Update: replace the red facets by the facets $\operatorname{conv}\left(p_{i}, e\right), e \in V$

Correctness

- The AG of the red facets is connected
- The new faces are all obtained as above

Complexity analysis

- update proportionnal to the number of red facets
- $\#$ new facets $=O\left(n^{\left\lfloor\frac{d-1}{2}\right\rfloor}\right)$
- fast locate : insert the points in lexicographic order and attach a facet to
 each point

$$
\begin{aligned}
T(n, d) & =O(n \log n)+\sum_{i=1}^{n}|\operatorname{conv}(i, d-1)| \\
& =O\left(n \log n+n \times n\left\lfloor\frac{d-1}{2}\right\rfloor\right)=O\left(n \log n+n\left\lfloor^{\left.\frac{d+1}{2}\right\rfloor}\right)\right.
\end{aligned}
$$

Complexity analysis

- update proportionnal to the number of red facets
- $\#$ new facets $=O\left(n^{\left\lfloor\frac{d-1}{2}\right\rfloor}\right)$
- fast locate : insert the points in lexicographic order and attach a facet to
 each point

$$
\begin{aligned}
T(n, d) & =O(n \log n)+\sum_{i=1}^{n}|\operatorname{conv}(i, d-1)| \\
& =O\left(n \log n+n \times n\left\lfloor\frac{d-1}{2}\right\rfloor\right)=O\left(n \log n+n\left\lfloor\frac{d+1}{2}\right\rfloor\right)
\end{aligned}
$$

Optimal in even dimensions
Can be improved to $O(n \log n)$ when $d=3$
The expected complexity can be improved to $O\left(n \log n+n^{\left\lfloor\frac{d}{2}\right\rfloor}\right)$ by inserting the points in random order (see course 3)
The randomized algorithm can be derandomized

Delaunay Triangulations

Simplex

The convex hull of $k+1$ points that are affinely independent is called a k-simplex

1 -simplex = line segment, 2 -simplex = triangle, 3-simplex $=$ tetrahedron

Simplex

The convex hull of $k+1$ points that are affinely independent is called a k-simplex

1 -simplex = line segment, 2 -simplex = triangle,
3-simplex = tetrahedron
Simplicial complex
A finite collection of simplices C called the faces of C such that

- $\forall f \in C, f$ is a simplex
- $f \in C, f \subset g \Rightarrow g \in C$
- $\forall f, g \in C$, either $f \cap g=\emptyset$ or $f \cap g \in C$

Triangulation of a finite set of points

A triangulation $T(\mathcal{P})$ of a finite set of points $\mathcal{P} \in \mathbb{R}^{d}$ is a d-simplicial complex whose vertices are the points of \mathcal{P} and whose domain is $\operatorname{conv}(\mathcal{P})$

There exists many triangulations of a given set of points

Delaunay triangulation

$\mathcal{P}=\left\{p_{1}, p_{2} \ldots p_{n}\right\}$ set of points in general position ($\nexists d+1$ points on a same sphere)
$t \subset \mathcal{P}$ is a Delaunay simplex iff \exists a sphere σ_{t} s.t.

$$
\begin{aligned}
& \sigma_{t}(p)=0 \forall p \in t \\
& \sigma_{t}(q)>0 \forall q \in \mathcal{P} \backslash t
\end{aligned}
$$

Delaunay triangulation

$\mathcal{P}=\left\{p_{1}, p_{2} \ldots p_{n}\right\}$ set of points in general position ($\nexists d+1$ points on a same sphere)
$t \subset \mathcal{P}$ is a Delaunay simplex iff \exists a sphere σ_{t} s.t.

$$
\begin{aligned}
& \sigma_{t}(p)=0 \forall p \in t \\
& \sigma_{t}(q)>0 \forall q \in \mathcal{P} \backslash t
\end{aligned}
$$

Delaunay theorem

The Delaunay simplices form a triangulation
 of \mathcal{P}, called the Delaunay triangulation of \mathcal{P}

Proof of the theorem

$$
\begin{aligned}
& \text { Linearization } \\
& \sigma(x)=x^{2}-2 c \cdot x+s, s=c^{2}-r^{2} \\
& \sigma(x)<0 \Leftrightarrow\left\{\begin{array}{l}
z<2 c \cdot x+s \\
z=x^{2}
\end{array}\right. \\
& \qquad \Leftrightarrow \hat{x}=\left(x, x^{2}\right) \in h_{\sigma}^{-}
\end{aligned}
$$

Proof of the theorem

$$
\begin{aligned}
& \text { Linearization } \\
& \sigma(x)=x^{2}-2 c \cdot x+s, s=c^{2}-r^{2}
\end{aligned}
$$

$$
\begin{aligned}
\sigma(x)<0 & \Leftrightarrow\left\{\begin{array}{l}
z<2 c \cdot x+s \\
z=x^{2}
\end{array}\right. \\
& \Leftrightarrow \hat{x}=\left(x, x^{2}\right) \in h_{\sigma}^{-}
\end{aligned}
$$

Proof of Delaunay's th.

t a simplex, σ_{t} its circumscribing sphere

$$
\begin{aligned}
t \in \operatorname{Del}(\mathcal{P}) & \Leftrightarrow \forall i, \hat{p}_{i} \in h_{\sigma_{t}}^{+} \\
& \Leftrightarrow \hat{t} \text { is a face of } \operatorname{conv}^{-}(\hat{\mathcal{P}})
\end{aligned}
$$

