
CS6220: Data-sparse Matrix Computations
Lecture 14: CUR factorization and leverage scores

Lecturer: Anil Damle
Scribers: Kun Dong, Johan Björck and Sujit Rao

October 17, 2017

1 The CUR Factorization
Last time, we decided to expand our view from standard factorizations to the CUR factorization,
which is more interpretable. If the matrix A comes from data, then the singular vectors associated
to the largest singular value can be interpreted as telling us what data point or feature is most
important. But this is sometimes a linear combination of features or data points, which we can’t
necessarily interpret as being associated to an actual feature or data point.

Thus we would like to build a factorization where A ≈ CUR, where C is a subset of the
columns of A, R is a subset of the rows of A, and U is just some matrix. In contrast, in the SV D
we choose orthogonal matrices for C and R and force U to be diagonal. This would give more
interpretable results on what features or rows in the data are most significant, as opposed to what
linear combinations are most significant.

In order to build the factorization, we need to figure out which columns of A are most dominant
in a rank-k approximation of A. Let Ak be the best rank−k factorization of A.

How do we pick the columns and rows? We will first discuss columns, and apply the same
algorithm for rows. We would like a small number of columns with good approximation properties.
Let A = UΣV T be the SVD. Let ui and vi be the columns of U and V . We can write a column in
terms of the SVD as

A:,j =

n∑
i=1

(σiui)vi(j).

If we look at the rank-k approximation, we care about columns which have large contributions
from σ1, . . . , σk. Thus

A:,j ≈
k∑

i=1

(σiui)vi(j).

We want columns of A which correlate well with the top k left singular vectors. To measure this,
we will introduce the notion of leverage scores of the matrix A.

2 Leverage Scores and Column Selection
We define the normalized leverage scores of matrix A as

πj =
1

k

k∑
i=1

vi(j)
2 for j = 1, 2...n

Note that the normalized leverage scores constitutes a probability distribution, i.e. we have∑
j πj = 1. We also note that πj is the j:th diagonal element of VkV T

k . We present the method
ColumnSelect below. At a high level it is a two-stage procedure, the leverage scores are first
calculated and columns are then selected randomly based on the probability distribution defined
by the leverage scores.

1



ColumnSelect Algorithm
Starting with input matrix A ∈ Rm×n, rank parameter k, and error
parameter ε.

1. Compute V1...Vk and leverage scores. Let C denote the set of
columns we choose.

2. Add column j to C with probability min(1, cπj), where c is a

constant of order O
(

k
ε2
log k

)
3. Return C.

The method returns C ′ columns, where E[C ′] ≤ c. It is possible to prove that we with high
probability have

‖A− PCA‖f ≤
(

1 +
ε

2

)
‖A−Ak‖F (1)

Here PC is the projection operator unto the space spanned by columns C.

3 CUR Algorithm
The column selection algorithm let us represent A by a subset of its columns. The main algorithm
builds upon it to obtain such representation in terms of both columns and rows simultaneously.
AlgorithmCUR performs the following steps,

CUR Matrix Decomposition Algorithm
Starting with input matrix A ∈ Rm×n, rank parameter k, and error
parameter ε.

1. Run ColumnSelect onA with c = O(k log k/ε2) to choose columns
of A and construct the matrix C.

2. Run ColumnSelect on AT with r = O(k log k/ε2) to choose rows
of A (columns of AT ) and construct the matrix R.

3. Compute U = C†AR†, where X† denotes the Moore-Penrose
pseudoinverse of a matrix X.

For the output C,U,R of this algorithm, we can prove that with probability at least 98%

‖A− CUR‖F ≤ (2 + ε)‖A−Ak‖F

By the way U is constructed,

‖A− CUR‖F = ‖A− CC†AR†R‖F (2)

Applying the triangle inequality,

‖A− CUR‖F ≤ ‖A− CC†A‖F + ‖CC†A− CC†AR†R‖F
≤ ‖A− CC†A‖F + ‖A−AR†R‖F
= ‖A− PCA‖F + ‖A−APR‖F

2



The second inequality follows form the fact that I−CC† is a projection operator, thus does not
increase the Frobenius norm. Since C and U are selected by ColumnSelect on A and AT respec-
tively, we can use the error bound from equation (1) to get equation (2). Because AlgorithmCUR
consists of two applications of ColumnSelect the failure probability is at most twice of the 1% of
ColumnSelect, resulting in the 98% success rate.

References
[MD09] Michael W Mahoney and Petros Drineas. Cur matrix decompositions for improved data analysis. Proceed-

ings of the National Academy of Sciences, 106(3):697–702, 2009.

3


	The CUR Factorization
	Leverage Scores and Column Selection
	CUR Algorithm

