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A survey of Delaunay structures for surface

representation

Ramsay Dyer , Hao Zhang, and Torsten Möller∗

GrUVi Lab, School of Computing Science, Simon Fraser University, Canada

January 16, 2009

Abstract

The Delaunay triangulation characterizes a natural neighbour relation amongst
points distributed in a Euclidean space. In this survey we examine extensions of the
Delaunay paradigm that have been used to define triangle meshes for representing
smooth surfaces embedded in three dimensional Euclidean space.

Progress in this area has stemmed primarily from work done in surface reconstruc-
tion and surface meshing. However, our focus is not on the surface reconstruction or
meshing algorithms themselves, but rather on the structures that they aim to produce.
In particular we concentrate on three distinct Delaunay structures which differ accord-
ing to the metric involved in their definition: the metric of the ambient Euclidean
space; the intrinsic metric of the original surface; or the intrinsic metric of the mesh
itself. We study the similarities and distinctions between these objects; their strengths
and weaknesses both as theoretical tools and as practical data structures.

The topic of this survey lies within the realm of geometry processing, a field of study
generally associated with computer graphics. However, it is hoped that this survey
will be of interest not just to those who study computer graphics, but to anybody
whose research touches on a need to represent non-Euclidean geometry with Euclidean
simplices.

∗Email: rhdyer, haoz, torsten@cs.sfu.ca
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1 Introduction

The goal of this report is to outline the main work that has been done in developing and
understanding the properties of Delaunay structures as representations of the surfaces of
objects in R

3.
In Section 2 we review Voronoi diagrams and Delaunay triangulations as they pertain to

Euclidean geometry, outlining their essential properties and applications.
Then we move on in Section 3 to the application of these concepts to surfaces in R

3. There
are several ways to extend the ideas that are so well developed in the Euclidean domain. Our
focus is on three specific Delaunay structures and their differences and similarities. We then
examine how well these structures perform as discrete approximations to an initial surface
(Section 4).

Most of the theory that has been developed in this regard has arisen in the context of
surface meshing and reconstruction. In Section 5 we review the literature in this area with
particular focus on the use and emergence of Delaunay structures.

We conclude with a discussion of the work that needs to be done in order to reap the
potential benefits of the newest of these three Delaunay structures.

2 Background

Voronoi diagrams and Delaunay triangulations are among the most fundamental structures
in the computational geometry toolbox. The Voronoi diagram gets its name from the Rus-
sian mathematician Georges Voronoi [Vor07, Vor08], although it has appeared under many
different names as it has been independently discovered in many different fields. In fact
there is evidence that René Descartes was using Voronoi diagrams early in the seventeenth
century [Ede01]. The Delaunay triangulation gets its name from another Russian mathe-
matician. Boris Delaunay [Del34] produced the first systematic modern development of the
theory of the structure that is dual to the Voronoi diagram.

These structures are discussed in any computational geometry textbook, see [dBvKOS98]
or [Ede01] for example. Comprehensive surveys of the uses, properties and variations of
Voronoi diagrams in particular can be found in [AK00] and [OBSC00].

In this section we review the fundamental properties and uses of the Voronoi diagram
and the Delaunay triangulation as well as the relationship between them. For the most part,
we will confine our attention to Euclidean domains of two or three dimensions, and we focus
particularly on properties that will have relevance when we discuss these structures in the
context of surface representation.

2.1 Voronoi diagrams

The Voronoi diagram is easy to describe and, via a duality relationship, it facilitates the
description of the Delaunay triangulation. Given a set P of n points in R

d, the Voronoi
diagram partitions R

d into n cells: one cell is associated with each point in P . For p ∈ P ,
we denote the associated Voronoi cell by V (p). The extent of V (p) is simply the entire
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region of R
d whose distance to P is realized by the distance to p. That is, the set of

points that is at least as close to p as it is to any other q ∈ P . Formally, we have1

A Voronoi diagram

Definition 2.1 (Voronoi diagram) The Voronoi cell of p ∈ P is
defined by

V (p) = {x ∈ R
d | dR3(p, x) ≤ dR3(q, x),∀q ∈ P}. (1)

The set of Voronoi cells forms a covering of S called the Voronoi
diagram of P .

The Voronoi diagram gives a very natural definition of the neigh-
bours of a point p ∈ P : q and p are Voronoi neighbours if their

Voronoi cells have a nonempty intersection. This is the relationship that will be exploited
to define the Delaunay triangulation in Section 2.2.

The Voronoi cells are convex polygons in R
2, and in higher dimensions they are convex

polytopes. Indeed, V (p) can be constructed as the intersection of the n− 1 half spaces each
of which contains p and is bounded by the orthogonal bisector of [p, q] for some q ∈ P .

Note that we have defined the Voronoi cells to be closed; neighbouring Voronoi cells have
a nonempty intersection. The intersection of d + 1 or more Voronoi cells is either empty or
a single point, called a Voronoi vertex . A Voronoi vertex v is equidistant from the elements
of P whose Voronoi cells define it. Thus if v = ∩d

i=0V (pi), then the pi all lie on a common
hypersphere centred at v. For a random set of points P ⊂ R

d, the chances of more than
d + 1 points lying on a common hypersphere is vanishingly small [Ede01]. The set P is said
to be in general position if the intersection of more than d+ 1 Voronoi cells is always empty.
It is common practice to assume that P is in general position, and in fact this is not a big
constraint to impose. If P is not in general position, an arbitrarily small perturbation of the
positions of its violating elements is sufficient to bring it into general position.

In the computational geometry literature, the elements of P are often referred to as sites .
For our purposes, we prefer to consider the elements of P to be samples . In the context of
geometry processing, the elements of P will be the discrete sample points that represent the
geometry (i.e., positional information) of the underlying continuous surface. More generally,
a sample set may provide a discrete representation of any signal (or function) defined on the
domain.

Suppose then that to each pi ∈ P there is associated a value fi ∈ R and we interpret
the fi as the value of some unknown continuous function f : R

d → R. The Voronoi diagram
naturally provides an interpolation scheme that allows us to define a function f̃ : R

d → R

that coincides with f on P . For x ∈ V (pi), we simply define f̃(x) to be fi. Although
crude and primitive, this interpolation scheme, called nearest neighbour interpolation, is
used in some applications and it provides the basis for more sophisticated interpolation and
approximation schemes.

A more sophisticated interpolation scheme based on the Voronoi diagram was introduced
by Sibson [Sib81]. In this scheme, refered to as natural neighbour interpolation, the value

1Image from http://www.cs.wustl.edu/˜pless/546/lectures/l16.html
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of f̃(x) is determined by considering the Voronoi cell V (x) of P ∪ {x}. The value of f at x
is then given as a weighted sum of the values of f at the sample points p, with the weights
given by the portion of the original Voronoi cell of p that is occupied by the new Voronoi
cell V (x). Thus

f̃(x) =
∑
p∈P

|V (x; {x} ∪ P ) ∩ V (p; P )|

|V (p; P )|
f(p),

where V (q; Q) denotes the Voronoi cell of q in the Voronoi diagram of Q, and |V (q; Q)| repre-
sents its volume. Sibson demonstrated that this interpolation scheme is smooth everywhere
except at the sample points.

Nearest neighbour interpolation is simple, but it is not even continuous. Natural neigh-
bour interpolation is smooth almost everywhere, but it lacks simplicity. A happy medium
is obtained with piecewise linear interpolation between the sample points. This involves
constructing a triangulation of the sample points and indeed the Voronoi diagram imposes
a natural triangulation on the sample set. This triangulation, the Delaunay triangulation,
embodies the paradigm around which this report is based.

2.2 Delaunay triangulations

2.2.1 Triangulations

A common approach to discretizing a domain is to use a triangulation. A set of samples
P is created and these samples are connected by linear elements (line segments, triangles,
tetrahedra, etc.) to form a covering of the domain that provides a convenient framework for
interpolation and numerical computations. A simplicial complex is a well established struc-
ture that allows us to define a triangulation in a unified way for all dimensions. The definition
we present here is standard to most textbooks on algebraic topology, see Munkres [Mun84]
for example.

The elements that are the building blocks of a triangulation are called simplices. A set of
points X = {p0, p1, . . . , pm} ⊂ R

d is affinely independent if the vectors {pi − p0}i∈[1,...,m] are
linearly independent. Given such an affinely independent set, the m-simplex , σ, spanned by
p0, . . . , pm is the set of points x ∈ R

d such that

x =
m∑

i=0

tipi with
m∑

i=0

ti = 1 and ti ≥ 0 ∀i.

Observe that an m-simplex is an m-dimensional object. Any subset of the Y ⊂ X, with
h = |Y | − 1, defines an h-simplex τ ⊂ σ that is called an h-face of σ. The 0-faces of σ are
the pi themselves and they are called vertices . The 1-faces are line segments connecting the
vertices and they are refered to as edges . Simplices of dimension 2 and 3 are triangles and
tetrahedra respectively.

An object σ may be similarly defined even if X is not affinely independent. In this case
σ will not be a truly m-dimensional object, and we say that it is a degenerate simplex .

A simplicial complex K ⊂ R
d is a collection of simplices such that

1. If σ ⊂ K, then every face τ ⊂ σ also belongs to K

6



(a) (b)

Figure 1: (a) A simplicial complex. (b) Not a simplicial complex

2. The intersection of any two simplices is a face of each of them.

For the last point, note that the empty set is a face of all simplices. Figure 1 gives examples
of a simplical complex and a collection of simplices that is not a simplicial complex2

A triangulation of a set of points P ⊂ R
d is a simplicial complex K whose vertices are

exactly P and such that the union of all the simplices in K forms the convex hull of P .
To define a triangulation of a domain D ⊂ R

d we need to decompose D into a collection
of simplices. However, such a decomposition can only be possible if D itself is a polytope,
i.e., it has a piecewise linear boundary. If this is not the case, then D must be approximated
by some polytope D̃ which can then be triangulated: a triangulation of D̃ is a simplicial
complex K whose vertices include the vertices of D̃ and such that the union of simplices of
K coincides with D̃.

2.2.2 Introducing Delaunay triangulations

For P in general position, the Delaunay triangulation of P ∈ R
d is the dual of the Voronoi

diagram of P ∈ R
d. In the planar setting, the duality relationship is as follows: To each

2images from Wikipedia: http://en.wikipedia.org/wiki/Simplicial complex
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Voronoi vertex c we associate a Delaunay triangle, t whose vertices are the three samples
which define c. An edge e = [p, q] of t is dual to the Voronoi edge V (p)∩ V (q). The vertices
of the Delaunay triangulation are the sample points, and they are dual to the corresponding
Voronoi cells in the Voronoi diagram.

Note that if c is a Voronoi vertex defined by samples p, q, s ∈ P , then those samples lie
on a circle, C, centred at c and no samples lie in the interior of the disk bounded by C. The
circle C is the circumcircle of the Delaunay triangle t = pqs. If P is in general position, then
each edge of t can be contained in a disk that has the endpoints of the edge as the only two
samples on its boundary and that has no samples in its interior. This empty circumcircle
property is the standard way to formally define Delaunay triangulations.