Proof of the theorem

$$
\begin{aligned}
& \text { Linearization } \\
& \sigma(x)=x^{2}-2 c \cdot x+s, s=c^{2}-r^{2}
\end{aligned}
$$

$$
\begin{aligned}
\sigma(x)<0 & \Leftrightarrow \begin{cases}z<2 c \cdot x+s \\
z=x^{2}\end{cases} \\
& \Leftrightarrow \hat{x}=\left(x, x^{2}\right) \in h_{\sigma}^{-}
\end{aligned}
$$

Proof of Delaunay's th.

t a simplex, σ_{t} its circumscribing sphere
$t \in \operatorname{Del}(\mathcal{P}) \Leftrightarrow \forall i, \hat{p}_{i} \in h_{\sigma_{t}}^{+}$
$\Leftrightarrow \hat{t}$ is a face of $\operatorname{conv}^{-}(\hat{\mathcal{P}})$

$$
\operatorname{Del}(\mathcal{P})=\operatorname{proj}^{\left(\operatorname{conv}^{-}(\hat{\mathcal{P}})\right)}
$$

Combinatorial complexity

The combinatorial complexity of the Delaunay triangulation diagram of n points of \mathbb{R}^{d} is the same as the combinatorial complexity of a convex hull of n points of \mathbb{R}^{d+1}

Hence, by the Upper Bound Theorem
[Mc Mullen 1970] it is $\Theta\left(n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)$

Algorithm for constructing DT

Input : a set \mathcal{P} of n points of \mathbb{R}^{d}

1 Lift the points of \mathcal{P} onto the paraboloid $x_{d+1}=x^{2}$ of \mathbb{R}^{d+1} : $p_{i} \rightarrow \hat{p}_{i}=\left(p_{i}, p_{i}^{2}\right)$
2 Compute conv ($\left.\left\{\hat{p}_{i}\right\}\right)$
3 Project the lower hull conv ${ }^{-}\left(\left\{\hat{p}_{i}\right\}\right)$ onto \mathbb{R}^{d}
Complexity: $\Theta\left(n \log n+n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)$
Main predicate

$$
p_{4}
$$

$$
\begin{aligned}
\text { insphere }\left(p_{0}, \ldots, p_{d+1}\right) & =\operatorname{orient}\left(\hat{p}_{0}, \ldots, \hat{p}_{d+1}\right) \\
& =\operatorname{sign}\left|\begin{array}{ccc}
1 & \ldots & 1 \\
p_{0} & \ldots & p_{d+1} \\
p_{0}^{2} & \ldots & p_{d+1}^{2}
\end{array}\right|
\end{aligned}
$$

Local characterization

$$
\begin{aligned}
& \text { Pair of regular simplices } \\
& \sigma_{2}\left(q_{1}\right) \geq 0 \text { and } \sigma_{1}\left(q_{2}\right) \geq 0 \\
& \Leftrightarrow \hat{c}_{1} \in h_{\sigma_{2}}^{+} \text {and } \hat{c}_{2} \in h_{\sigma_{1}}^{+}
\end{aligned}
$$

Theorem
A triangulation such that all pairs of simplexes are regular is a Delaunay triangulation

Proof

The PL function whose graph is obtained by lifting the triangles is locally convex and has a convex support

Optimality properties of the Delaunay triangulation

Among all possible triangulations of $\mathcal{P}, \operatorname{Del}(\mathcal{P})$

1. maximizes the smallest angle (in the plane)
[Lawson]
2. minimizes the radius of the maximal smallest ball enclosing a simplex)
[Rajan]
3. minimizes the roughness (Dirichlet's energy)
[Rippa]

Optimizing the angular vector $(d=2)$

Angular vector of a triangulation $T(\mathcal{P})$
$\operatorname{ang}(T(\mathcal{P}))=\left(\alpha_{1}, \ldots, \alpha_{3 t}\right), \alpha_{1} \leq \ldots \leq \alpha_{3 t}$

Optimality
Any triangulation of a given point set \mathcal{P} whose angular vector is maximal (for lexicographic order) is a Delaunay triangulation of \mathcal{P}

Affects matrix conditioning in FE methods

Constructive proof using flips

While \exists a non regular pair $\left(t_{3}, t_{4}\right)$ $/^{*} t_{3} \cup t_{4}$ is convex */ replace $\left(t_{3}, t_{4}\right)$ by $\left(t_{1}, t_{2}\right)$

Constructive proof using flips

While \exists a non regular pair $\left(t_{3}, t_{4}\right)$ $/^{*} t_{3} \cup t_{4}$ is convex */ replace $\left(t_{3}, t_{4}\right)$ by $\left(t_{1}, t_{2}\right)$

Regularize \Leftrightarrow improve ang ($T(\mathcal{P})$)

$$
\begin{aligned}
& \operatorname{ang}\left(t_{1}, t_{2}\right) \geq \operatorname{ang}\left(t_{3}, t_{4}\right) \\
& \quad a_{1}=a_{3}+a_{4}, d_{2}=d_{3}+d_{4}, \\
& c_{1} \geq d_{3}, \quad b_{1} \geq d_{4}, \quad b_{2} \geq a_{4}, \quad c_{2} \geq a_{3}
\end{aligned}
$$

