Markov Chain Monte Carlo

Mladen Victor WICKERHAUSER

Washington University in St. Louis, Missouri victor@wustl.edu http://www.math.wustl.edu/~victor

Dimensionality Reduction and Manifold Estimation PMF — University of Zagreb Winter, 2022

Goals

Find a global maximum for $f: \mathbf{R}^d \to \mathbf{R}$.

- Expect *d* to be large.
- ▶ Only evaluate ratios $f(\mathbf{x})/f(\mathbf{y})$.
- \triangleright Assume f is regular (continuous, maybe smooth).

Method: Markov chain Monte Carlo (MCMC).

Probability Spaces

These are triples $(\Omega, \mathcal{F}, \Pr)$, with

- ightharpoonup Set Ω, called the probability space,
- ► Measurable subsets $A \subset Ω$ forming a σ-algebra 𝑉 of *events*, satisfying
 - $ightharpoonup \Omega, \emptyset \in \mathcal{F}$, and $A \in \mathcal{F} \implies \Omega \setminus A \in \mathcal{F}$,
 - ▶ ${A_i : i \in \mathbf{N}} \subset \mathcal{F} \implies \cup_i A_i \in \mathcal{F} \text{ and } \cap_i A_i \in \mathcal{F}$,
- ightharpoonup Probability function $\Pr: \mathcal{F} \to \mathbf{R}$ satisfying
 - $(\forall A \in \mathcal{F}) \ 0 \le \Pr(A) \le 1$, with $\Pr(\Omega) = 1$ and $\Pr(\emptyset) = 0$,

 - ▶ If $A, B \in \mathcal{F}$ with $A \subset B$, then $Pr(A) \leq Pr(B)$.
 - ▶ If $\{A_i : i \in \mathbf{N}\} \subset \mathcal{F}$ is a countable collection of disjoint measurable sets, then $\Pr(\cup_i A_i) = \sum_i \Pr(A_i)$.

Bayes' Rule for Events

Conditional probability: for $A, B \in \mathcal{F}$ with $\Pr(B) \neq 0$,

$$\Pr(A|B) \stackrel{\text{def}}{=} \frac{\Pr(A \cap B)}{\Pr(B)}.$$

Bayes' Rule: for $A, B \in \mathcal{F}$ with $Pr(A) \neq 0$ and $Pr(B) \neq 0$,

$$Pr(A|B)Pr(B) = Pr(B|A)Pr(A).$$

The proof is obvious from the definition, since

$$\frac{\Pr(A \cap B)}{\Pr(B)}\Pr(B) = \Pr(A \cap B) = \frac{\Pr(B \cap A)}{\Pr(A)}\Pr(A).$$

The nonvanishing of $\Pr(A)$ and $\Pr(B)$ is only needed to define the conditional probabilities.

Interpretation

Consider

- $ightharpoonup E \in \mathcal{F}$ is an experiment
- ▶ $H \in \mathcal{F}$ is a hypothesis

Then

- ▶ Pr(H|E) is a test of H (by p-value!)
- $ightharpoonup \Pr(E|H)$ is a model predicting E from H

Use Bayes' rule to test the hypothesis from the result:

$$\Pr(H|E) = \Pr(E|H)\Pr(H)/\Pr(E) \propto \Pr(E|H)\Pr(H).$$

This requires a *prior* probability Pr(H)

After the experiment, Pr(H|E) is the *posterior* probability of H.

Random Variables

This is a function $X : \Omega \to \mathbf{R}$ that is *measurable*:

$$(\forall t \in \mathbf{R})\{\omega \in \Omega : X(\omega) \le t\} \in \mathcal{F}$$

Then *X* has a *cumulative distribution function (cdf)*:

$$F(t) \stackrel{\text{def}}{=} \Pr(\{\omega \in \Omega : X(\omega) \le t\}), \qquad t \in \mathbf{R},$$

with
$$0 \le F(t) \le 1$$
, $F(t) \to 0$ as $t \to -\infty$, and $F(t) \to 1$ as $t \to +\infty$

If F is differentiable, then F'(t) is called the *density* of X.

Probability Spaces from Distributions

Canonical choices for $(\Omega, \mathcal{F}, \Pr)$, given an r.v. X:

- $ightharpoonup \Omega = \mathbf{R}$
- ▶ \mathcal{F} is the smallest σ -algebra that contains \emptyset , Ω , and $\{\omega \in \mathbf{R} : X(\omega) \leq t\}$ for all $t \in \mathbf{R}$. (This is sometimes denoted by \mathcal{F}_{X} , the σ -algebra "generated" by the r.v. X.)
- ▶ Pr is defined on intervals by $\Pr((a, b]) \stackrel{\text{def}}{=} F(b) F(a)$, then extended to \mathcal{F} by countable additivity.

