Lecture 12
 Jordan canonical form

- Jordan canonical form
- generalized modes
- Cayley-Hamilton theorem

Jordan canonical form

what if A cannot be diagonalized?
any matrix $A \in \mathbf{R}^{n \times n}$ can be put in Jordan canonical form by a similarity transformation, i.e.

$$
T^{-1} A T=J=\left[\begin{array}{lll}
J_{1} & & \\
& \ddots & \\
& & J_{q}
\end{array}\right]
$$

where

$$
J_{i}=\left[\begin{array}{cccc}
\lambda_{i} & 1 & & \\
& \lambda_{i} & \ddots & \\
& & \ddots & 1 \\
& & & \lambda_{i}
\end{array}\right] \in \mathbf{C}^{n_{i} \times n_{i}}
$$

is called a Jordan block of size n_{i} with eigenvalue λ_{i} (so $n=\sum_{i=1}^{q} n_{i}$)

- J is upper bidiagonal
- J diagonal is the special case of n Jordan blocks of size $n_{i}=1$
- Jordan form is unique (up to permutations of the blocks)
- can have multiple blocks with same eigenvalue
note: JCF is a conceptual tool, never used in numerical computations!
$\mathcal{X}(s)=\operatorname{det}(s I-A)=\left(s-\lambda_{1}\right)^{n_{1}} \cdots\left(s-\lambda_{q}\right)^{n_{q}}$
hence distinct eigenvalues $\Rightarrow n_{i}=1 \Rightarrow A$ diagonalizable
$\operatorname{dim} \mathcal{N}(\lambda I-A)$ is the number of Jordan blocks with eigenvalue λ
more generally,

$$
\operatorname{dim} \mathcal{N}(\lambda I-A)^{k}=\sum_{\lambda_{i}=\lambda} \min \left\{k, n_{i}\right\}
$$

so from $\operatorname{dim} \mathcal{N}(\lambda I-A)^{k}$ for $k=1,2, \ldots$ we can determine the sizes of the Jordan blocks associated with λ

- factor out T and $T^{-1}, \lambda I-A=T(\lambda I-J) T^{-1}$
- for, say, a block of size 3:

$$
\lambda_{i} I-J_{i}=\left[\begin{array}{rrr}
0 & -1 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right] \quad\left(\lambda_{i} I-J_{i}\right)^{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad\left(\lambda_{i} I-J_{i}\right)^{3}=0
$$

- for other blocks (say, size 3 , for $k \geq 2$)

$$
\left(\lambda_{i} I-J_{j}\right)^{k}=\left[\begin{array}{ccc}
\left(\lambda_{i}-\lambda_{j}\right)^{k} & -k\left(\lambda_{i}-\lambda_{j}\right)^{k-1} & (k(k-1) / 2)\left(\lambda_{i}-\lambda_{j}\right)^{k-2} \\
0 & \left(\lambda_{j}-\lambda_{i}\right)^{k} & -k\left(\lambda_{j}-\lambda_{i}\right)^{k-1} \\
0 & 0 & \left(\lambda_{j}-\lambda_{i}\right)^{k}
\end{array}\right]
$$

Generalized eigenvectors

suppose $T^{-1} A T=J=\operatorname{diag}\left(J_{1}, \ldots, J_{q}\right)$
express T as

$$
T=\left[\begin{array}{llll}
T_{1} & T_{2} & \cdots & T_{q}
\end{array}\right]
$$

where $T_{i} \in \mathbf{C}^{n \times n_{i}}$ are the columns of T associated with i th Jordan block J_{i}
we have $A T_{i}=T_{i} J_{i}$
let $T_{i}=\left[\begin{array}{llll}v_{i 1} & v_{i 2} & \cdots & v_{i n_{i}}\end{array}\right]$
then we have:

$$
A v_{i 1}=\lambda_{i} v_{i 1}
$$

i.e., the first column of each T_{i} is an eigenvector associated with e.v. λ_{i}
for $j=2, \ldots, n_{i}$,

$$
A v_{i j}=v_{i j-1}+\lambda_{i} v_{i j}
$$

the vectors $v_{i 1}, \ldots v_{i n_{i}}$ are sometimes called generalized eigenvectors