Definition 2.2 Let P ⊂ R
d be a finite set of points. A Delaunay triangulation of P is a

triangulation, K, such that each σ ∈ K has a d-ball that has the vertices of σ on its boundary
and no elements of P contained in its interior.

If P is in general position, the Delaunay triangulation is known to be unique. If P is not
in general position, the Delaunay triangulation is not uniquely defined. For example, in
the plane if four points lie on the boundary of a circle, there are two ways to triangulate
their convex hull: both fit the definition of a Delaunay triangulation. Points that are not in
general position present a technical annoyance, but as discussed in Section 2.1, demanding
that P be in general position is not a significant constraint.

We will assume that P is in general position.

2.2.3 Properties of Delaunay triangulations

In the planar setting, the Delaunay triangulation owes its popularity in part to its ease of
definition and construction, but also to the many properties it enjoys. In the plane, the
Delaunay triangulation can be constructed with O(n log n) operations; in the general case
of d dimensions O(n log n + n⌈d/2⌉) operations are required [dBvKOS98].

a

b

c

d

e

e’

An early, yet still practical algorithm for producing a planar De-
launay triangulation was introduced by Lawson [Law77]. This algo-
rithm takes an arbitrary triangulation of P as input, and produces
a Delaunay triangulation by edge flipping . An edge flip replaces an
edge e = [a, b] that is adjacent to triangles [a, b, c] and [b, a, d] with
the edge e′ = [c, d] that is the other diagonal of the quadrilateral

[a, d, b, c]. We refer to e′ as the opposing edge to e. The quadrilateral [a, d, b, c] must be
convex for the triangulation to remain valid.

We say that e′ = [c, d] is locally Delaunay if a is not contained in the circumcircle
of [b, c, d], or equivalently, if b is not contained in the circumcircle of [c, a, d]. There is a
convenient characterization of a locally Delaunay edge e′: the sum of the angles at the
opposing vertices, a, and b, does not exceed π [BS07]. With this observation it is easy to
show that if edge e is not locally Delaunay (NLD), then [a, d, b, c] is a convex quadrilateral
and the opposing edge, e′, will be locally Delaunay.

Lawson’s algorithm consists of repeatedly selecting an NLD edge and flipping it. Such
a flip is called a Delaunay flip. If a nondecreasing sequence nT is constructed consisting of

8



all the face angles in the triangulation T , then it is shown that a Delaunay flip produces a
triangulation T ′ in which the associated sequence nT ′ is lexicographically smaller than nT

[Ede01]. Thus the edge flipping algorithm terminates with the triangulation that has the
lexicographically minimal sequence of angles.

The red edge is the
only NLD edge, but
none of the triangles

are Delaunay.

Sibson [Sib78] showed that the resulting triangulation is in fact
the unique Delaunay triangulation for samples in general position.
Thus if all the edges in a triangulation are locally Delaunay, then
the triangulation will be a Delaunay triangulation. Note, however,
that an edge that is locally Delaunay in a general triangulation will
not necessarily belong to the Delaunay triangulation. The property
of being a locally Delaunay edge is not as strong as the property
of being a Delaunay edge. Indeed the number of NLD edges in
a triangulation is not necessarily a good indicater of how many
edge flips are required to achieve a Delaunay triangulation. It is possible to construct a
configuration in which there is only one NLD edge, but none of the triangles are Delaunay
(see figure) [GR04].

It turns out that there are several properties, in addition to face angles, that monotoni-
cally decrease (or increase) with Delaunay flips. Any such property is optimized (minimized
or maximized) by the planar Delaunay triangulation and can be used to demonstrate ter-
mination of the edge swapping algorithm. If the property is something that is defined on
each triangle, then the optimization can be expressed in terms of a lexicographic ordering,
as described for the triangle face angles.

Consider again the case where each sample xi has an associated value fi that is considered
to be the value of some continuous function defined over the domain. Let fT be the piecewise
linear function that interpolates the data over triangulation T . Rippa [Rip90] showed that,
regardless of the data {fi}, the planar Delaunay triangulation minimizes the Dirichlet energy
of fT :

E(fT ) =

∫
D

‖∇fT ‖
2 da =

∑
t∈T

‖∇fT |t‖
2 at,

where at is the area of triangle t. In other words, the graph of fT has “minimal roughness”
when T is a Delaunay triangulation.

Another property that is minimized by the planar Delaunay triangulation is the harmonic
index [Mus97]. The harmonic index of a triangle, t, with sides of length a, b and c, is given
by h(t) = a2+b2+c2

at
, and the harmonic index of a triangulation, T , is given by the sum of the

harmonic indices of all the triangles. The harmonic index of t can also be expressed as four
times the sum of the cotangents of the angles of t ([BS06]). Note that the harmonic index
of a triangle t is minimized if t is equilateral.

The planar Delaunay triangulation also minimizes the maximum circumradius of the
triangles [DS89]. As will be discussed in Section 4, this is a property that is interesting in
the context of surface approximation.

All these properties mentioned have been demonstrated for the planar Delaunay trian-
gulation by exploiting the edge flipping algorithm. However the edge flipping algorithm
does not easily extend to higher dimensions, and those extensions that exist are known to
not work if started from an arbitrary initial triangulation [ES92]. Thus for most of these
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properties, it is not known whether or not they extend to a property that is optimized by
the higher dimensional Delaunay triangulation.

In some cases, a property that is optimized by the planar Delaunay triangulation is known
to be not optimized by higher dimensional Delaunay triangulations. An example is the mean
inradius of the triangles. This is maximized by the Delaunay triangulation in 2D, but not
the higher dimensions [Lam94].

a b
c

d
The NLD edge [a, b] is

shorter than the
opposing Delaunay

edge [c, d].

By using a completely different technique of proof, Rajan [Raj94,
Raj91] showed that for all dimensions the Delaunay triangulation
minimizes the radius of the maximum smallest enclosing circle. Note
that, for obtuse triangles in 2D, for example, this radius is smaller
than the circumradius. Rajan’s proof does not exploit the flip al-
gorithm, and in fact the Delaunay triangulation does not minimize
the smallest enclosing circles in a lexicographic sense.

It is worth mentioning a couple of properties that are not gen-
erally possessed by the Delaunay triangulation. Contrary to the
erroneous assertion in [Lei99][Lemma 24], the Delaunay triangula-
tion does not minimize the total edge length. It is not hard to
construct a Delaunay edge flip that increases the length of an edge.
The problem of constructing a triangulation that minimizes the to-
tal edge length is called the minimal weight triangulation problem,
and it has recently been shown to be NP-hard [MR06].

The Delaunay triangulation also does not minimize the maximum angle. Although trian-
gulations which possess this property can be desirable for scientific computing applications,
computing such triangulations appears more difficult than computing Delaunay triangula-
tions [Ede01][p.12].

2.2.4 Meshing and Delaunay refinement

A cut-away view of a
meshed 3D Euclidean

domain

The process of producing a triangle mesh to represent a given do-
main is called meshing . In subsequent sections we will focus on the
problem of meshing the surface of a three dimensional object, how-
ever the problem of meshing a Euclidean domain is a huge topic in
its own right, and remains an area of active research. Many of the
tools and insights discovered in this latter context are beginning to
find their way into the field of surface meshing.

A Euclidean domain D is a subset of Euclidean space (e.g.,
D ⊂ R

2 or D ⊂ R
3) that is equal to the topological closure of its

interior. In particular, the topological interior of D is non-empty.
So for example, the solid head of Max Plank3 is a Euclidean domain,
D. The surface of the head is the boundary of D and it is not a
Euclidean domain.

The problem of meshing Euclidean domains arises in scientific computing; a PDE is to
be solved numerically over the given domain. In this case it is important that the elements

3Image from Aliez et al. “Variational Tetrahedral Meshing” SIGGRAPH 2005
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Figure 2: A meshing of Lake Superior, a Euclidean domain. The sample density decreases
away from the boundary.

of the mesh, the triangle faces if it is a 2D domain, or the tetrahedra if it is a 3D domain,
are of good quality. That is, they must be close to regular (maximally symmetric).

The geometry of the problem comes from the boundary of the domain. A mesh must be
produced that uses as few vertices as possible given constraints on element size and quality.
In general there will be smaller elements (more samples) near the boundary of the domain
than near the centre (see Figure 2)4.

The dominant paradigm for meshing Euclidean domains is Delaunay refinement . De-
launay refinement is a method for improving the element quality of a given Delaunay mesh
by strategically inserting new vertices. Focusing on the 2D case, element quality may be
measured by the aspect ratio of the triangles: the ratio between the circumradius and the
length of the shortest edge, for example. A Delaunay refinement algorithm will choose the
element with the worst (largest) aspect ratio and insert a new sample at its circumcentre.
The new sample is then incorporated into the existing mesh and edge flips are performed to
maintain the Delaunay property.

A good survey of Delaunay refinement algorithms can be found in the works of Johnathan
Shewchuk [She97, She99]. The essential idea of Delaunay refinement is attributed to Ru-
pert [Rup93, Rup95], although a Delaunay refinement algorithm for meshing curved surfaces
was independently proposed by Chew about the same time [Che93]. There are many varia-
tions on the Delaunay refinement paradigm, a notable one being the longest side bisection
algorithm of Rivara [RI97], where new vertices are inserted on existing edges, rather than at
circumcentres.

In some meshing applications, geometry may be imposed by constraints additional to the
boundary of the domain. A constrained Delaunay triangulation of a collection of points and

4Image from [She97]
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line segments is a triangle mesh that has the points as vertices and the segments as edges
and is in some sense as close to being Delaunay as possible, given the constraints on the
fixed edges. Chew [Che89] described how to compute a constrained Delaunay triangulation
from a given arrangement.

A related concept is a conforming Delaunay triangulation. In this case, we demand
that the final triangulation be Delaunay, however the initial constraint line segments can
be “split” by the insertion of new vertices. Edelsbrunner and Tan [ET93] demonstrated an
algorithm which, given an initial configuration of line segments and vertices, will compute
a conforming Delaunay triangulation with an asymptotically optimal (minimal) number of
inserted vertices.

Guibas et al. [GR04] considered the problem of maintaining a Delaunay mesh of a domain
that is deforming over time. The paper makes a number of interesting observations about
the fragility of the Delaunay triangulation; a small deformation of the point set may demand
a large change in the Delaunay triangulation.

In some meshing applications, the sample points are not static, but change location
slightly with time. Guibas et al. [GR04] analyzed various algorithms for maintaining De-
launay triangulations under small perturbations of the vertices. One notable figure in that
paper illustrates a configuration in which only one of the edges of the triangulation is NLD,
yet none of the edges are Delaunay edges. This emphasizes the fact that the number of
edges that are not locally Delaunay is not necessarily a good measure of how “close” a given
triangulation is to being Delaunay.

Finally, it should be mentioned that recent work in meshing Euclidean domains has
employed alternate metrics to the Euclidean metric. In particular, “geodesic distances” (or
“inner distances”) measured by lower bounds of lengths of paths within the domain, have
proven useful [GGOW08]. In this case the term “Euclidean domain” is arguably no longer
appropriate.