- The algorithm terminates since the number of triangulations of \mathcal{P} is finite and $\operatorname{ang}(T(\mathcal{P}))$ cannot decrease
- The obtained triangulation is a Delaunay triangulation of \mathcal{P}
- If a triangulation of \mathcal{P} maximixes the angular vector, all its edges are regular; hence, it is a DT of \mathcal{P}

Minimizing the maximal min-containment radius [Raian]

$r_{t}^{\prime}=$ radius of the smallest ball containing t
$Q(T)=\max _{t \in T} r_{t}^{\prime}$

Th. : for a given \mathcal{P}, for all $T(\mathcal{P})$,

$$
Q(\operatorname{Del}(\mathcal{P})) \leq Q(T(\mathcal{P}))
$$

Minimizing the maximal min-containment radius [Raian]

$r_{t}^{\prime}=$ radius of the smallest ball containing t
$Q(T)=\max _{t \in T} r_{t}^{\prime}$

Th. : for a given \mathcal{P}, for all $T(\mathcal{P}), \quad Q(\operatorname{Del}(\mathcal{P})) \leq Q(T(\mathcal{P}))$
Interpolation error
[Waldron 98]
If g is the linear interpolation of f over a simplex t,

$$
\|f-g\|_{\infty} \leq c_{t} \frac{r_{t}^{\prime 2}}{2}
$$

$c_{t}=$ bound on the absolute curvature of f in t

Minimizing the maximal min-containment radius

$\max _{t \in \operatorname{Del}} r_{t \in T}^{\prime} \leq \max _{t \in T} r_{t}^{\prime}$

Proof

$$
\sigma_{t}(x)=\left\|x-c_{t}\right\|^{2}-r_{t}^{2}, \quad \sigma_{T}(x)=\sigma_{t}(x) \text { if } x \in t \subset T
$$

1. $\forall x \in \operatorname{conv}(\mathcal{P}): 0>\sigma_{\text {Del }}(x) \geq \sigma_{T}(x)$
2. $\min _{x \in t} \sigma_{t}(x)=-r_{t}^{\prime 2} \Leftarrow$ if $c_{t} \notin t: \sigma_{t}(x) \geq\left\|c_{t}^{\prime}-c_{t}\right\|^{2}-r_{t}^{2}=-r_{t}^{\prime 2}$
3. $x_{T}=\arg \min \sigma_{T}(x), \quad x_{\mathrm{Del}}=\arg \min \sigma_{\mathrm{Del}}(x)$

$$
\sigma_{T}\left(x_{T}\right)=-r_{T}^{\prime 2} \leq \sigma_{T}\left(x_{\mathrm{Del}}\right) \leq \sigma_{\mathrm{Del}}\left(x_{\mathrm{Del}}\right)=-r_{\mathrm{Del}}^{\prime 2}
$$

Proof of 1: $0>\sigma_{\text {Del }}(x) \geq \sigma_{T}(x)$

$$
\begin{aligned}
\sigma_{t}(x) & =x^{2}-2 c_{t} \cdot x+s\left(s=c_{t}^{2}-r_{t}^{2}\right) \\
& =f(x)-g(x)
\end{aligned}
$$

where $f(x)=x^{2}$ and $g_{t}(x)=2 c_{t} \cdot x-s$

Geometric interpretation

$\sigma_{t}(x)$ maximal

$$
\Leftrightarrow g_{t}(x) \text { minimal }
$$

$$
\Leftrightarrow \mathcal{G}_{t}=h_{\sigma_{t}} \text { supports } \operatorname{conv}(\hat{\mathcal{P}})
$$

$$
\Leftrightarrow \sigma_{t} \text { is empty }
$$

$$
\Leftrightarrow t \in \operatorname{Del}(\mathcal{P})
$$

Proof of 1: $0>\sigma_{\text {Del }}(x) \geq \sigma_{T}(x)$

$$
\begin{aligned}
\sigma_{t}(x) & =x^{2}-2 c_{t} \cdot x+s\left(s=c_{t}^{2}-r_{t}^{2}\right) \\
& =f(x)-g(x)
\end{aligned}
$$

where $f(x)=x^{2}$ and $g_{t}(x)=2 c_{t} \cdot x-s$

Geometric interpretation

$\sigma_{t}(x)$ maximal

$$
\Leftrightarrow g_{t}(x) \text { minimal }
$$

$$
\Leftrightarrow \mathcal{G}_{t}=h_{\sigma_{t}} \text { supports } \operatorname{conv}(\hat{\mathcal{P}})
$$

$$
\Leftrightarrow \sigma_{t} \text { is empty }
$$

$$
\Leftrightarrow t \in \operatorname{Del}(\mathcal{P})
$$

Minimum roughness of Delaunay triangulations

Input : n points $p_{1}, \ldots p_{n}$ of \mathbb{R}^{2} and for each p_{j} a real f_{j}
Roughness of a triangulation $T(\mathcal{P})$:
$R(T)=\sum_{i} \int_{T_{i}}\left(\left(\frac{\partial \phi_{i}}{\partial x}\right)^{2}+\left(\frac{\partial \phi_{i}}{\partial y}\right)^{2}\right) d x d y$
$\phi_{i}=$ linear interpolation of the f_{j} over triangle $T_{i} \in T$

Theorem (Rippa)

Among all possible triangulations of $\mathcal{P}, \operatorname{Del}(\mathcal{P})$ is one with minimum roughness