Remark. $\mathcal{F} \subset \mathcal{B}$, the Borel subsets, which form the smallest σ -algebra that contains all open subsets of **R**. Also:

Lemma

Every open set in **R** is a countable disjoint union of open intervals.

Random Vectors

Random vectors, for k > 1, are \mathbf{R}^k -valued random variables:

- ▶ Write $X = (X_1, ..., X_k)$, where X_i is a random variable.
- ▶ Joint distribution (jcdf) is

$$F(t_1,\ldots,t_k)\stackrel{\mathrm{def}}{=} \Pr(\{X_1\leq t_1\}\cap\cdots\cap\{X_k\leq t_k\})$$

▶ Joint density (jpdf), if it exists, is a function $f(t_1,...,t_k)$ satisfying

$$\Pr(X_1 \in A_1 \wedge \cdots \wedge X_k \in A_k) = \int_{A_1} \cdots \int_{A_k} f(t_1, \ldots, t_k) dt_1 \cdots dt_k$$

(For i = 1, ..., k, $A_i \subset \mathbf{R}$ is a measurable subset.)

Remark. R.v. is either "random vector" or "random variable."

Independence

Say that the coordinates of random vector X are independent iff, for all values of t_1, \ldots, t_k ,

$$F(t_1,\ldots,t_k)=F_1(t_1)\cdots F_k(t_k)$$

for some cumulative distribution functions F_1, \ldots, F_k .

Equivalently, if there is a density, say that the coordinates of \boldsymbol{X} are independent iff

$$f(t_1,\ldots,t_k)=f_1(t_1)\cdots f_k(t_k)$$

for some functions f_1, \ldots, f_k .

Marginal Densities

For joint density $f = f(\mathbf{x}, \mathbf{y})$ obtain marginal densities by partial integration:

$$f_X(\mathbf{x}) \stackrel{\mathrm{def}}{=} \int_Y f(\mathbf{x}, \mathbf{y}) d\mathbf{y}.$$

Here Y denotes all values of y.

Theorem

Random vectors X, Y with joint pdf f are independent iff

$$f(\mathbf{x}, \mathbf{y}) = f_X(\mathbf{x}) f_Y(\mathbf{y}),$$
 a.e. $(\mathbf{x}, \mathbf{y}),$

where f_X , f_Y are the X and Y marginals, respectively.

Bayes' Rule for Densities

Conditional density:

$$f_{X|Y}(\mathbf{x}|\mathbf{y}) \stackrel{\text{def}}{=} \frac{f(\mathbf{x},\mathbf{y})}{f_Y(\mathbf{y})},$$

where f is the joint density for the r.v. (X, Y), and f_Y is the Y-marginal density

$$f_Y(\mathbf{y}) = \int_X f(\mathbf{x}, \mathbf{y}) d\mathbf{x}.$$

Then, with corresponding definitions for f_Y and $f_{Y|X}$,

$$f_{X|Y}(\mathbf{x}|\mathbf{y})f_Y(\mathbf{y}) = f(\mathbf{x},\mathbf{y}) = f_{Y|X}(\mathbf{y}|\mathbf{x})f_X(\mathbf{x}).$$

Interpretation

Consider two random vectors X, Y:

- X is a vector of fixed, but unobservable parameters;
- Y is a vector of observable variables.

Then

- $ightharpoonup f_X$ is a prior density describing the uncertainty in X,
- $ightharpoonup f_{Y|X}$ is the density model for Y at each value of X,
- ▶ $f_{X|Y}$ is a posterior density describing the uncertainty in X after an experiment produces a particular result Y.

Bayes' rule: $f_{X|Y} \propto f_{Y|X} f_X$ gives the posterior density for X.

Problem: need to use pdfs without normalization.

Techniques and Examples

- Interchange parameters and variables in joint densities.
 - Conjugate densities
 - Simple algebraic relationships
- Use densities with means, modes, variances, etc., that can be determined from parameters without normalization.
 - Special functions
 - Not suitable for empirical densities.
- Use mode rather than expectation
 - ► Search with ratios of the posterior
 - Seek global maximum likelihood probabilistically

Multinomial Random Vectors

Fix $k \in \mathbf{Z}^+$, fix $p_1, \ldots, p_k \in [0,1]$ with $\sum_i p_i = 1$, and say that r.v. X is multinomial with parameters n and $\{p_i\}$ iff

- ▶ X takes values in k-tuples of nonnegative integers $\mathbf{n} = (n_1, \dots, n_k)$, with fixed $n = n_1 + \dots + n_k$.
- ▶ The probability of the event $A = \{\omega \in \Omega : X = \mathbf{n}\}$ is

$$\Pr(A) = \binom{n_1 + \cdots + n_k}{n_1, \ldots, n_k} p_1^{n_1} \cdots p_k^{n_k}.$$

The multinomial coefficient

$$\binom{n}{n_1,\ldots,n_k} = \binom{n_1+\cdots+n_k}{n_1,\ldots,n_k} \stackrel{\text{def}}{=} \frac{(n_1+\cdots+n_k)!}{n_1!\cdots n_k!}$$

is the number of ways to choose n_i objects in category i, for i = 1, ..., k, if there are n total choices made.