2.3 Generalizations and related structures

The Voronoi-Delaunay paradigm is central to the field of computational geometry, and it
has spawned many variations and related structures. The basic Delaunay structures for
surface representation discussed in Section 3 represent extensions of this paradigm to non-
Euclidean domains. Before turning to that section, we review here a few structures that are
fundamental and related to the Voronoi-Delaunay structures introduced above.

One natural generalization of the Delaunay triangulation is the weighted Delaunay trian-
gulation. It is sometimes referred to as a regular triangulation, but this latter terminology
has been applied also to quite different concepts (c.f. [FSBS06]) and so we will avoid it.

In a weighted Delaunay triangulation, each vertex p is assigned a weight wp. The
weighted Delaunay triangulation can then be described as the dual of the power diagram of
Pw = {(p, wp)}. The power diagram is analogous to the Voronoi diagram, but the distance
associated with each sample is dependent on its weight. The power distance from (p, wp) to
x ∈ D is given by πp(x) = dR3(x, p)2 − w2

p. Then the power cell associated with (p, wp) is
given by

Vw(p) = {x ∈ D | πp(x) ≤ πq(x) ∀q ∈ Pw}.

12



It can be shown that these power cells are convex polyhedra and the power diagram is the
collection of all the power cells. The weighted Delaunay triangulation is the dual of the power
diagram in the same way that the usual Delaunay triangulation is the dual of the Voronoi
diagram. In fact, if all the weights are zero, the power diagram is exactly the Voronoi
diagram described in Definition 2.1, and the corresponding weighted Delaunay triangulation
is just the ordinary Delaunay triangulation.

One geometric interpretation of the power diagram is obtained by considering wp to be
the radius of a sphere centred at p. The power distance to x is then the square of the length
of the line segment from x to a tangent point on the sphere. More details can be found in
[Dey07] or [Ede01].

An interesting power diagram can be constructed as follows: Let P ⊂ R
d and let V be

the set of Voronoi vertices in the Voronoi diagram of P . Assign to each Voronoi vertex,
v, a weight, wv, equal to the radius of the circumsphere of the Delaunay simplex dual to
v. Then the power diagram of Vw = {(v, wv)} is exactly the Delaunay triangulation of
P [Dey07][§10.4].

The power diagram represents a distortion of the Voronoi diagram which maintains the
convex polyhedron property of the cells. Another natural generalization of the Voronoi dia-
gram of Definition 2.1, is obtained by replacing the Euclidean metric dR3 with an alternate
metric. In this case convexity of the Voronoi cells is no longer assured. In fact for gen-
eral metrics many desirable properties of the Voronoi cells can be lost, and even defining
the Voronoi diagram can be a challenge. For example, the Manhattan (L1) metric in the
plane can yield Voronoi cell bisectors that are regions and not curves [KW88]. Klein and
Wood [KW88] developed a set of axioms that, when satisfied by a metric, assure that the
Voronoi diagram in the plane is well behaved. Aurenhammer and Klein [AK00] refer to this
class of metrics as nice metrics . In particular, nice metrics yield connected Voronoi cells
with boundaries composed of a finite set of Voronoi cell bisectors that are simple curves.

The Gabriel graph
consists of those

Delaunay edges that
intersect their dual

Voronoi edges.

An nice example of Delaunay meshes constructed using an al-
ternate metric is in the work of Labelle and Shewchuk [LS03], in
which they studied anisotropic metrics. As they remark, the setting
they consider is (at least locally) equivalent to the case involving the
intrinsic metric of a surface, as will be discussed in Section 3.2.2.
However, for computational reasons they consider an approximation
to the Voronoi diagram of the Riemannian metric, and in so doing
they lose some of its nice properties. In particular, the Voronoi cells
may not be connected.

Another structure built on the Delaunay theme that will be of
interest to us is the Gabriel complex . This is actually a substructure
of the usual Delaunay triangulation5. Recall that the Delaunay
triangulation consists of those simplices that can be contained in a
ball whose interior is empty of samples. In dimension d, the Gabriel
complex is the simplicial complex which consists of those (d − 1)-
simplices for which the circumscribing ball (i.e., the smallest ball

that has all the vertices of the simplex on its boundary) is empty, together with the faces of

5Image from [GJ02]
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these simplices. In 2D the Gabriel complex is called the Gabriel graph.
A description of the Gabriel graph was published in 1969 [GS69], and it is a well es-

tablished data structure. However, the higher dimensional analogue that we have described
here has a much shorter history. The Gabriel complex in three dimensions was introduced
by Petitjean and Boyer [PB01].

It should be noted that there is a potential for confusion because it is also natural to
define a Gabriel graph in higher dimensions: it is the simplicial complex consisting of those
edges (1-simplices) for which the diametric ball is empty. In contrast, the Gabriel complex in
R

d consists of (d − 1)-simplices and their faces. So for example, in R
3, the Gabriel complex

will consist of triangles and their edges, however these edges need not belong to the Gabriel
graph. So we must be careful when refering to “Gabriel edges”. In this report we are
concerned only with the Gabriel complex, and will not consider the Gabriel graph, except
in the planar case where the two concepts coincide.

3 Delaunay structures for surfaces

In the previous section we studied Delaunay triangulations of Euclidean domains. In the 2D
setting for example, the domain to be triangulated is planar. If geometry enters into the
problem, it is due to the boundary of the domain. Thus meshing and refinement algorithms
that use adaptive sampling will produce a higher sampling density in the neighbourhood of
small features in the domain boundary, and as a rule, the sampling density will decrease as
the distance to the boundary increases, as demonstrated in Figure 2.

We now turn our attention to non-Euclidean domains. In particular our interest is in
the 2D surfaces that bound objects in 3D space. In this exposition we will assume that the
surface S ⊂ R

3 is a smooth (C∞) manifold surface that is compact, orientable and has no
boundary.

We begin in Section 3.1 by introducing extentions of triangulations to surfaces (i.e., non-
euclidean domains). For our purposes the appropriate structure with which to represent
(approximate) S is a manifold triangle mesh, which is introduced in Section 3.1.2. The
Delaunay paradigm is used to define three distinct mesh structues which are introduced in
Section 3.2. These three structures are the primary focus of this survey. In Section 3.3
we develop the characterization of these Delaunay structures as combinatorial duals to a
Voronoi diagram corresponding to a particular choice of metric on S. This provides a unifying
framework in which to compare their differences and similarities. Finally, in Section 3.4 we
discuss related structures which employ the Delaunay paradigm but are not the focus of this
survey.

3.1 Triangulations and triangle meshes for surfaces

We used a simplicial complex to define a triangulation of a Euclidean domain. In order to
triangulate a non-Euclidean domain with Euclidean simplices, we either need to warp the
simplices to fit the domain, or distort the domain into a piecewise linear representation. The
difference is really just a matter of perspective, and for geometry processing the latter is
more natural.
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3.1.1 Surface triangulations

A triangulation of S is a simplicial complex, K, together with a homeomorphism h : K → S.
We can think of this as drawing triangles on S (via the images of the 1-simplices in K). If a
set of samples P ⊂ S is given, then a triangulation of P on S is a triangulation h : K → S
such that the vertices of K are mapped bijectively onto P . It can be shown that the surfaces
we consider always admit a triangulation, however it is not true that any set of samples
P ⊂ S is sufficient to be the vertex set of a triangulation. The topology of the surface will
demand a minimum number of samples.

The geodesic distance between two points p, q ∈ S, denoted dS(p, q), is the length of
the shortest path between them. Such a shortest path always exists, and it is called a
geodesic. If S is viewed as a Riemannian manifold, the metric dS arises naturally from
its Riemannian metric tensor and as such does not depend on the embedding in R

3 for its
definition. (Although the embedding can be used to define the Riemannian metric tensor,
this tensor remains well defined in the absense of any embedding.) We call this metric the
intrinsic metric on S and likewise all properties which depend only on this metric for their
definition, are deemed intrinsic.

A geodesic disk centred at c ∈ S with radius r is the set BS(c; r) = {x ∈ S | dS(c, x) < r}.
In general a geodesic disk need not even be a topological disk (it can wrap around on itself),
but for any c ∈ S, there is an r small enough to ensure that BS(c; r) is a topological disk.

For a sufficiently dense sample set P , the intrinsic Delaunay triangulation (iDt) of P ⊂ S
can be defined analogously to the Euclidean Delaunay triangulation. We demand that each
triangle be circumscribed by a unique geodesic ball that is empty of all sample points.
Sampling criteria that guarantee that the iDt is well defined were proposed by Leibon and
Letscher [LL00, Lei99]. A loose estimate on the actual number of samples this implies was
published in [OI03]. For surfaces, the sampling criteria has recently been relaxed [DZM08].

The empty ball criterion defines the connectivity of the Delaunay triangulation, however
even with a sufficient sampling, and assuming general position, this does not define a unique
triangulation according to our definition. In other words, the combinatorial structure of
the simplicial complex K is dictated by the empty ball property, but the homeomorphism
h : K → S is not fully constrained. We desire the edges of the triangles, i.e., the images
of the 1-simplices in K, be described by well defined curves in S. It turns out that the
density requirements that ensure a well defined topology for the iDt are also sufficient to
ensure that there is a unique geodesic of minimal length between each pair of neighbouring
samples in P . A triangulation of S whose edges are composed of geodesics is called a geodesic
triangulation6.

The Voronoi diagram induced by the intrinsic metric, with Voronoi cells V(p) = {x ∈
S | dS(x, p) ≤ dS(x, q) ∀q ∈ P}, is the intrinsic Voronoi diagram (iVd) of P on S. The iDt
can be seen to be the dual of the iVd, just as in the Euclidean case: Delaunay triangles are
dual to Voronoi vertices and Delaunay edges have dual Voronoi edges. However, unlike the
iDt, the iVd is well defined regardless of the sampling density.

6An alternative to geodesic curves is mentioned in [LL00]. They propose to employ “middle planes”. This
approach has appeal in that it is amenable to extensions to higher dimensions, however the details of their
proposal were never published.
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3.1.2 Triangle meshes

The goal is to employ the Delaunay paradigm to produce a discrete (piecewise linear) struc-
ture M that will serve as an approximation to S. Thus we are interested in constructing
a simplicial complex K that defines a triangulation of S. However, it will be convenient
to separate the geometry from the combinatorial topology that is inherent in a simplicial
complex as defined in Section 2.

An abstract simplicial complex K is a collection of finite nonempty sets such that if A ∈ K,
then so is every nonempty subset of A. An element A of K is called a simplex of K. The
dimension of a simplex is one less than the number of elements it contains.

Following [PSS01]7, we define a triangle mesh, M , as a pair M = (X,K), where X is a
set of n point positions in R

3 and K is an abstract simplicial complex composed of three
types of subsets of {1, . . . , n}: vertices {i}, edges {i, j} and faces {i, j, k}.

The abstract simplices of M , together with the associated geometric position informa-
tion in X, define (possibly degenerate) Euclidean simplices in R

3, as defined in Section 2.
The union of these Euclidean simplices is the geometric realization of M . The reason for
separating geometry and connectivity information is that we can allow self intersections of
the mesh surface. Thus the collection of simplices that form the geometric realization of M
may not be a simplicial complex as defined in Section 2. We identify vertices, edges and
faces with their geometric realizations.