Voronoi Diagrams

Euclidean Voronoi diagrams

Voronoi cell

$$
V\left(p_{i}\right)=\left\{x:\left\|x-p_{i}\right\| \leq\left\|x-p_{j}\right\|, \forall j\right\}
$$

Voronoi diagram $(\mathcal{P})=\left\{\right.$ cell complex whose cells are the $V\left(p_{i}\right)$ and their faces, $\left.p_{i} \in \mathcal{P}\right\}$

Voronoi diagrams and polytopes

$\operatorname{Vor}\left(p_{1}, \ldots, p_{n}\right)$ is the minimization diagram of the n functions $\delta_{i}(x)=\left(x-p_{i}\right)^{2}$

Voronoi diagrams and polytopes

$\operatorname{Vor}\left(p_{1}, \ldots, p_{n}\right)$ is the minimization diagram of the n functions $\delta_{i}(x)=\left(x-p_{i}\right)^{2}$
$\arg \min \left(\delta_{i}\right)=\arg \max \left(h_{i}\right)$
where $h_{p_{i}}(x)=2 p_{i} \cdot x-p_{i}^{2}$

The minimization diagram of the δ_{i} is also the maximization diagram of the affine functions $h_{i}(x)$

Voronoi diagrams and polytopes

$\operatorname{Vor}\left(p_{1}, \ldots, p_{n}\right)$ is the minimization diagram of the n functions $\delta_{i}(x)=\left(x-p_{i}\right)^{2}$
$\arg \min \left(\delta_{i}\right)=\arg \max \left(h_{i}\right)$

where $h_{p_{i}}(x)=2 p_{i} \cdot x-p_{i}^{2}$

The minimization diagram of the δ_{i} is also the maximization diagram of the affine functions $h_{i}(x)$

The faces of $\operatorname{Vor}(\mathcal{P})$ are the projection of the faces of $\mathcal{V}(\mathcal{P})=\bigcap_{i} h_{p_{i}}^{+}$

$$
h_{p_{i}}^{+}=\left\{x: x_{d+1}>2 p_{i} \cdot x-p_{i}^{2}\right\}
$$

Voronoi diagrams and polytopes

$\operatorname{Vor}\left(p_{1}, \ldots, p_{n}\right)$ is the minimization diagram of the n functions $\delta_{i}(x)=\left(x-p_{i}\right)^{2}$
$\arg \min \left(\delta_{i}\right)=\arg \max \left(h_{i}\right)$

where $h_{p_{i}}(x)=2 p_{i} \cdot x-p_{i}^{2}$

The minimization diagram of the δ_{i} is also the maximization diagram of the affine functions $h_{i}(x)$

The faces of $\operatorname{Vor}(\mathcal{P})$ are the projection of the faces of $\mathcal{V}(\mathcal{P})=\bigcap_{i} h_{p_{i}}^{+}$

$$
h_{p_{i}}^{+}=\left\{x: x_{d+1}>2 p_{i} \cdot x-p_{i}^{2}\right\}
$$

Note!

$h_{p_{i}}(x)=0$ is the hyperplane tangent to $\mathcal{Q}: x_{d+1}=x^{2}$ at $\left(x, x^{2}\right)$

Dual triangulation

$$
\mathcal{V}(\mathcal{P})=h_{p_{1}^{+}}^{+} \cap \ldots \cap h_{p_{n}}^{+} \quad \longleftrightarrow \quad \mathcal{D}(\mathcal{P})=\operatorname{conv}^{-}\left(\left\{\phi\left(p_{1}\right), \ldots, \phi\left(p_{n}\right)\right\},\right.
$$

$$
\text { Voronoi Diagram of } \mathcal{P} \quad \longleftrightarrow \text { Delaunay Triangulation of } \mathcal{P}
$$

Affine Diagrams

Motivations

- To extend Voronoi diagrams to spheres (or weighted points)
- molecular biology : how to compute a union of balls ?
- sampling theory : the offset of a set of points captures topological information on the sapled object (see Course F. Chazal)
- to improve the quality of a mesh (see Course M. Yvinec)
- To characterize the class of affine diagrams

Power diagrams of spheres

Power of a point to a sphere

$$
\begin{aligned}
& \sigma(x)=(x-t)^{2}=(x-c)^{2}-r^{2} \\
& \sigma(x)<0 \Longleftrightarrow x \in \operatorname{int}(\sigma)
\end{aligned}
$$

Bisector of two spheres = hyperplane

$$
\sigma_{i}(x)=\sigma_{j}(x) \Longleftrightarrow \not x^{2}-2 c_{i} \cdot x+s_{i}=\not x^{2}-2 c_{j} \cdot x+s_{j}
$$

Laguerre (power) diagram

Sites: a set \mathcal{S} of n spheres $\sigma_{1}, \ldots, \sigma_{n}$
Distance of a point x to σ_{i}

$$
\sigma_{i}(x)=\left(x-c_{i}\right)^{2}-r_{i}^{2}
$$

$\operatorname{Lag}(\mathcal{S})$ is the cell complex whose cells are the

$$
\operatorname{Lag}\left(\sigma_{i}\right)=\left\{x: \sigma_{i}(x) \leq \sigma_{j}(x), \forall j\right\}
$$

Laguerre (power) diagram

Sites: a set \mathcal{S} of n spheres $\sigma_{1}, \ldots, \sigma_{n}$
Distance of a point x to σ_{i}

$$
\sigma_{i}(x)=\left(x-c_{i}\right)^{2}-r_{i}^{2}
$$

$\operatorname{Lag}(\mathcal{S})$ is the cell complex whose cells are the

$$
\operatorname{Lag}\left(\sigma_{i}\right)=\left\{x: \sigma_{i}(x) \leq \sigma_{j}(x), \forall j\right\}
$$

Note!