Jordan form LDS

consider LDS $\dot{x}=A x$
by change of coordinates $x=T \tilde{x}$, can put into form $\dot{\tilde{x}}=J \tilde{x}$
system is decomposed into independent 'Jordan block systems' $\dot{\tilde{x}}_{i}=J_{i} \tilde{x}_{i}$

Jordan blocks are sometimes called Jordan chains
(block diagram shows why)

Resolvent, exponential of Jordan block

resolvent of $k \times k$ Jordan block with eigenvalue λ :

$$
\begin{aligned}
& \left(s I-J_{\lambda}\right)^{-1}=\left[\begin{array}{cccc}
s-\lambda & -1 & & \\
& s-\lambda & \ddots & \\
& & \ddots & -1 \\
& & & s-\lambda
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cccc}
(s-\lambda)^{-1} & (s-\lambda)^{-2} & \cdots & (s-\lambda)^{-k} \\
& (s-\lambda)^{-1} & \cdots & (s-\lambda)^{-k+1} \\
& & \ddots & \vdots \\
& & & (s-\lambda)^{-1}
\end{array}\right] \\
& \quad=(s-\lambda)^{-1} I+(s-\lambda)^{-2} F_{1}+\cdots+(s-\lambda)^{-k} F_{k-1}
\end{aligned}
$$

where F_{i} is the matrix with ones on the i th upper diagonal
by inverse Laplace transform, exponential is:

$$
\begin{aligned}
e^{t J_{\lambda}} & =e^{t \lambda}\left(I+t F_{1}+\cdots+\left(t^{k-1} /(k-1)!\right) F_{k-1}\right) \\
& =e^{t \lambda}\left[\begin{array}{cccc}
1 & t & \cdots & t^{k-1} /(k-1)! \\
& 1 & \cdots & t^{k-2} /(k-2)! \\
& & \ddots & \vdots \\
& & & 1
\end{array}\right]
\end{aligned}
$$

Jordan blocks yield:

- repeated poles in resolvent
- terms of form $t^{p} e^{t \lambda}$ in $e^{t A}$

Generalized modes

consider $\dot{x}=A x$, with

$$
x(0)=a_{1} v_{i 1}+\cdots+a_{n_{i}} v_{i n_{i}}=T_{i} a
$$

then $x(t)=T e^{J t} \tilde{x}(0)=T_{i} e^{J_{i} t} a$

- trajectory stays in span of generalized eigenvectors
- coefficients have form $p(t) e^{\lambda t}$, where p is polynomial
- such solutions are called generalized modes of the system
with general $x(0)$ we can write

$$
x(t)=e^{t A} x(0)=T e^{t J} T^{-1} x(0)=\sum_{i=1}^{q} T_{i} e^{t J_{i}}\left(S_{i}^{T} x(0)\right)
$$

where

$$
T^{-1}=\left[\begin{array}{c}
S_{1}^{T} \\
\vdots \\
S_{q}^{T}
\end{array}\right]
$$

hence: all solutions of $\dot{x}=A x$ are linear combinations of (generalized) modes

