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Goals

Find a global maximum for f : RY — R.

> Expect d to be large.
» Only evaluate ratios f(x)/f(y).

» Assume f is regular (continuous, maybe smooth).

Method: Markov chain Monte Carlo (MCMC).



Probability Spaces

These are triples (2, F, Pr), with

> Set (Q, called the probability space,
» Measurable subsets A C 2 forming a o-algebra F of events,
satisfying
> QfeF, andAeF = Q\AeF,
> {A,‘ZI'EN}C}— = U;A; € F and NjA; € F,
» Probability function Pr : 7 — R satisfying
> (VA e F)0 < Pr(A) <1, with Pr(Q) =1 and Pr(0) =0,
> Pr(Q\ A) =1-Pr(A),
> If A,B € F with A C B, then Pr(A) < Pr(B).
> If {A;:i € N} C Fis a countable collection of disjoint
measurable sets, then Pr(U;A;) = Y. Pr(A)).



Bayes' Rule for Events

Conditional probability: for A, B € F with Pr(B) # 0,

def Pr(AnB)
Pr(A|B) = W

Bayes' Rule: for A, B € F with Pr(A) # 0 and Pr(B) # 0,
Pr(A|B)Pr(B) = Pr(B|A)Pr(A).

The proof is obvious from the definition, since

Pr(AN B)
Pr(B)

Pr(BN A)

Pr(B) =Pr(ANB) = Pr(A)

Pr(A).

The nonvanishing of Pr(A) and Pr(B) is only needed to define the
conditional probabilities.



Interpretation

Consider

» E € F is an experiment
» H € Fis a hypothesis

Then

» Pr(H|E) is a test of H (by p-value!)
» Pr(E|H) is a model predicting E from H

Use Bayes' rule to test the hypothesis from the result:
Pr(H|E) = Pr(E|H)Pr(H)/Pr(E) < Pr(E|H)Pr(H).
This requires a prior probability Pr(H)

After the experiment, Pr(H|E) is the posterior probability of H.



Random Variables

This is a function X : © — R that is measurable:
(Vte R){weQ: X(w) <t}eF
Then X has a cumulative distribution function (cdf):

F(t) ¥ Pr{we Q: X(w) <t}), teR,

with 0 < F(t) <1, F(t) »0ast — —oo, and F(t) — 1 as
t — 400

If F is differentiable, then F’(t) is called the density of X.



Probability Spaces from Distributions

Canonical choices for (2, F,Pr), given an r.v. X:

» Q=R
» F is the smallest o-algebra that contains (), Q, and
{we R: X(w) < t} for all t € R. (This is sometimes denoted

by Fx, the o-algebra “generated” by the r.v. X.)

> Pris defined on intervals by Pr((a, b)) % F(b) — F(a), then

extended to F by countable additivity.

Remark. F C B, the Borel subsets, which form the smallest
o-algebra that contains all open subsets of R. Also:

Lemma
Every open set in R is a countable disjoint union of open
intervals. O



Random Vectors

Random vectors, for k > 1, are R*-valued random variables:

» Write X = (Xi,...,Xx), where X; is a random variable.
» Joint distribution (jedf) is

F(tl,.. . tk) déf Pl"({Xl < tl} N---N {Xk < tk})

» Joint density (jpdf), if it exists, is a function f(t1,.. ., tx)
satisfying

Pr(Xi € AL/ - -AXG eAk):/ / Fltr, ... t) dts - - dtx
A Ay
(Fori=1,...,k, Ai C Ris a measurable subset.)

Remark. R.v. is either “random vector” or “random variable.”



Independence

Say that the coordinates of random vector X are independent iff,
for all values of tq, ..., tg,

F(t]_, ceey tk) = Fl(tl) <. Fk(tk)
for some cumulative distribution functions Fq, ..., Fy.

Equivalently, if there is a density, say that the coordinates of X are
independent iff

f(tl, ceey tk) = fl(tl) T fk(tk)

for some functions fi, ..., fx.



Marginal Densities

For joint density f = f(x,y) obtain marginal densities by partial
integration:

def
50 <[ Fxy)dy.
Here Y denotes all values of y.

Theorem
Random vectors X, Y with joint pdf f are independent iff

f(X7 Y) = fx(X) fY(y)7 a'e'(x7 y)7

where fx, fy are the X and Y marginals, respectively.