- Lag $\left(\sigma_{i}\right)$ may be empty
- c_{i} may not belong to $\operatorname{Lag}\left(\sigma_{i}\right)$

Laguerre diagrams and polytopes

$$
\begin{aligned}
& \sigma_{i}(x)=\left(x-c_{i}\right)^{2}-r_{i}^{2} \\
& h_{\sigma_{i}}(x)=2 c_{i} \cdot x-c_{i}^{2}+r_{i}^{2} \\
& \arg \min \sigma_{i}(x)=\arg \min \left(\left(x-c_{i}\right)^{2}-r_{i}^{2}\right) \\
& =\arg \max \left(h_{\sigma_{i}}(x)\right) \\
& \left.h_{\sigma_{i}}(x)=2 c_{i} \cdot x-c_{i}^{2}+r_{i}^{2}\right)
\end{aligned}
$$

$\operatorname{Lag}(\mathcal{S})$ is the minimization diagram of the σ_{i} \Leftrightarrow the maximization diagram of the affine functions $h_{\sigma_{i}}(x)$

- The faces of $\operatorname{Lag}(\mathcal{S})$ are the vertical projections of the faces of $\mathcal{L}(\mathcal{S})=\bigcap_{i} h_{\sigma_{i}}^{+}$

Space of spheres

σ hypersphere of \mathbb{R}^{d}
\rightarrow point $\hat{\sigma}=\left(c, s=c^{2}-r^{2}\right) \in \mathbb{R}^{d+1}$
\rightarrow the polar hyperplane $h_{\sigma}=\hat{\sigma}^{*} \subset \mathbb{R}^{d+1}$:

$$
x_{d+1}=2 c \cdot x-s
$$

1. The spheres of radius 0 are mapped onto the paraboloid

$$
\mathcal{Q}: x_{d+1}=x^{2}
$$

2. The vertical projection of $h_{\sigma_{i}} \cap \mathcal{Q}$ onto $x_{d+1}=0$ is σ_{i}
3. $\sigma(x)=x^{2}-2 c \cdot x+s$ is the (signed) vertical distance from the lift of x onto h_{σ} to the lift \hat{x} of x onto \mathcal{Q}
4. $\sigma(x)<0 \Leftrightarrow \hat{x}=\left(x, x^{2}\right) \in h_{\sigma}^{-}$

Orthogonality between spheres

A distance between spheres
$d\left(\sigma_{1}, \sigma_{2}\right)=\sqrt{\left(c_{1}-c_{2}\right)^{2}-r_{1}^{2}-r_{2}^{2}}$

Orthogonality between spheres

A distance between spheres
$d\left(\sigma_{1}, \sigma_{2}\right)=\sqrt{\left(c_{1}-c_{2}\right)^{2}-r_{1}^{2}-r_{2}^{2}}$
Orthogonality

$$
\begin{aligned}
d\left(\sigma_{1}, \sigma_{2}\right)=0 & \Leftrightarrow\left(c_{1}-c_{2}\right)^{2}=r_{1}^{2}+r_{2}^{2} \\
& \Leftrightarrow \sigma_{1} \perp \sigma_{2} \quad \text { (Pythagore) }
\end{aligned}
$$

Orthogonality between spheres

A distance between spheres

$$
d\left(\sigma_{1}, \sigma_{2}\right)=\sqrt{\left(c_{1}-c_{2}\right)^{2}-r_{1}^{2}-r_{2}^{2}}
$$

Orthogonality

$$
\begin{aligned}
d\left(\sigma_{1}, \sigma_{2}\right)=0 & \Leftrightarrow\left(c_{1}-c_{2}\right)^{2}=r_{1}^{2}+r_{2}^{2} \\
& \Leftrightarrow \sigma_{1} \perp \sigma_{2} \quad \text { (Pythagore) }
\end{aligned}
$$

In the space of spheres

$$
\begin{aligned}
d\left(\sigma_{1}, \sigma_{2}\right)=0 & < \\
< & <s_{2}=2 c_{1} \cdot c_{2}-c_{1}^{2} \Leftrightarrow \hat{\sigma}_{2} \in h_{\sigma_{1}} \quad\left(s_{i}=c_{i}^{2}-r_{i}^{2}\right) \\
h_{\sigma_{1}}^{-} &
\end{aligned}
$$

The vertical projection of the dual complex $\mathcal{R}(\mathcal{S})$ of $\mathcal{L}(\mathcal{S})$ is called the regular triangulation of \mathcal{S}

$$
\left(\hat{\sigma}_{i}=h_{\sigma_{i}}^{*}=\left(c_{i}, c_{i}^{2}-r_{i}^{2}\right) \in \mathbb{R}^{d+1}\right)
$$

$\mathcal{S}=\left\{\sigma_{1}, \ldots \sigma_{n}\right\}$ where σ_{i} is the sphere of center c_{i} and radius r_{i}
$\mathcal{P}=\left\{c_{1}, \ldots, c_{n}\right\}$
Characteristic property
$t \subset \mathcal{P}$ is a simplex of the regular triangulation of \mathcal{S}
iff there exists a sphere σ_{t} s.t.