Cayley-Hamilton theorem

if $p(s)=a_{0}+a_{1} s+\cdots+a_{k} s^{k}$ is a polynomial and $A \in \mathbf{R}^{n \times n}$, we define

$$
p(A)=a_{0} I+a_{1} A+\cdots+a_{k} A^{k}
$$

Cayley-Hamilton theorem: for any $A \in \mathbf{R}^{n \times n}$ we have $\mathcal{X}(A)=0$, where $\mathcal{X}(s)=\operatorname{det}(s I-A)$
example: with $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ we have $\mathcal{X}(s)=s^{2}-5 s-2$, so

$$
\begin{aligned}
\mathcal{X}(A) & =A^{2}-5 A-2 I \\
& =\left[\begin{array}{cc}
7 & 10 \\
15 & 22
\end{array}\right]-5\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]-2 I \\
& =0
\end{aligned}
$$

corollary: for every $p \in \mathbf{Z}_{+}$, we have

$$
A^{p} \in \operatorname{span}\left\{I, A, A^{2}, \ldots, A^{n-1}\right\}
$$

(and if A is invertible, also for $p \in \mathbf{Z}$)
i.e., every power of A can be expressed as linear combination of I, A, \ldots, A^{n-1}
proof: divide $\mathcal{X}(s)$ into s^{p} to get $s^{p}=q(s) \mathcal{X}(s)+r(s)$ $r=\alpha_{0}+\alpha_{1} s+\cdots+\alpha_{n-1} s^{n-1}$ is remainder polynomial
then

$$
A^{p}=q(A) \mathcal{X}(A)+r(A)=r(A)=\alpha_{0} I+\alpha_{1} A+\cdots+\alpha_{n-1} A^{n-1}
$$

for $p=-1$: rewrite $\mathrm{C}-\mathrm{H}$ theorem

$$
\mathcal{X}(A)=A^{n}+a_{n-1} A^{n-1}+\cdots+a_{0} I=0
$$

as

$$
I=A\left(-\left(a_{1} / a_{0}\right) I-\left(a_{2} / a_{0}\right) A-\cdots-\left(1 / a_{0}\right) A^{n-1}\right)
$$

(A is invertible $\Leftrightarrow a_{0} \neq 0$) so

$$
A^{-1}=-\left(a_{1} / a_{0}\right) I-\left(a_{2} / a_{0}\right) A-\cdots-\left(1 / a_{0}\right) A^{n-1}
$$

i.e., inverse is linear combination of $A^{k}, k=0, \ldots, n-1$

Proof of C-H theorem

first assume A is diagonalizable: $T^{-1} A T=\Lambda$

$$
\mathcal{X}(s)=\left(s-\lambda_{1}\right) \cdots\left(s-\lambda_{n}\right)
$$

since

$$
\mathcal{X}(A)=\mathcal{X}\left(T \Lambda T^{-1}\right)=T \mathcal{X}(\Lambda) T^{-1}
$$

it suffices to show $\mathcal{X}(\Lambda)=0$

$$
\begin{aligned}
\mathcal{X}(\Lambda) & =\left(\Lambda-\lambda_{1} I\right) \cdots\left(\Lambda-\lambda_{n} I\right) \\
& =\operatorname{diag}\left(0, \lambda_{2}-\lambda_{1}, \ldots, \lambda_{n}-\lambda_{1}\right) \cdots \operatorname{diag}\left(\lambda_{1}-\lambda_{n}, \ldots, \lambda_{n-1}-\lambda_{n}, 0\right) \\
& =0
\end{aligned}
$$

now let's do general case: $T^{-1} A T=J$

$$
\mathcal{X}(s)=\left(s-\lambda_{1}\right)^{n_{1}} \cdots\left(s-\lambda_{q}\right)^{n_{q}}
$$

suffices to show $\mathcal{X}\left(J_{i}\right)=0$

$$
\mathcal{X}\left(J_{i}\right)=\left(J_{i}-\lambda_{1} I\right)^{n_{1}} \cdots \underbrace{\left[\begin{array}{cccc}
0 & 1 & 0 & \cdots \\
0 & 0 & 1 & \cdots \\
& & & \ddots
\end{array}\right]^{n_{i}}}_{\left(J_{i}-\lambda_{i} I\right)^{n_{i}}} \cdots\left(J_{i}-\lambda_{q} I\right)^{n_{q}}=0
$$