Bayes' Rule for Densities

Conditional density:

of f(X,
Ay (xly) )

where f is the joint density for the r.v. (X, Y), and fy is the
Y-marginal density

f(y) = [ flx.y)dx.
X
Then, with corresponding definitions for fy and fy x,

fx v (x[Y) fy (y) = f(x,y) = fyx(y[x)x(x).



Interpretation

Consider two random vectors X, Y:

> X is a vector of fixed, but unobservable parameters;

» Y is a vector of observable variables.
Then

P> fx is a prior density describing the uncertainty in X,
> fy|x is the density model for Y at each value of X,

> fx|y is a posterior density describing the uncertainty in X
after an experiment produces a particular result Y.

Bayes’ rule: fx|y o< fy|xfx gives the posterior density for X.

Problem: need to use pdfs without normalization.



Techniques and Examples

» Interchange parameters and variables in joint densities.
» Conjugate densities
» Simple algebraic relationships
» Use densities with means, modes, variances, etc., that can be
determined from parameters without normalization.

» Special functions
» Not suitable for empirical densities.

» Use mode rather than expectation

» Search with ratios of the posterior
» Seek global maximum likelihood probabilistically



Multinomial Random Vectors

Fix k € ZT, fix p1,...,px € [0,1] with 3, p; = 1, and say that r.v.
X is multinomial with parameters n and {p;} iff

» X takes values in k-tuples of nonnegative integers
n=(ny,...,ng), with fixed n=ny +--- + ng.
» The probability of the event A= {w € Q: X =n}is

Pr(A) = (”1+"‘+”k>pfl...pzk'

ni,..., Nk
» The multinomial coefficient
n - n1+...+nk dEf (n1+...+nk)!
ny,...,Ngk ny,...,Ngk n1!-~nk!

is the number of ways to choose n; objects in category i, for
i=1,...,k, if there are n total choices made.




Dirichlet Random Vectors

Fix k€ ZT, fix a1,...,ax € [1,400), and say that r.v. X is
Dirichlet with parameters {a;} if

» X takes values in k-tuples of nonnegative real numbers
P =(p1,---,Pk), satisfying pr + -+ px = 1.
» The probability density function at p is

Moy +---+ O‘k)po‘lfl e Pakil
Ma1).. (o) ™ o

f(p) =
» Function I, analytic on R (and also on C\ {0}), is
r(z) & / tZ et dt.
0

It satisfies [(1) =T(2) =1 and (Vz > 0)[(z + 1) = z[(z), so
that ['(n) = (n— 1)! for all integers n > 1.



Canonical Simplexes

Fix k € Z with k > 2. Put p = (p1,..., Pk)-

If p the parameter vector of a multinomial random vector, or in the
domain of a Dirichlet random vector, then p is confined to a
simplex:

This is a compact convex set in R¥~1 parameterized by
p1 € [Oa]-]ap2 € [Oa]- _pl]v"'vpkfl € [Oa]- - (Pl 4 +pk72)]7

with py =1 —(p1+ - px—1) determined by k — 1 previous choices.



Conjugate Densities

Let F = F(a;x) be a joint probability density function for a
random vector taking values x € R", with shape parameters
a=(a,...,am).

Example: Dirichlet density, shape parameters {«;}, variables {p;}.

A conjugate density is another density (or probability function, for
discrete r.v.s) with the roles of a and x interchanged.

Example: multinomial probability function versus Dirichlet density.



Dirichlet Properties

Describe uncertainty in Dirichlet r.v. X = (X, ..., Xk) with p.d.f.
f, using shape parameters a = (o, ..., a):
> Write A=}, a.
Mean E(X;) = a;/A, so E(X) = A~la
Mode argmax f = (A— k)" 1(a—1)
Variances Var(X;) = a;(A — a;)/(A%(A + 1)).
Covariance cov (Xi, Xj) = «(6;A — o)/ (A%(A + 1)).



Application

Setup: unknown success parameters p in sampling k categories.
Prior density: Dirichlet with shape a = (a1, ..., ak).
Experiment: collect n samples with n; in category i. i=1,..., k.
Bayes' rule gives the posterior density:

fposterior(P|“) X fprior(P)fexperiment("|P)a

with n = (ng,..., ng).