- $d\left(\sigma_{t}, \sigma_{i}\right)=0 \forall c_{i} \in t$
($\sigma_{t}=$ orthosphere of t)
- $d\left(\sigma_{t}, \sigma_{j}\right)>0 \forall c_{j} \in \mathcal{P} \backslash t$

Regular triangulation

Regular triangulation

Regular triangulation

Complexity and algorithm

nb of faces $=\Theta\left(n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right) \quad$ (Upper Bound Th.)
can be computed in time $\Theta\left(n \log n+n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)$

Complexity and algorithm

nb of faces $=\Theta\left(n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right) \quad$ (Upper Bound Th.)
can be computed in time $\Theta\left(n \log n+n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)$

Main predicate

$$
\text { power_test }\left(\sigma_{0}, \ldots, \sigma_{d+1}\right)=\operatorname{sign}\left|\begin{array}{ccc}
1 & \ldots & 1 \\
c_{0} & \ldots & c_{d+1} \\
c_{0}^{2}-r_{0}^{2} & \ldots & c_{d+1}^{2}-r_{d+1}^{2}
\end{array}\right|
$$

Affine diagrams and regular subdivisions

Definition

Affine diagrams are defined as the maximization diagrams of a finite set of affine functions
They are also called regular subdvisions

Affine diagrams and regular subdivisions

Definition

Affine diagrams are defined as the maximization diagrams of a finite set of affine functions
They are also called regular subdvisions

- Voronoi and Laguerre diagrams are affine diagrams
- Any affine Voronoi diagram of \mathbb{R}^{d} is the Laguerre diagram of a set of spheres of \mathbb{R}^{d}
- Delaunay and Laguerre triangulations are regular triangulations
- Any regular triangulation is a Laguerre triangulation, i.e. dual to a Laguerre diagram

Examples of affine diagrams

1. The intersection of a power diagram with an affine subspace

Examples of affine diagrams

1. The intersection of a power diagram with an affine subspace
2. A Voronoi diagram with the following quadratic distance function

$$
\|x-a\|_{Q}=(x-a)^{t} Q(x-a) \quad Q=Q^{t}
$$

Examples of affine diagrams

1. The intersection of a power diagram with an affine subspace
2. A Voronoi diagram with the following quadratic distance function

$$
\|x-a\|_{Q}=(x-a)^{t} Q(x-a) \quad Q=Q^{t}
$$

3. k-th order Voronoi diagrams

Order k Voronoi Diagrams

Order 2 Voronoi Diagram

A k-order Voronoi diagram is a power diagram

 Let $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots$ denote the subsets of k points of $\mathcal{P}$$$
\sigma_{i}(x)=\frac{1}{k} \sum_{j \in \mathcal{P}_{i}}\left(x-p_{j}\right)^{2}=x^{2}-\frac{2}{k} \sum_{j \in \mathcal{P}_{i}} p_{j} \cdot x+\frac{1}{k} \sum_{j \in \mathcal{P}_{i}} p_{j}^{2}
$$

The k nearest neighbors of x are the points of \mathcal{P}_{i} iff

$$
\forall j, \quad \sigma_{i}(x) \leq \sigma_{j}(x)
$$

σ_{i} is the sphere centered at $\frac{1}{k} \sum_{j=1}^{k} p_{i_{j}}$

$$
\sigma_{k}(0)=\frac{1}{k} \sum_{j=1}^{k} p_{i_{j}}^{2}
$$

A k-order Voronoi diagram is a power diagram

 Let $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots$ denote the subsets of k points of $\mathcal{P}$$$
\sigma_{i}(x)=\frac{1}{k} \sum_{j \in \mathcal{P}_{i}}\left(x-p_{j}\right)^{2}=x^{2}-\frac{2}{k} \sum_{j \in \mathcal{P}_{i}} p_{j} \cdot x+\frac{1}{k} \sum_{j \in \mathcal{P}_{i}} p_{j}^{2}
$$

The k nearest neighbors of x are the points of \mathcal{P}_{i} iff

$$
\forall j, \quad \sigma_{i}(x) \leq \sigma_{j}(x)
$$

σ_{i} is the sphere centered at $\frac{1}{k} \sum_{j=1}^{k} p_{i_{j}}$

$$
\sigma_{k}(0)=\frac{1}{k} \sum_{j=1}^{k} p_{i_{j}}^{2}
$$

Combinatorial complexity

The number of vertices and faces of the k first Voronoi diagrams is

$$
O\left(k^{\left\lceil\frac{d+1}{2}\right\rceil} n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)
$$

Molecules

- The union of n balls of \mathbb{R}^{d} can be represented as a subcomplex of the regular triangulation called the alpha-shape
- It can be computed in time $\Theta\left(n \log n+n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)$

Molecules

- The union of n balls of \mathbb{R}^{d} can be represented as a subcomplex of the regular triangulation called the alpha-shape
- It can be computed in time $\Theta\left(n \log n+n^{\left\lfloor^{\left.\frac{d+1}{2}\right\rfloor}\right)}\right.$

Interfaces entre protéines

[Cazals \& Janin 2006]