The star of a vertex i is the set of faces that are incident to i. A manifold triangle mesh
is a triangle mesh such that the star of every vertex is homeomorphic to a closed disk. We
will focus on manifold triangles meshes without boundary , which means that every vertex
lies in the topological interior of the disk defined by its star.

Ideally we wish to produce a manifold triangle mesh M that is a good approximation to
S. Exactly what is meant by a good approximation will be discussed in detail in Section 4.
This problem, of producing a mesh to represent a given surface is known as meshing and
has seen considerable attention. In Section 5 we will survey the literature in meshing and
related applications.

3.2 Three Delaunay structures

In this section we examine means of employing the Delaunay paradigm to define meshes that
represent S ⊂ R

3. In this setting we will present three distinct Delaunay structures. These
are triangle meshes which are defined via the Delaunay paradigm.

In Section 3.2.1 we discuss the restricted Delaunay triangulation (rDt) which results from
the criterion that each mesh triangle face t be contained in a (3D) Euclidean ball centred on
S and such that the vertices of t are on its boundary and no sample points of P are in its
interior. In Section 3.2.2 we look at the mesh that is combinatorially equivalent to the iDt.
This mesh, dubbed the iDt-mesh, has triangle faces whose vertices belong to a triangle in the
iDt: they are defined by empty geodesic disks. Then in Section 3.2.3 we explore Delaunay
meshes whose faces are defined by empty geodesic disks on the surface of the mesh itself.

7This paper is also the one in which the phrase “digital geometry processing” was coined.
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One way to view these structures in a unifying framework is to consider each of them to
be the result of a different choice of metric on S. The metric yields a Voronoi diagram on
S and the corresponding mesh structure is seen as the mesh which is a combinatorial dual
to this Voronoi diagram. For the rDt the metric is the Euclidean distance whereas for the
iDt-mesh we employ the intrinsic metric of S. For Delaunay meshes the metric employed
properly belongs to the mesh itself, however if the mesh is a good representation of S we
are able to port this metric to S itself. This perspective of viewing the different Delaunay
structures as manifestations of different choices of metric is discussed further in Section 3.3.

3.2.1 Restricted Delaunay triangulation (rDt)

Of the three main Delaunay structures we present in this section, the restricted Delaunay
triangulation (rDt) has been the most extensively studied in the geometry processing com-
munity. The rDt can be defined as the mesh that is dual to the restricted Voronoi diagram
(rVd). The rVd was formally introduced by Edelsbrunner and Shah [ES94], where they
gave conditions on that guarantee that the rDt is homeomorphic to the original surface, S.
The rDt itself appeared in an earlier meshing algorithm by Chew [Che93], but no explicit
reference to the rVd was made in that work. Instead, the faces of the mesh were defined
directly in terms of empty Euclidean spheres. There is an unfortunate nomenclature conflict
here. Despite its name, the restricted Delaunay triangulation is a mesh, not a triangulation
as discussed in Section 3.1.1. However, the name is well established.

In the rVd, the Voronoi cell of a point p ∈ P , is given by V (p) ∩ S, where V (p) is the
Voronoi cell of p in the standard Euclidean Voronoi diagram of P in R

3. Thus the rVd is
well named: it is the 3D Euclidean Voronoi diagram restricted to S. Equivalently, we can
view it as the Voronoi diagram resulting from choosing the Euclidean distance as a metric
on S, thus the restricted Voronoi cell of p ∈ S is given by V |S(p) = {x ∈ S | dR3(x, p) ≤
dR3(x, q) ∀q ∈ P}.

The rDt is the mesh that is obtained when Voronoi neighbours in the rVd are connected
by mesh edges; the faces of the rDt are Euclidean simplices dual to the Voronoi vertices in
the rVd. The rDt can be equivalently characterized as consisting of those triangle faces of
the 3D Delaunay tetrahedralization for which the dual Voronoi edge intersects S. This latter
characterization leads to the property, exploited by Chew [Che93], that the faces of the rDt
are contained in empty Euclidean spheres centred on S.

Since the initial works of Chew and Edelsbrunner and Shah, many meshing and surface
reconstruction algorithms have been based upon an the rDt and an analysis of the rVd.
In particular, the first provably correct surface reconstruction algorithms [AB98, ACDL00]
exploited the work of Edelsbrunner and Shah. We will review these and other algorithms in
Section 4 and also in section 5.

3.2.2 Intrinsic Delaunay triangulation mesh (iDt-mesh)

Using the Euclidean distance dR3(p, q) to measure the distance between two points p, q ∈ S
is simple and convenient in practice. However, there are advantages to using the metric of
geodesic distance: dS(p, q).
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Figure 3: In a restricted Voronoi diagram the Voronoi cells need not be connected, as shown
by the restriction to the red curve of the yellow Voronoi cell near the centre of the figure.

We have the relation dR3(p, q) ≤ dS(p, q). The difference between dR3(p, q) and dS(p, q)
is most pronounced when p and q lie close in the ambient space but far on the surface, as
would be the case if we chose p and q to lie at the centre, but on opposite sides on the surface
of a pancake, for example. (See Figure 3.)8

It can be shown that the Voronoi cells of the intrinsic Voronoi diagram are connected in
the topological sense. The argument is exactly as given by Aurenhammer and Klein [AK00]
in the context of nice metrics. This is in contrast to the Voronoi cells of the rVd, which
may contain more than one connected component. An example may be easily constructed
using the pancake mentioned above. Thus the intrinsic metric is in a sense “nicer” than the
Euclidean metric in the context of surfaces embedded in R

3.
Another argument in favour of the intrinsic metric is that we are liberated from depen-

dence on the ambient space. This argument is weak in the context of computer graphics
where an attempt to divorce the surface from the surrounding space appears to be an exercise
in senseless abstraction. However, for many other applications, especially when the surface
lies in a higher dimensional space, the intrinsic metric is the only sensible choice. This is
because to work in the high dimensional ambient space renders one subject to “the curse
of dimensionality”: some computations become intractable in a high dimensional setting.
Finally, an analysis based on the intrinsic metric allows us to tap into a wealth of results in
Riemannian geometry, and in some cases stronger statements can be made in this context

8Figure composed with the aid of Chew’s Voronoi diagram applet: http://www.cs.cornell.edu/home-
/chew/Delaunay.html
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than have been made with more traditional extrinsic methods [DZM08].
The mesh that is dual to the iVd is called the iDt-mesh and for sufficient sampling it

will be a manifold triangle mesh. The iDt-mesh is the mesh with vertices P and whose
connectivity is that of the intrinsic Delaunay triangulation discussed in Section 3.1.1.

3.2.3 Delaunay meshes

The rDt and the iDt-mesh have both been well studied and proven themselves to be impor-
tant structures in theory and practice. However, they share a trait that can be problematic
in practice: for their definition, both the rDt and the iDt-mesh depend in an essential way on
the underlying surface S that is being approximated. This is an obvious difficulty in surface
reconstruction, for example, where S is known only by the samples P , and some assumptions
on the density of P and on the regularity of S. In this case, when one has constructed a mesh
M whose vertices are P , one would like to make claims of the fitness of M as a representation
of S. If it could be demonstrated that M is an rDt or an iDt-mesh, then an appeal could
be made to the known qualities of these structures as surface approximations (results which
we will discuss in Section 4). Unfortunately, such a direct approach is impossible since S is
unknown.

In general, given a mesh M , there are no known algorithms which enable one to decide
if M is an rDt or an iDt-mesh of some smooth surface S. It would be nice to have a family
of meshes, F , which display good approximation properties and for which the inclusion of a
given mesh, M , in F can be determined algorithmically based on the properties of M alone.

In a notable work in this direction Petitjean and Boyer [PB01] introduced the notion of
regular interpolants. They defined these by means of the discrete medial axis of a mesh M .
This is a subset of the 3D Voronoi diagram of the vertices of M : It is the union of all of
the Voronoi edges, facets and vertices which are not dual to a simplex of M . They then
defined the local thickness of M at a vertex p, which is essentially a measure of the distance
from p to the discrete medial axis. Then M is a regular interpolant if for each p ∈ M the
local thickness is larger than the circumradius of each triangle in M that is incident to p.
Although the definition is attractive in its simplicity, it suffers a fatal flaw. The problem is
the existence of sliver tetrahedra in the 3D Voronoi diagram.

It was pointed out by Amenta and Bern [AB98] that sliver tetrahedra have dual Voronoi
vertices that may be arbitrarily close to the original surface S. Sliver tetrahedra are those
whose vertices are distributed near the equator of their circumsphere. They are flat and have
a small volume, but no short edges (See Figure 4)9. Such tetrahedra cannot be eliminated
by simply increasing the sampling density and as a consequence, it follows that the discrete
medial axis may also be arbitrarily close to S, regardless of the sampling density. Thus
regular interpolants are too restrictive; we are not guaranteed to achieve a regular interpolant
for any given density based sampling criteria.

Recently an alternative approach has begun to emerge in the form of yet another Delaunay
structure. In 2005 Bobenko and Springborn presented a formal study and uniqueness proof
of for the intrinsic Delaunay triangulation of the vertices of a piecewise flat surface [BS05]

9These figures are from Kolluri et al. “Spectral reconstruction from noisy point clouds” (SGP 2004), and
Amenta et al. “A new Voronoi based surface reconstruction algorithm” (SIGGRAPH 1998) respectively.
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(a) (b)

Figure 4: A sliver tetrahedron can have its circumcentre (Voronoi vertex) arbitrarily close to
the surface (a). The discrete medial axis includes only those Voronoi edges and facets that
are not dual to faces or edges of the mesh, but it includes all the Voronoi vertices. In (b) the
Voronoi cell of the blue sample is drawn in red and the restricted Voronoi cells are drawn in
grey on the surface. Because the blue sample belongs to a sliver tetrahedron, at least two of
the edges of its 3D Voronoi cell will come close to the surface: they are the two edges that
are dual to the two facets of the sliver tetrahedron that don’t belong to the surface mesh.

(formally published in [BS07]). Although the structure had been studied previously, [Riv90],
[ILTC01], Bobenko and Springborn’s work was the first to recognize its potential utility in
geometry processing. For our purposes we may interpret a piecewise flat (pwf) surface to be
a manifold triangle mesh, M . The class of pwf surfaces is actually more general than this,
and a comprehensive study of the geometry of these objects can be found in the treatise by
Aleksandrov and Zalgaller [AZ67].

The sample set P is the vertices of M . The definition of the iDt of M is based on the idea
of empty circumdisks and is not unlike the definition of the geodesic iDt of P on a smooth
surface S. The principle difference is that by extending the concept of a triangulation of the
surface, the iDt of the vertex set of a pwf surface is well defined without imposing restrictions
on the vertex set P . In particular, it is not required that the vertices or edges of a triangle
be distinct; this allows the triangulation to contain “loop” edges that terminate at the same
vertex at each end. Also, two vertices may have more than one edge between them.