O O

Recognize Dirichlet density with new shape parameters a + n.



Initial Choices

Uninformative Dirichlet prior: Shape parameters a = 1 gives the
uniform density on p.

Repeated experiments: outcomes of experiments n and n’ add to

give new shape parameters a +n +n'.

Exercise: Fix i with 1 < /i < k. Under what conditions
Var(p;) — 0 as the number of experiments tends to infinity?



Monte Carlo Integration

Theorem

Suppose that {Xy : k =1,2,...} is an ergodic Markov chain on a
finite state space S = {1,...,m}. Let m € R™ be its stationary
distribution. Then for any bounded function F on S,

N m
SSFOW) = S F(in(i),
k=1 i=1

almost surely as N — oo.

Proof.
Exercise. [

Remark. The Birkhoff ergodic theorem is a more general version
of this result. Its proof may be found in MetropHastingsEtc.pdf
on the class website.



Metropolis Algorithm

Goal: given g = Cr with pdf 7 € R™ and unknown constant C,
construct an ergodic Markov chain with stationary pdf .

Idea: from an initial Markov chain with transition function M,

» If X, =i, sample random j from distribution M(J,-).
» Define an acceptance function 0 < a(/,j) < 1.
» Let X,+1 = j with probability a(/, ), else keep X1 = i.

» Increment n < n+ 1 and repeat.

Theorem (Metropolis-Hastings)

To get the desired stationary distribution for X, choose
AM(i i AM(i i

() (J,I_)} — {17 g() (J,I)}_

a(i.j) = min {1, TS S()M(i.)



Simplifications

» If M(i,j) = M(j, i) is symmetric, then
o SOMGY L 80)
o0.3)=min {0 S ) = {1 5 )

» If M is ergodic with stationary pdf p, then
limy_o0 M5(i, ) = p(j) for all j. Use this limit to get

e gl
(Via(i,j) = {l’g(i)p(j)}'

» If g(j) = L(j)p(j) is a Bayesian posterior with prior p and
likelihood L, then

- ) - 19).




Programming Issues

v

See the example R code in 07metro.txt
Reduce the influence of intial state Xp with a “burn-in" period.

Estimate convergence with multiple chains X! | = 1,2,...,
and for large N let

LN
)(N) = N Z F(X0),
k=1

Then Var(®(N)) is an estimate for mean squared error in
(F,m) =~ E(®(N)).

Extend to random vectors componentwise by “Gibbs
sampling”.



Gibbs Sampling

Suppose X, Y are random vectors with joint pdf f(x,y).
To generate samples (X, Y) from f, find:

» marginal pdfs fx(x) and fy(y)
> conditional pdfs fx|y(x,y) and fy|x(x,y)

Then iterate for n =1,2,... from initial X = xg and Y = ygq:
> get sample X = xp41 using fx|y (-, ¥n),

> get sample Y = y,41 using fy|x(Xn, ),

Remark. If X, Y are independent, then fx|y(-,y) = fy(y) and
fyix(x, ) = fx(x), so only the marginal pdfs are needed.



Example: Dirichlet Gibbs Sampling

Let ag def a1 + -+ + ak in the Dirichlet pdf on p = (p1, ..., pk):

flp) = F(Ozl)r@-oz(ak) e

Lemma
If X = (Xi,...,Xk) has the Dirchlet pdf, namely
X ~ Dirichlet(as, . .., a), then the marginal pdf for X1, removing

pj forall j=2,...k, is:

I'(ao) a1 1(1 )ao—al—l

AP = ) (ap — on) !

In other words, X1 ~ B(a1, a9 — o). O



Dirichlet Conditional PDF

The conditional pdf £, «1(p), given X1 = py, is therefore

f(p) _  T(ao)l(a)l (a0 —a1) pi* tpst - p
f(p1) M(ao)l (en)M(az) - - T(e) pf* (1 — py)eo—ea-1
Moo+ o) ps2te-pp

Maz) - T(ax) (1—pr)t o
_ F(a2+...+ak)_a2_1‘ po 1(
Maz)- - Flax) 2

where p; = pi /(1 — p1) = pi/(p2 + -+ pk), for i =2,..., k, so
that Py + - + px = 1.

1—P1) 17