Interface antigène-anticorps

Bregman divergences

F a strictly convex and differentiable function defined over a convex set \mathcal{X}
$D_{F}(\mathbf{p}, \mathbf{q})=F(\mathbf{p})-F(\mathbf{q})-\left\langle\mathbf{p}-\mathbf{q}, \nabla_{F}(\mathbf{q})\right\rangle$

Not a distance but $D_{F}(\mathbf{x}, \mathbf{y}) \geq 0$ and $D_{F}(\mathbf{x}, \mathbf{y})=0 \Longleftrightarrow \mathbf{x}=\mathbf{y}$

Examples

- $F(x)=x^{2}$: Squared Euclidean distance

$$
\begin{aligned}
D_{F}(\mathbf{p}, \mathbf{q}) & =F(\mathbf{p})-F(\mathbf{q})-\left\langle\mathbf{p}-\mathbf{q}, \nabla_{F}(\mathbf{q})\right\rangle \\
& =\mathbf{p}^{2}-\mathbf{q}^{2}-\langle\mathbf{p}-\mathbf{q}, 2 \mathbf{q}\rangle=\|\mathbf{p}-\mathbf{q}\|^{2}
\end{aligned}
$$

Examples

- $F(x)=x^{2}$: Squared Euclidean distance

$$
\begin{aligned}
D_{F}(\mathbf{p}, \mathbf{q}) & =F(\mathbf{p})-F(\mathbf{q})-\left\langle\mathbf{p}-\mathbf{q}, \nabla_{F}(\mathbf{q})\right\rangle \\
& =\mathbf{p}^{2}-\mathbf{q}^{2}-\langle\mathbf{p}-\mathbf{q}, 2 \mathbf{q}\rangle=\|\mathbf{p}-\mathbf{q}\|^{2}
\end{aligned}
$$

- $F(p)=\sum p(x) \log _{2} p(x)$ $D_{F}(p, q)=\sum_{x} p(x) \log _{2} \frac{p(x)}{q(x)}$
(Shannon entropy)
(K-L divergence)

Examples

- $F(x)=x^{2}$: Squared Euclidean distance

$$
\begin{aligned}
D_{F}(\mathbf{p}, \mathbf{q}) & =F(\mathbf{p})-F(\mathbf{q})-\left\langle\mathbf{p}-\mathbf{q}, \nabla_{F}(\mathbf{q})\right\rangle \\
& =\mathbf{p}^{2}-\mathbf{q}^{2}-\langle\mathbf{p}-\mathbf{q}, 2 \mathbf{q}\rangle=\|\mathbf{p}-\mathbf{q}\|^{2}
\end{aligned}
$$

- $F(p)=\sum p(x) \log _{2} p(x)$ $D_{F}(p, q)=\sum_{x} p(x) \log _{2} \frac{p(x)}{q(x)}$
- $F(p)=-\sum_{x} \log p(x)$

$$
D_{F}(p, q)=\sum_{x}\left(\frac{p(x)}{q(x)} \log \frac{p(x)}{q(x)}-1\right)
$$

(Shannon entropy)
(K-L divergence)
(Burg entropy)
(Itakura-Saito)

Bisectors

$$
D_{F}(\mathbf{p}, \mathbf{q})=F(\mathbf{p})-F(\mathbf{q})-\left\langle\mathbf{p}-\mathbf{q}, \nabla_{F}(\mathbf{q})\right\rangle
$$

Two types of bisectors

$$
\begin{array}{ll}
H_{p q}: D_{F}(\mathbf{x}, \mathbf{p}) & =D_{F}(\mathbf{x}, \mathbf{q}) \\
& \text { (hyperplane) } \\
H_{p q}^{*}: D_{F}(\mathbf{p}, \mathbf{x})=D_{F}(\mathbf{q}, \mathbf{x}) & \text { (hypersurface) }
\end{array}
$$

Bregman diagrams

- Accordingly, we can define two types of Bregman diagrams
- By Legendre duality: $D_{F}(\mathbf{x}, \mathbf{y})=D_{F^{*}}\left(\mathbf{y}^{\prime}, \mathbf{x}^{\prime}\right)$

Bregman Voronoi diagrams

The 1 st type Bregman diagram of $\mathcal{P}=\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right\}$ is the minimization diagram of the n functions $D_{F}\left(\mathbf{x}, \mathbf{p}_{i}\right), i=1, \ldots, n$

Bregman Voronoi diagrams

The 1st type Bregman diagram of $\mathcal{P}=\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right\}$ is the minimization diagram of the n functions $D_{F}\left(\mathbf{x}, \mathbf{p}_{i}\right), i=1, \ldots, n$

Since $\arg \min \left(D_{F}\left(\mathbf{x}, \mathbf{p}_{i}\right)\right)=\arg \max \left(h_{i}(\mathbf{x})=\left\langle\mathbf{x}-\mathbf{p}_{i}, \mathbf{p}_{i}^{\prime}\right\rangle-F\left(\mathbf{p}_{i}\right)\right)$ the Bregman diagram of the first type of a set \mathcal{P} of n points \mathbf{p}_{i} is affine

Bregman Voronoi diagrams

The 1st type Bregman diagram of $\mathcal{P}=\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right\}$ is the minimization diagram of the n functions $D_{F}\left(\mathbf{x}, \mathbf{p}_{i}\right), i=1, \ldots, n$