We say the triangulation of M is proper if it lacks these anomalous features. In other
words it defines an abstract simplicial complex. Figure 3.2.3 gives an example of a Delaunay
triangulation that is not proper. As discussed in Section 4.1, the indications are that the
iDt of M will be proper if M is a “good” representation of a sufficently well sampled smooth
surface S. However, that assertion has not been rigorously quantified.

An algorithm and data structure to generate the iDt of a pwf surface was presented by
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Figure 5: An example of a non-proper intrinsic Delaunay triangulation of a pwf surface.
The surface here is a tetrahedron defined by the triangle faces [a, b, c], [b, c, d], [a, c, d], and
[a, d, b]. The intrinsic Delaunay triangulation is defined by the red and black geodesics. The
black geodesics coincide with the original mesh edges, but the red geodesics traverse faces
that define the tetrahedron. It is composed of “triangles” [a, b, b] which has a loop edge and
shares an edge with itself; [c, d, c] which has the same characteristics; [b, c, b], and [c, c, b]
which share two edges and each have a loop edge.

Fisher et al. [FSBS06]. The principle interest in this structure is the nice properties it lends to
the discrete Laplace-Beltrami operator described by the cotan formula [BS05, FSBS06]. The
disadvantage is that a separate, somewhat complicated, data structure must be maintained
to describe the iDt, in addition to the triangulation inherent in the mesh itself. The obvious
solution to this problem is to seek a mesh representation M such that the iDt of M coincides
with its inherent triangulation. Such meshes are called Delaunay meshes and it has been
shown [DZM07a] that they can be reliably constructed from an initial mesh by an edge
flipping algorithm. If the initial mesh is too coarse, new vertices may need to be added, and
in fact, at the cost of adding more vertices, the geometric distortion from the initial mesh
can be made to vanish.

An interesting observation is that flipping a mesh edge to make it locally Delaunay reduces
(or at least never increases) the surface area of the mesh. Unlike the rDt and the iDt-mesh,
the Delaunay mesh associated with a sample set P is not unique, even if the surface topology
is constrained to conform with a reference surface. Also, as will be discussed in Section 4,
regardless of how densely P was sampled on a smooth surface S, some Delaunay meshes on
P can be very poor representations of S.

In summary, as a data structure the Delaunay mesh is not as well understood as the
more mature rDt and iDt-mesh. There are no known existence results for Delaunay meshes
on a sample set P ⊂ S, and, in contrast to the rDt and the iDt-mesh, it is known to be not
unique. However, intuition dictates that if P represents a sufficiently dense sampling, there
will exist a “nice Delaunay mesh” that possesses the desirable approximation guarantees of
the rDt and iDt-mesh. If such a Delaunay mesh can be characterized by local properties of
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the mesh itself, such as the dihedral angles across edges, it would have the advantage over
Delaunay structures that make explicit reference to S in that it can be explicitly verified in
the absence of S.

3.3 The Delaunay structure associated with a metric

As has been mentioned, the three Delaunay structures we have discussed so far in this
section can be seen in a unifying framework if we consider them to be manifestations of
particular choices of metric on S. Indeed, given an arbitrary metric d : S × S → R, the
associated Voronoi diagram of P on S is naturally defined by replacing the Euclidean metric
dR3 with d in Definition 2.1. Thus the Voronoi cell associated with p ∈ P is {x ∈ S |d(x, p) ≤
d(x, q),∀q ∈ P}. The associated Delaunay structure is then the dual of this Voronoi diagram.

To obtain the rDt, the Euclidean distance is used: d = dR3 and for the iDt-mesh the in-
trinsic (geodesic) metric of the surface is employed: d = dS. Although the Euclidean distance
is perhaps more commonly used, it can be argued that the intrinsic metric is “nicer” because
it always leads to topologically connected Voronoi cells, as was mentioned in Section 3.2.2.
However, if P is sufficiently dense on S then the Voronoi cells of the rVd will be connected.

For a Delaunay mesh, M , under certain conditions, we can also view it as a Delaunay
structure resulting from a choice of metric on S. Define a conforming homeomorphism as
a homeomorphism h : M → S that leaves the samples in P invariant: h|P = idR3 . A mesh
M is a conforming mesh for S if it admits a conforming homeomorphism. The metric of a
conforming Delaunay mesh can be used on S: for x, y ∈ S, d(x, y) = dM(h−1(x), h−1(y)).
We can then view M as the dual mesh to the Voronoi diagram of its vertices on S with
respect to this metric. Such a characterization of a Delaunay mesh is somewhat circular, but
it may provide a convenient framework for analysis. An important task will be to identify
local characteristics that guarantee that a Delaunay mesh conforms to some well sampled
surface S.

This highlights another area that has not been studied in depth: how does the Voronoi
diagram of P on S change when the metric is perturbed? Specifically, it would be interesting
to identify under which conditions the metric can be perturbed while ensuring that the dual
mesh remains homeomorphic to S. For example, are conditions which are sufficient to
guarantee that the rDt is homeomorphic to S also sufficient to guarantee that the iDt-mesh
is homeomorphic to surf?

Although all three Delaunay structures, with the appropriate
qualifications, are expected to provide good representations of S, it
is known that they can all be combinatorially distinct structures,
regardless of the sampling density [DZM07b]. The differences result
from samples that are “almost not in general position”. As the

sampling density increases, the differences between the associated metrics over the span of
a Voronoi cell will decrease. However, there will always be small differences and the metric
perturbation near two Voronoi vertices that are very close in one metric may result in a
Voronoi edge disappearing in another metric. Such discrepencies are expected to arise in the
neighbourhood of sliver tetrahedra in the 3D Delaunay triangulation for example.
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3.4 Alternate and related structures

The Delaunay paradigm has proven itself extremely useful for surface representation. How-
ever other triangle mesh families have also shown their utility. We will review some of these
alternative structures in this subsection. Most of them can be seen to be generalizations of
(or at least closely related to) one or more of the Delaunay structures discussed above.

In Section 3.3 we saw that each of the three Delaunay structures, the rDt, the iDt-mesh,
and the Delaunay mesh, could in a sense be interpreted as resulting from a specific choice of
metric for S. Indeed the range of possible Delaunay-type structures is at least as broad as
the range of choices of metric that can be imposed upon S.

In adaptive sampling theory, the density of the sample set P on S is governed by some
sizing function, which typically specifies a higher sampling density in regions of higher cur-
vature. Various sizing functions are discussed in Section 4. In some contexts it is natural to
want to modulate the intrinsic distance function on S by an appropriate sizing function. A
nice example of where exactly such an approach is used to produce a Delaunay structure is
in the farthest point sampling algorithm presented by Peyré and Cohen [PC03, PC06]. In
this algorithm the Voronoi diagram of P with respect to the modified metric is maintained
while iteratively adding samples at points on S that are farthest from the current P with
respect to this metric. The final mesh that is produced is the dual to the resulting Voronoi
diagram.

Approaching the modified metric from a more discrete perspective, Glickenstein [Gli05]
studied weighted triangulations of piecewise flat surfaces. The corresponding Delaunay struc-
ture is a regular triangulation, which is the dual of the power diagram and these are defined
just as in the Euclidean setting. Such structures have been studied extensively in Euclidean
domains [AK00], [Ede01], but the systematic study of them in the context of surface meshes
is in its infancy.

The Gabriel complex introduced in Section 2 plays a role in surface representation. For
a well sampled smooth planar simple curve, the Gabriel graph will contain the polygonal
reconstruction of the curve, i.e. the unique polygon that connects the samples in the order
specified by the curve. It is assumed that for a sufficiently well sampled surface, the Gabriel
complex of the samples will contain a mesh that is homeomorphic to the surface, however
this assumption has not been formally demonstrated in the literature (although with an
additional uniformity assumption on the samples, Cheng and Dey [CD07] were able to prove
the existence of a mesh all of whose faces satisfy the Gabriel property). We refer to a mesh
whose faces all have the Gabriel property as a Gabriel mesh. It is easy to show that a
Gabriel mesh must be a Delaunay mesh, as well as being a substructure of the 3D Delaunay
tetrahedralization, so insights into one should inform our understanding of the other.

The flow complex introduced by Giesen et al. [GJ02, GJ03] represents another structure
that has close ties with the Voronoi diagram and the Delaunay triangulation. It is a triangle
mesh whose vertices include the original samples as well as additional points which are
certain critical points of the distance function defined from the original sample set.

Finally, there has been recent interest in imposing a stronger criterion than the Delaunay
condition on a triangle mesh. Specifically, one may demand that no triangle in the mesh
contains an obtuse angle. Such a non-obtuse mesh is necessarily a Delaunay mesh, however in
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general a Delaunay mesh will contain obtuse angles. For a given sample set P , a non obtuse
mesh interpolating P will not exist in general, however approximation algorithms exist which
will produce a non-obtuse mesh with small perturbations of the original samples [LZ06]. Such
meshes are convenient for certain algorithms, such as the fast marching algorithm of Kimmel
and Sethian [KS98], which become much more complicated in the presence of obtuse angles.

The idea of a non-obtuse mesh extends to higher dimensions where the resulting simplicial
complexes are referred to as well centred meshes. This is an allusion to the fact that the
circumcentre of each simplex must reside within the simplex itself. Algorithms for producing
such structures have recently been proposed [VHGR08]. In this context the interest in well
centred meshes stems from the theory of discrete exterior calculus, where the theory is
simplified if such a mesh can be assumed. However, Glickenstein [Gli05] has shown that a
weaker condition suffices to supply this simplification, and for two dimensional domains it
is enough that the mesh be a Delaunay mesh.

4 Surface approximation theory

Having reviewed the principle triangle mesh structures that have been employed to represent
surfaces, we now turn our attention to the question of what constitutes a good representation
of a surface. Of course the answer to such a question depends very much upon the intended
application of the structure.

The principle concern in many, if not most applications is the accuracy of the geometric
approximation. The quality of geometric approximation can be evaluated based upon a three
level hierarchy:

1. topological consistency

2. pointwise approximation

3. normal approximation

At the first level, we require for topological consistency that the approximation M be
homeomorphic to the original surface S. In other words we demand that M and S both
have the same genus. In this sense the first level is of a different nature from level (2) and
(3) in that it is either attained or it is not. The latter geometric criteria can be viewed
as convergence issues where the quality of the approximation is expected to improve with
increased sampling density.

Normally, in order to evaluate the quality of the pointwise and normal approximation of
M , one assumes that the criterion of topological consistency has been met. This then allows
for the definition of a homeomorphism, a bijective, bicontinuous mapping: ξ : M → S. Then
the pointwise approximation error of M can be evaluated as some measure of the difference
between x and ξ(x) for each x ∈ M . Likewise, the quality of the normal approximation is
judged by a comparison of the normal to M at x with the normal to S at ξ(x).