Since $\arg \min \left(D_{F}\left(\mathbf{x}, \mathbf{p}_{i}\right)\right)=\arg \max \left(h_{i}(\mathbf{x})=\left\langle\mathbf{x}-\mathbf{p}_{i}, \mathbf{p}_{i}^{\prime}\right\rangle-F\left(\mathbf{p}_{i}\right)\right)$ the Bregman diagram of the first type of a set \mathcal{P} of n points \mathbf{p}_{i} is affine

The 2nd type Bregman diagram of \mathcal{P} is the (curved) minimization diagram of the n functions $D_{F}\left(\mathbf{p}_{i}, \mathbf{x}\right), i=1, \ldots, n$

Bregman Voronoi diagrams from Laguerre diagramms

The 1 st type Bregman Voronoi diagram of n sites of \mathcal{X} is identical to the Laguerre diagram of n Euclidean hyperspheres centered at the \mathbf{p}_{i}^{\prime}

Bregman Voronoi diagrams from Laguerre diagramms

The 1 st type Bregman Voronoi diagram of n sites of \mathcal{X} is identical to the Laguerre diagram of n Euclidean hyperspheres centered at the \mathbf{p}_{i}^{\prime}

$$
\begin{array}{ll}
& D_{F}\left(\mathbf{x}, \mathbf{p}_{i}\right) \leq D_{F}\left(\mathbf{x}, \mathbf{p}_{j}\right) \\
\Longleftrightarrow & \left.\left.-F\left(\mathbf{p}_{i}\right)-\left\langle\mathbf{x}-\mathbf{p}_{i}, \mathbf{p}_{i}^{\prime}\right\rangle\right) \leq-F\left(\mathbf{p}_{j}\right)-\left\langle\mathbf{x}-\mathbf{p}_{j}, \mathbf{p}_{j}^{\prime}\right\rangle\right) \\
\Longleftrightarrow & \langle\mathbf{x}, \mathbf{x}\rangle-2\left\langle\mathbf{x}, \mathbf{p}_{i}^{\prime}\right\rangle-2 F\left(\mathbf{p}_{i}\right)+2\left\langle\mathbf{p}_{i}, \mathbf{p}_{i}^{\prime}\right\rangle \leq\langle\mathbf{x}, \mathbf{x}\rangle-2\left\langle\mathbf{x}, \mathbf{p}_{j}^{\prime}\right\rangle-2 F\left(\mathbf{p}_{j}\right)+2\left\langle\mathbf{p}_{j}, \mathbf{p}_{j}^{\prime}\right\rangle \\
\Longleftrightarrow & \left\langle\mathbf{x}-\mathbf{p}_{i}^{\prime}, \mathbf{x}-\mathbf{p}_{i}^{\prime}\right\rangle-r_{i}^{2} \leq\left\langle\mathbf{x}-\mathbf{p}_{j}^{\prime}, \mathbf{x}-\mathbf{p}_{j}^{\prime}\right\rangle-r_{j}^{2}
\end{array}
$$

where $r_{l}^{2}=\left\langle\mathbf{p}_{l}^{\prime}, \mathbf{p}_{l}^{\prime}\right\rangle+2\left(F\left(\mathbf{p}_{l}\right)-\left\langle\mathbf{p}_{l}, \mathbf{p}_{l}^{\prime}\right\rangle\right)$

Bregman spheres

$$
\sigma(\mathbf{c}, r)=\left\{\mathbf{x} \in \mathcal{X} \mid D_{F}(\mathbf{x}, \mathbf{c})=r\right\}
$$

Lemma

The lifted image $\hat{\sigma}$ onto \mathcal{F} of a Bregman sphere σ is contained in a hyperplane H_{σ}

Conversely, the intersection of any hyperplane H with \mathcal{F} projects vertically onto a Bregman sphere

1st and 2nd types Bregman balls

Bregman triangulations

$\hat{\mathcal{P}}$: the lifted image of \mathcal{P} onto the graph \mathcal{F} of F
\mathcal{T} the lower convex hull of $\hat{\mathcal{P}}$

The vertical projection of \mathcal{T} is called the Bregman triangulation $B T_{F}(\mathcal{P})$ of \mathcal{P}

Bregman triangulations

$\hat{\mathcal{P}}$: the lifted image of \mathcal{P} onto the graph \mathcal{F} of F
\mathcal{T} the lower convex hull of $\hat{\mathcal{P}}$

The vertical projection of \mathcal{T} is called the Bregman triangulation $B T_{F}(\mathcal{P})$ of \mathcal{P}

Characteristic property
The Bregman sphere circumscribing any simplex of $B T_{F}(\mathcal{P})$ does not enclose any point of \mathcal{P}

Primal space

1st type $B V D(\mathcal{P}) \quad=\quad$ Laguerre diagram of $\left(\mathcal{P}^{\prime}\right)$
geodesic $B T(\mathcal{P})$
\leftrightarrow
\uparrow
$B T(\mathcal{P})$

Gradient space

$\downarrow *$
regular triangulation of $\left(\mathcal{P}^{\prime}\right)$

```
I
```


Properties of Bregman triangulations

- $B T(\mathcal{P})$ is the geometric dual of $B D(\mathcal{P})$
- Characteristic property : The Bregman sphere circumscribing any simplex of $B T(\mathcal{P})$ is empty
- Optimality : $B T(\mathcal{P})=\min _{T \in \mathcal{T}(\mathcal{P})} \max _{\tau \in T} r(\tau)$ $(r(\tau)=$ radius of the smallest Bregman ball containing $\tau)$
[Rajan]