A family of meshes will be useful as representations of the geometry of S if it can be
shown that they will converge to S in both position and normal as the number of vertices
is increased. The two types of convergence need to be evaluated independently. A classic
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(a) (b)

Figure 6: (a)A Schwarz torus. The Schwarz lantern is a triangle mesh of a cylinder that
does not display normal convergence as the sampling increases. Here we have used the same
tessellation pattern on a torus. (b) A Delaunay mesh on the same vertex set. The triangle
normals are more consistent with the expected surface normals.

example of a family of meshes that converges pointwise to a cylinder, but which display no
normal convergence (hence no convergence in surface area), is the Schwarz lantern [HPW06]
(see Figure 6).

The problem of creating a triangle mesh that is a good geometric representation of S
is called meshing . The problem involves not only sampling S, but also deciding how those
samples are connected together to form the triangle mesh. The Delaunay paradigm has been
exploited in both these aspects of meshing.

The connectivity of the samples will influence the geometric accuracy of the mesh ap-
proximation. However, as we discuss in Section 4.3, another criterion that is influenced by
connectivity is element quality: how close are the triangle faces to equilateral triangles. Op-
timizing for geometric accuracy alone may lead to meshes with poor element quality. This
is undesirable in some applications.

4.1 Sampling and topological consistency

Perhaps the most fundamental issue that must be addressed when meshing or reconstructing
a surface is determining the distribution of samples necessary to ensure that the final mesh
is topologically equivalent to the original surface. Ideally the sampling density is specified by
an adaptive sampling criterion. Such criteria generally impose restrictions on the sampling
density based on local curvature properties as well as semi-local properties relating to some
notion of the distance to “the other side” of the surface. We refer to functions that can
be used to modulate the sampling density in this way as sizing functions . These functions
take positive values which can be thought of as having the units of distance. Thus at each
point on the surface, a sizing function specifies a radius within which a certain proportion of
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representative samples is expected. The square of such a function can, for example, be used
to define a weighted area measure for governing stochastic sampling.

Perhaps the best known sizing function is the local feature size (lfs), introduced by
Amenta and Bern [AB98]. At a point x ∈ S, the lfs at x, denoted ρf (x) is given by
the Euclidean distance from x to the medial axis of S. The medial axis of S is the closure of
the set of points in R

3 whose distance to S is realized by more than one distinct point in S.
Equivalently, it is the closure of the set of centres of the medial balls : Euclidean balls which
contain no points of the surface in their interior and are maximal in the sense that they are
contained in no other Euclidean ball which possesses this property.

The local feature size becomes smaller in the presence of higher curvature. This is a
property that is expected in any sizing function. Another property possessed by the lfs is
that it is Lipschitz continuous , specifically it is a 1-Lipschitz function, which means that for
any p, q ∈ S, |ρf (p) − ρf (q)| ≤ dR3(p, q). This is especially convenient for analysis because
it enables us to bound ρf (x) in a neighbourhood of a point p if we have a bound on ρf (p).

In terms of the lfs, a typical sampling criterion would demand that for any x ∈ S there
be a p ∈ P such that p ∈ BR3(x; ǫρf (x)), the Euclidean ball of radius ǫρf (x) centred at
x. That is, no point x on the surface is farther than ǫρf (x) from a sample point, where
0 < ǫ ≤ 1. A sample set that satisfies this criteria is called a lfs ǫ-sample set for S. Amenta
and Bern [AB98] demonstrated that the rDt will be homeomorphic to S provided that P
fulfills such a sampling criteria, with ǫ < 0.1.

Their proof relies upon a fundamental result by Edelsbrunner and Shah [ES94] in which it
was demonstrated that the rDt would be homeomorphic to S provided that the rVd satisfied
the closed ball property . This property demands that each Voronoi cell be a topological disk
(a closed 2-ball), that two neighbouring Voronoi cells share no more than a single Voronoi
edge (i.e. that the intersection of two Voronoi cells is either empty or a topological 1-ball),
and that the intersection of three Voronoi cells, if non-empty, be a single Voronoi vertex
(topological 0-ball). The result applies to higher dimensional objects; the definition of the
closed ball property extends in an obvious manner.

The closed ball property can be viewed as a qualitative measure of the fitness of a
sample set for capturing the topology of S. It has been observed that if the iVd of the
vertices of a mesh, M , satisfies the closed ball property, then the iDt of M will be a proper
triangulation [DZM07b]. This is the observation behind the as yet unquantified assertion
that a necessary condition for a mesh to be a good representation of a smooth surface is that
it have a proper iDt.

Observing that the closed ball property applies as a topological consistency criterion not
just to the rVd, but to any Voronoi diagram defined on S, Dyer et al. [DZM08] demonstrated
that the iDt-mesh is homeomorphic to S if no point x ∈ S is farther than 0.2ρf (x) from
the nearest sample point. This result was obtained via intrinsic sizing functions introduced
by Leibon and Letscher [LL00]. In the latter work, more stringent sampling criteria were
developed to guarantee a well defined iDt of S.

In the surface reconstruction and meshing literature there have appeared many other
works that presented algorithms which produced meshes provably homeomorphic to the
target surface. Often these meshes are closely related to a Delaunay structure. We will
review the important examples of such algorithms in Section 5.
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Finally, we mention that there are other notions of topological consistency. Besides de-
manding that M be homeomorphic to S, one may require that they are ambient isotopic.
This is a stronger requirement than homeomorphism. It essentially requires that the ambient
space can be continuously deformed to bring M to coincide with S, but without inducing
any self-intersections along the way. As an example, a tube tied in a trefoil knot10 is home-
omorphic to a torus, but the two are not ambient isotopic. Amenta et al. [APR03] showed
that if M and S are sufficiently close that a homeomorphism ξ : M → S is given by the
projection to the closest point on S, then they are ambient isotopic.

The trefoil knot is
homeomorphic, but
not ambient isotopic

to a torus.

In light of that result, it is seen that most sampling criteria which
guarantee that M is homeomorphic to S, e.g. [AB98], [DZM08], are
sufficient to guarantee an ambient isotopy as well.

Another notion of topological consistency is the concept of ho-
motopy equivalence. This concept is of little interest in the context
of manifold surface approximation, but it becomes much more rele-
vant when constructing a mesh to represent a non-manifold object.
In this context, homotopy equivalence is a weaker criterion than a
homeomorphism. Recent work by Gao et al. [GGOW08] provides
guarantees of homotopy equivalence in the meshing of arbitrary pla-
nar domains.

Also, it should be pointed out that the three point hierarchy presented in the introduction
to this section is subject to debate. Specifically, it can be argued that topological consistency
is not a prerequisite to a good geometric approximation. For closed surfaces, the topology
is completely characterized by the genus: the number of handles (or holes) in the surface.
From a topological perspective, all holes have equal importance, but from the point of view of
geometry this is simply not true. For many applications it may not be important to preserve
tiny handles. The notion of topological persistence was developed [ELZ00] as a way of
capturing the relative size and importance of handles. Of course if topological equivalence is
sacrificed, no homeomorphism between the original surface and its approximation is possible,
so subsequent geometric accuracy analysis becomes more problematic.

4.2 Convergence and geometric accuracy

Assuming the criterion of topological consistency has been met, we turn our attention to
the geometric fidelity of M as a representation of S. In other words we are interested in
evaluating the pointwise positional accuracy of M and the accuracy of the face normals of
the triangles of M as representatives of corresponding surface normals on S.

4.2.1 Pointwise convergence and the projection mapping

Even if the set P of vertices of M all lie on S itself, there may be points of M that are
far from S if the density of P is not high enough with respect to the local feature size. If
dR3(x, S) is the (minimum) distance from x ∈ M to S, then one natural measure of the
pointwise accuracy of M is supx∈M dR3(x, S). This is called the Hausdorff distance from M

10Image from http://commons.wikimedia.org/wiki/Image:Trefoil knot arb.png
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to S. Notice that this distance is not symmetric: The Hausdorff distance from S to M will
be different in general. The symmetric Hausdorff distance between M and S is the maximum
of these two numbers. If we have a family of meshes Mn whose vertices, P are samples of S
with |P | = n, then if the symmetric Hausdorff distance between Mn and S goes to zero as n
goes to infinity, we say the family {Mn} displays pointwise convergence.

If M is pointwise sufficiently close to S, then there is a natural mapping M → S that
embodies the concept of “distance to the closest point” implied in the above discussion. If
m ∈ R

3 is not a point on the medial axis of S, then there is a unique point p ∈ S such
that dR3(m, p) = dR3(m,S). The point m must lie on the line generated by the normal to
S at p, so p can be viewed as the orthogonal projection of m onto S. For a set U ⊂ R

3,
the projection mapping ξ : U → S, takes each m in U to its closest point in S. If ξ|M is
injective, then it defines a homeomorphism of M onto S. Standard techniques in geometric
accuracy analysis exploit this homeomorphism.

For any smooth surface S, we can construct a neighbourhood U ⊃ S upon which the
projection ξ is well defined. For a point p ∈ S, the local reach at p is the radius of the
smallest of the two medial balls at p. The local reach is a continuous function ρR : S → R

+

[Fed59]. For each p ∈ S, let Ip denote the open interval on the normal line through p, centred
at p and with length 2ρR(p). By construction, any point m ∈ Ip is closer to p than to any
other point in S, thus for p 6= q, Ip ∩ Iq = ∅. The set UρR

= ∪p∈SIp is called a tubular
neighbourhood of S, and the projection ξ onto S is well defined on UρR

. In fact, ξ is well
defined on any neighbourhood of S that does not contain any point of the medial axis.

4.2.2 Normal convergence

Establishing pointwise convergence is not sufficient to guarantee that Mn will be a good
representation of S for sufficiently high n. It is crucial that one also demonstrates normal
convergence. To evaluate how effectively M approximates the normals of S one needs a
means of corresponding points on M with points on S. Typically the projection mapping is
used, so we are interested in the size of ‖n̂(x) − n̂(ξ(x))‖. If the supremum of this number
over all x ∈ t for all triangles t in Mn goes to zero as n goes to infinity, we say that {Mn}
displays normal convergence.

Note that this criterion implies that the difference in the normals of two adjacent triangles
must go to zero as n goes to infinity. The normal vector at a vertex in a triangle mesh does not
need to be defined. If p ∈ Mn for all n, then the normals to triangles that have p as a vertex
must converge to n̂(p), the normal to S at p. In computer graphics, defining a normal vector
at the vertex of a mesh is important. Most schemes for defining a normal at a vertex involve
a weighted sum of the face normals of the adjacent triangles. Recent work indicates that
weighting the face normals by the face angle at the vertex yields convenient properties [BA05].
In the emerging formalism of the discrete exterior calculus, the formulation of a consistent
scheme for defining tangent planes at vertices is considered an open problem [DHLM03].
Any sane definition of a normal vector at the vertices will converge to the normal of the
surface at that point if the meshes display normal convergence as we have defined it.

It has been shown [MT04], [HPW06] that normal convergence is equivalent to convergence
of surface area and to the convergence of the intrinsic distance functions of the Mn to that
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of S.

4.2.3 Convergence properties of Delaunay structures

One of the attractive properties of both the rDt and the iDt-mesh is that these families both
display pointwise and normal convergence. This was demonstrated for the former in [AB98],
and more recently for the latter in [DLYG06, DLJ+07]. It should be mentioned that the
bounds for the normal error that appeared in [AB98] as well as in many subsequent works,
e.g., [ACDL00, Dey07], rested on a “normal variation lemma” which bounds the difference in
the normals between two points whose separation is bounded by the lfs. A recent erratum,
[AD], has corrected the proof of that lemma and improved its bound. Thus the normal error
bounds mentioned in affected previous works can be improved.

For general meshes, increasing sampling density alone is not sufficient to ensure a decrease
in the normal error, as the Schwarz lantern will attest. However, if the circumradius of the
triangles can be controlled, then so too can be the normal error. For general meshes, the
normal error depends linearly on the largest circumradius of the triangles [MT04]. This
highlights one of the reasons for the success of the Delaunay paradigm in surface meshing:
Delaunay triangulations favour triangles with small circumradius. Actually, that statement
merits further exploration. While it is known that the 2D planar Delaunay triangulation
minimizes the maximum circumradius of the triangles [DS89], the corresponding claims for
the structures presented in Section 3 have not been established. Recent work by Cheng and
Dey [CD07] shows that, with mild constraints on the dihedral angles and some uniformity and
density constraints on the sampling, a mesh that lexicographically minimizes the circumradii
of the triangles will be a Gabriel mesh. In particular, a physical edge flip of an edge that is
NLD with respect to the intrinsic metric of the mesh has the effect of reducing the maximum
circumradius of the triangles involved. Thus some sort of circumradii optimality result has
been obtained for Delaunay meshes at least. We expect that the uniformity constraints on
the sampling can be dropped.

That all three Delaunay structures constrain the triangle circumradius with respect to
the sampling density can be seen intuitively if we take the approach of considering the dual
Voronoi diagram on S that results from the appropriate choice of metric d. Suppose a
sampling density is specified in terms of a sampling radius : a function ρ(x) : S → R

+ such
that for any point x ∈ S there must be a p ∈ P with d(x, p) < ρ(x). If the sampling radius is
sufficiently small, the point z on S that is farthest from any sample point will be a Voronoi
vertex. If d = dM , the metric of a conforming Delaunay mesh, then the distance of z to the
closest sample will be exactly the circumradius of the triangle face t dual to z. It follows
that t will have the largest circumradius of all triangles in M and that this circumradius is
necessarily smaller than ρ(z). Of coures, no sampling density would be specified in terms of
the metric of a mesh that has yet to be built, but the analysis will hold as long as the metric
of the mesh can be bounded from above in terms of the metric used to define the sampling
density.

Likewise, for the rDt and the iDt-mesh, the above argument will not hold exactly, but
the distance from z to the closest sample will differ from the circumradius of t by only a
small amount, corresponding to the distortion of the metric as we go from S to M . In either
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Figure 7: Without some kind of regularity condition, a Delaunay mesh is not necessarily a
good representation of the surface from which its vertices are sampled. The mesh fragment
shown here is necessarily Delaunay since it has no obtuse face angles. However if the samples
represent a well sampled smooth surface, the vertex a should not be associated with the
neighbours that it has. For example, a could be a point on the antipodal side of a well
sampled sphere.

case, we are able to bound the circumradius of the triangle with respect to the sampling
radius.

It is worth being more explicit on this point. Convenient bounds on the normal error
and the positional error for a Euclidian triangle t whose vertices belong to S are given in
[DLYG06][Theorem 2]. Specifically, if the vertices of t are contained in BS(c; r), a geodesic
disk of radius r and such that the maximal curvature is bounded by κ in BS(c; r) and r <
1/(4κ), then for any point m ∈ t, we have ‖n̂(ξ(m)) − n̂t‖ ≤ 4.5κr and also dR3(m, ξ(m)) ≤
9κr2. Now if we have a sampling radius that demands r < ǫρf (c) , for a sufficiently small ǫ,
then using the Lipschitz continuity of the lfs the normal error is bounded by O(ǫ) and the
positional error is bounded by O(ρf (c)ǫ

2). It is possible to obtain the same bounds if we are
using the Euclidean metric instead of the intrinsic metric [DZM08][Lemma 9]. Thus these
bounds hold for both the rDt and the iDt-mesh. We expect that it will also be possible to
establish a corresponding result for a class of conforming Delaunay meshes. The principle
difficulty will be characterizing, and establishing existence of such Delaunay meshes.

The specification of a subclass of Delaunay meshes is important here. Indeed, without
the conforming qualifier, the definition of a Delaunay mesh is too broad to guarantee a useful
surface representation. Even when the vertices of M densely sample S, M may be Delaunay
but not admit a conforming homeomorphism. A simple example can be constructed from
a densely sampled sphere. Construct a Delaunay mesh, but choose a sample point at the
north pole to be connected only to neighbours in the neighbourhood of the south pole. Thus
M resembles a sphere but with a pyramidal spike penetrating its axis. Yet M may still be
a Delaunay mesh (see Figure 7).
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4.3 Element quality

There is another quality of M that is often sought in addition to, or even in preference to geo-
metric fidelity. We often want to ensure that M contains no “bad triangles”. This is the goal
of good element quality. What exactly is meant by a bad triangle is the subject of a sizable
paper by Shewchuk [She02]. There are many measures for judging the quality of a triangle,
perhaps the best known is the ratio of the shortest edge to the circumradius, a number that
is generally desired to be as large as possible. Good triangle quality is important for applica-
tions which discretize partial differential equations on S [She02]. Computing eigenfunctions
of the Laplace-Beltrami operator, a computation that is drawing increasing interest in the
geometry processing community [ZvKD08], can be seen to fall into this category.

Although there may be no clear consensus of exactly what defines a bad triangle, it is
generally agreed that a triangle that is near to being equilateral is good. In general the
Delaunay structures provide good element quality, but for a fixed sample budget, the best
geometric representations of S are composed of triangles that are far from equilateral. In the
presence of anisotropic curvature, such as on the surface of a cylinder for example, long thin
triangles oriented in the direction of low curvature provide a better geometric approximation
than may be obtained with triangles that are closer to being equilateral.

A nice demonstration of this phenomenon is presented in works that seek to optimize
triangle meshes by edge flipping algorithms geared towards minimizing some discrete cur-
vature measure [DHKL01] [vDA95]. Although these works appeal primarily to the visual
quality of the results and lack quantitative analysis, they are supported by more quantitative
works: In [DLR90] the best planar mesh to represent a known, possibly anisotropic, func-
tion f : D ⊂ R

2 → R is sought, and in [AKTvD00] experiments are performed to assess the
geometric quality of the meshes produced by optimizing the quality measures discussed in
[vDA95]. The meshes produced are visually appealing, but they contain many long skinny
triangles. Interestingly, edge flipping algorithms that minimize the Willmore energy , which
is, roughly speaking, the integral of the square of the mean curvature, tend to produce nice
triangle quality at the expense of mesh smoothness [ABR06].

Thus it appears that the goal of geometric fidelity is at odds with the goal of good element
quality. In particular, the Delaunay structures discussed in Section 3, despite the established
convergence results for the rDt and the iDt-mesh, are not generally the best meshes for
representing the geometry of S. This fact coupled with the demonstrated practical and
theoretical attributes of Delaunay structures should motivate future work into Delaunay
structures based on anisotropic metrics which reflect the principle curvatures.

Returning again to the question of what makes a bad element, we consider the issue from
the point of view of geometric accuracy. There is evidence which supports the assertion that
triangles with very large angles may be more problematic than triangles with very small
angles. In the context of normal convergence, Morvan and Thibert [MT04] identified the
rightness of a triangle t as an important measure of element quality. The rightness of t is
simply the sine of the largest angle. The importance of rightness arises in the context of nor-
mal convergence of meshes approximating a smooth surface: the normal error is minimized
when the minimum rightness of the triangles is maximized. This result translates into the
linear dependence of the normal error on the circumradius by the formula ρt = ηt

2γt
, where for
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triangle t, ρt is its circumradius, ηt is the length of its longest edge and γt is its rightness.

5 Surface meshing and reconstruction

Most results pertaining to surface representation by Delaunay structures have arisen in the
context of surface meshing and surface reconstruction. These are two related application
domains that both depend on surface sampling theory and the geometric accuracy of triangle
meshes.

In surface meshing, the input is a surface S and one must produce a set, P , of samples
of S, and a mesh, M , whose vertices are P , such that M meets given geometric accuracy
requirements.

In surface reconstruction, the input is the set of samples P and, aside from some regularity
assumptions (i.e. that it was a smooth surface, or at least a Lipschitz surface), the surface
S is unknown. Again one wishes to construct a mesh that adequately represents S.

The work in these domains is extensive, and there appeared recently a good survey on
the subject of Delaunay structures in surface reconstruction [CG06]. Also, a recent book
on surface reconstruction [Dey07], gives details and analysis on state of the art surface
reconstruction algorithms. The Delaunay paradigm is prominent in most of the algorithms
discussed there.

In this section we give an overview of the main results with an emphasis on how they
relate to Delaunay structures in general and the Delaunay meshes described in Section 3.2.3
in particular.

5.1 Reconstruction algorithms

5.1.1 Quality guarantees

Many surface reconstruction algorithms provide guarantees on the quality of the output
surface if specific sampling density assumptions are met. The first such algorithm was the
Crust algorithm developed by Amenta and Bern [AB98]. This was a seminal paper in which
several important concepts were introduced including the local feature size and the pole of
a sample point. The pole of a sample p is the Voronoi vertex of V (p) that is farthest from
p. The pole enables an estimate of the normal vector at p. The mesh M was extracted
from the Delaunay tetrahedralization of the poles and the original samples together; only
triangles whose vertices are all samples are considered while constructing M . The algorithm
and the analysis was subsequently simplified with the Co-cone algorithm [ACDL00]. A later
development was the Power Crust [ACK01] which creates a piecewise linear surface via the
consideration of medial balls centred at the poles.

The 3D Delaunay tetrahedralization and the rDt played prominently in the design and
analysis of these algorithms, and it is fair to say that the scaffold provided by the Delaunay
tetrahedralization has played a role in most reconstruction and meshing algorithms that have
provable guarantees on their output quality.
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5.1.2 Sample density considerations

Any surface reconstruction algorithm which guarantees a topologically correct output, must
make some assumptions about the density of the samples that are used as input. Typically,
the sample set is assumed to be a lfs ǫ-sample set, for some ǫ ≈ 0.1. An important observation
made by Dey and Giesen [DG01] is that regions of undersampling in the input sample points
can be detected without direct knowledge of the initial surface S. Their work was based
on an analysis of the shape of the Voronoi cells in the 3D Voronoi diagram. Petitjean
and Boyer [PB01] set out with a similar agenda to characterize a good sample set via the
properties of certain interpolating meshes. However, as noted in Section 3, their scheme
turned out to be too restrictive because it did not allow sample sets which contain sliver
tetrahedra in their Delaunay tetrahedralization.

5.1.3 Surface area minimization

Among the early publications dealing with the surface reconstruction problem was a short
paper by O’Rourke [O’R81] in which local edge swapping is performed to reduce the surface
area of an initial mesh. The assumption was that the mesh of minimal surface area connecting
the vertices P would be one of the best representations of S amongst all the possible ways
of connecting P . It was mentioned that attaining the true minimal surface area mesh would
probably not be computationally practical, since the lower dimensional analogous problem
of finding a minimal length polyhedron connecting a set of points in the plane is essentially
the traveling salesman problem, which is known to be NP complete.

However, the traveling salesman problem is NP-complete for a generic set of points, but
points which are densely sampled from some smooth curve have properties which reflect
their special origin. In a series of papers initiated by Giesen [Gie99a, Gie99b, AM01] it
was demonstrated that the traveling salesman perspective yields a powerful algorithm for
producing a polygonal reconstruction of the original planar curve. These algorithms are able
to perform reliably on much weaker regularity assumptions than are required by Voronoi-
based curve reconstruction algorithms.

Thus it may be interesting to revisit the idea of polyhedra of minimal surface area in
the context of surface reconstruction. A further motivation for such an investigation is the
strong ties to the Delaunay mesh as indicated by the observation [DZM07a] that performing
a physical edge swap on an NLD edge reduces the surface area of the mesh.

5.1.4 The flow complex and wrap algorithms

There have been works which present algorithms which are metaphorically referred to as
shrink wrapping algorithms, and these give the impression of being related to surface area
minimization. Among these were later works by Giesen et al. [GJ02, GJ03] which introduced
the flow complex . The flow complex is a piecewise linear structure whose vertices are the
critical points of the distance function as measured from the sample point set, as well as the
sample points themselves. The precise description of the flow structure is quite involved. It
is neither a substructure of the 3D Delaunay tetrahedralization nor of the Voronoi diagram,
but it can be described completely in terms of them both. The wrap algorithm that was
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developed independently by Edelsbrunner [Ede04] is closely related to the flow complex, but
it employs a power distance from Voronoi vertices. It can be seen as the dual of the flow
complex, but the critical points are the same [RS07]. In contrast to the mesh constructed
by the flow complex, the output of the wrap algorithm is a subcomplex of the 3D Delau-
nay tetrahedralization. Another notable shrink wrapping algorithm with this property was
presented by Chaine [Cha03]. The algorithm is described as a convection algorithm and is
perhaps the most worthy of the shrink wrapping classification.

Although the shrink wrapping algorithms give the impression of surface area minimiza-
tion, just as their metaphorical moniker implies, no explicit claims of surface area mini-
mization are made. These algorithms have not been analyzed from this perspective. A
reconstruction algorithm that does produce a polyhedron of minimal surface area was intro-
duced by Althaus and Fink [AF02]. However the algorithm applies only to data sampled on
parallel planar contours. A contour on S is defined as the curve of intersection between S
and a plane in R

3. The contours parallel if their corresponding planes are parallel.

5.1.5 Local region growing

Another class of surface reconstruction algorithms is based on the idea of local region growing.
The Delaunay paradigm has appeared here in work by Gopi et al. [GKS00], where samples in
the vicinity of interest are projected onto an estimated tangent plane, and the 2D Delaunay
triangulation of the result guides the connectivity of the mesh under construction. A similar
approach was employed by Chen et al. [CB97] who also do a local parametrization but
to establish the connectivity they use ellipses reflecting the parametric distortion of the
Delaunay circles, thus approximating an iDt-mesh more than an rDt. There are many other
algorithms that are based on local region growing. One that was recently presented [KA08]
is worth noting because to form an umbrella of triangles around each point, triangles with
the smallest circumradius are selected.

Some region growing algorithms do come with quality guarantees [LT06, KA08], however
since these algorithms tend to work with k-nearest neighbours around a point, they typically
require a uniformity constraint on the sample set. For example, P is a lfs (ǫ, δ)-sample set if
it is a lfs ǫ-sample set and for any p, q ∈ P , dR3(p, q) ≥ δρf (p) for ǫ

2
≤ δ < ǫ < 1 [LT06].

5.1.6 Witness complex

A new approach to the rDt has recently emerged in the form of the witness complex . This
construction provides for the identification of the rDt of P ⊂ S when S itself is known only
in the form of a much denser set of samples P̃ , of which P is a subset. Elements of the set P ,
the vertices of the rDt, are referred to as landmarks . A recent work by Attali et al. [AEM07]
paved the way for the use of witness complexes in surface reconstruction.

5.1.7 Alpha, Beta and Gabriel complexes

The relevance of the Gabriel complex has been recognized in surface reconstruction [AGJ00],
[PB01], [Cha03]. In general the Gabriel complex is expected to contain a good surface rep-
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resentation for a sufficiently dense sample set, however this has not been formally demon-
strated, except for the case of a uniform sample distribution [CD07].

A related complex is the α-shape [EM94]. This consists of those triangles that admit
an empty ball of radius α on their dual Voronoi edge. Surface reconstruction algorithms
which are based on the α-shape generally need to assume a uniform sampling density. The
β-skeleton [KR85] was exploited for curve reconstruction [ABE98], but it did not easily
generalize for the purposes of surface reconstruction [AB98]. The β-skeleton consists of
those edges in the planar Delaunay triangulation which possess empty disks that intersect
at the endpoints of the edge and with radius of β times the length of the edge.

5.1.8 Implicit surface construction

Many surface reconstruction algorithms compute a scalar field, i.e., a function h : R
3 → R

such that the surface is approximated by a level set. This is called an implicit surface
representation. This has the advantage that an analytic representation of the surface may
be obtained. Algorithms designed to handle noisy points sets tend to be of this type.

One such algorithm that exploited the Voronoi diagram was presented by Boissonnat
and Cazals [BC00, BC01]. They constructed a signed distance function with the aid of the
natural neighbour interpolation discussed in Section 2.

5.2 Surface meshing and remeshing

Related to surface reconstruction is the problem of meshing a surface. In this case the surface
S is known and a mesh is constructed by sampling S. Commonly the surface to be meshed
is an implicit surface such as is produced by some reconstruction algorithms.

5.2.1 Delaunay refinement

The seminal meshing paper was Chew’s Delaunay refinement algorithm [Che93]. This is
the same Delaunay refinement paradigm that is used for planar meshes, but it is the re-
stricted Delaunay triangulation of S that is being refined. Virtually all subsequent meshing
papers admit to being a refinement of Chew’s algorithms. Dey et al. have developed varia-
tions for remeshing existing meshes [DLR05] as well as for meshing isosurfaces [DL07]. For
smooth surfaces there are algorithms which guarantee a topologically correct and geomet-
rically faithful output [BO03, BO05, CDRR04], and similar guarantees now also apply to
Lipschitz surfaces [BO06] which have a much weaker smoothness constraint.

5.2.2 Use of the intrinsic Voronoi diagram

Although there are no surface reconstruction algorithms based on the theory of the intrin-
sic Voronoi diagram, the farthest point sampling algorithm published by Peyré and Co-
hen [PC03, PC06] and also by Moenning and Dodgson [MD03] present a remeshing method
based upon the iVd. This algorithm computes an approximation of the iVd, and the re-
sulting mesh is its dual. In other words this algorithm produces an approximation to the
iDt-mesh.
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5.3 Alternatives to the Delaunay paradigm

Our focus is on Delaunay structures, however there are many approaches to surface recon-
struction which do not employ Delaunay methods. These works come primarily from the
computer graphics community and they usually yeild an implicit surface representation. A
seminal work in this vein was produced by Hoppe [HDD+92], where a signed distance func-
tion was constructed using estimates of the tangent planes at the data points. An analytic
representation of a scalar field whose zero level set is an approximation to the surface can
be obtained using radial basis functions [CBC+01].

A popular method for defining a surface from a point cloud is the via the moving least
squares projection operator [ABCO+01] which defines the surface locally according to the
nearby samples. The resulting surface is refered to as an MLS surface. It has been shown
that the MLS surface can be represented an implicit surface [AK04].

Other surface reconstruction methods rely on numerically solving partial differential equa-
tions. Works in this category include the work of Kazhdan et al. [KBH06], where a scalar
field is constructed by solving a Poisson equation. The input to this algorithm is a set of
oriented point samples : samples that have a surface normal vector associated with them.
Another PDE based method evolves a scalar field according to an energy functional that
drives its zero level set towards the sample points [ZOF01]. This later technique belongs to
a general framework called level set methods .

These give a taste for the range of different surface reconstruction methods that have
appeared. We emphasise that we have mentioned only a tiny fraction of the work that has
been published. The primary purpose of this report is to survey those techniques which can
or have supplied insight into the theory of Delaunay structures for surface representation.

In the theory of surface meshing, there has also been much work that isn’t Delaunay-
based. In particular there is a body of abstract theoretical work from the mathematics
community that has yet to be exploited in geometry processing. Surface triangulation has
been approached from the point of view of metric spaces by Saucan [Sau04] and also Clark-
son [Cla06]. Rivin [Riv90], focused on hyperbolic spaces, and Chavel explores triangulations
in abstract Riemannian manifolds [Cha06][§IV.4]. These works surely contain deep contri-
butions that can be exploited in geometry processing if the results can be recognized and
coaxed from their abstract environment. Rivin’s work in particular appears to have possible
relevance to the theory of Delaunay meshes.

6 Discussion

Of the three principle Delaunay structures we have discussed, the rDt, the iDt-mesh and the
Delaunay mesh, the rDt is by far the most established and best understood. In practice it is
much easier to work with Euclidean distances rather than geodesic distances on some smooth
surface. By definition the rDt is a substructure of the 3D Delaunay tetrahedralization. For
surface reconstruction algorithms in particular, this is an often exploited property. For a
sufficiently well sampled surface the iDt-mesh and nice Delaunay meshes are also expected
to possess this property, but this has yet to be formally demonstrated.

In many ways analysis of such things as approximation error is more naturally performed
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when geodesic distances are considered. Recently there has been increased interest in the
intrinsic viewpoint [DLYG06], [GGOW08], [DZM08]. The intrinsic viewpoint is of greater
interest in those domains, such as manifold learning, where working in the high dimensional
ambient space is impractical, but even in geometry processing for graphics applications, the
strength of this viewpoint is beginning to be recognized.

The study of Delaunay meshes is in its infancy. One of the appealing characteristics of
these meshes is that, in contrast to the rDt and the iDt-mesh, they do not rely on a reference
surface S for their definition. When given a mesh M , one can determine with a quick check
of the angles whether or not it is a Delaunay mesh. In contrast, there is no way to tell if it
is a rDt or an iDt-mesh, unless the reference surface S is also supplied.

However, in practice M is supposed to represent some reference surface. The definition
of a Delaunay mesh is so loose that even if its vertices form a dense sampling P of S, there
is no guarantee that the Delaunay mesh M interpolating them is a good representation of
S. We need some way of ensuring that M will admit a conforming homeomorphism onto a
surface S for which P forms a sufficiently dense sample set.

Assuming that P does represent a sufficiently dense sample set, it is expected that some
constraints on the dihedral angles and edge lengths will ensure a sane Delaunay mesh. If
such criteria could be established it would provide a means of certifying the correctness of
the output of a reconstruction algorithm. Ideally a simple verification of local properties
of the mesh will ensure that it is a good representation of a smooth surface for which its
vertices form a sufficiently dense sample set.
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