Dirichlet Random Vectors

Fix $k \in \mathbf{Z}^+$, fix $\alpha_1, \ldots, \alpha_k \in [1, +\infty)$, and say that r.v. X is Dirichlet with parameters $\{\alpha_i\}$ if

- ▶ X takes values in k-tuples of nonnegative real numbers $\mathbf{p} = (p_1, \dots, p_k)$, satisfying $p_1 + \dots + p_k = 1$.
- ► The probability density function at **p** is

$$f(\mathbf{p}) = \frac{\Gamma(\alpha_1 + \dots + \alpha_k)}{\Gamma(\alpha_1) \dots \Gamma(\alpha_k)} p_1^{\alpha_1 - 1} \dots p_k^{\alpha_k - 1},$$

> Function Γ, analytic on \mathbf{R}^+ (and also on $\mathbf{C} \setminus \{0\}$), is

$$\Gamma(z) \stackrel{\text{def}}{=} \int_0^\infty t^{z-1} e^{-t} dt.$$

It satisfies $\Gamma(1) = \Gamma(2) = 1$ and $(\forall z > 0)\Gamma(z+1) = z\Gamma(z)$, so that $\Gamma(n) = (n-1)!$ for all integers $n \ge 1$.

Canonical Simplexes

Fix $k \in \mathbf{Z}$ with $k \geq 2$. Put $\mathbf{p} = (p_1, \dots, p_k)$.

If \mathbf{p} the parameter vector of a multinomial random vector, or in the domain of a Dirichlet random vector, then \mathbf{p} is confined to a simplex:

$$(\forall i) p_i \geq 0; \quad \sum_{i=1}^k p_i = 1.$$

This is a compact convex set in \mathbf{R}^{k-1} parameterized by

$$p_1 \in [0,1], p_2 \in [0,1-p_1], \ldots, p_{k-1} \in [0,1-(p_1+\cdots+p_{k-2})],$$

with $p_k = 1 - (p_1 + \cdots p_{k-1})$ determined by k-1 previous choices.

Conjugate Densities

Let $F = F(\mathbf{a}; \mathbf{x})$ be a joint probability density function for a random vector taking values $\mathbf{x} \in \mathbf{R}^n$, with shape parameters $\mathbf{a} = (a_1, \dots, a_m)$.

Example: Dirichlet density, shape parameters $\{\alpha_i\}$, variables $\{p_i\}$.

A conjugate density is another density (or probability function, for discrete r.v.s) with the roles of \mathbf{a} and \mathbf{x} interchanged.

Example: multinomial probability function versus Dirichlet density.

Dirichlet Properties

Describe uncertainty in Dirichlet r.v. $X = (X_1, ..., X_k)$ with p.d.f. f, using shape parameters $\mathbf{a} = (\alpha_1, ..., \alpha_k)$:

- Write $A = \sum_j \alpha_j$.
- ► Mean $E(X_i) = \alpha_i/A$, so $E(X) = A^{-1}a$
- ► Mode arg max $f = (A k)^{-1}(a 1)$
- ▶ Variances $Var(X_i) = \alpha_i (A \alpha_i)/(A^2(A+1))$.
- Covariance $\operatorname{cov}(X_i, X_j) = \alpha_i (\delta_{ij} A \alpha_j) / (A^2 (A+1)).$

Application

Setup: unknown success parameters \mathbf{p} in sampling k categories.

Prior density: Dirichlet with shape $\mathbf{a} = (\alpha_1, \dots, \alpha_k)$.

Experiment: collect n samples with n_i in category i. i = 1, ..., k.

Bayes' rule gives the posterior density:

$$f_{posterior}(\mathbf{p}|\mathbf{n}) \propto f_{prior}(\mathbf{p}) \mathbf{f}_{experiment}(\mathbf{n}|\mathbf{p}),$$

with **n** = $(n_1, ..., n_k)$.

$$\left(p_1^{\alpha_1-1}\cdots p_k^{\alpha_k-1}\right)\left(p_1^{n_1}\cdots p_k^{n_k}\right)\propto p_1^{n_1+\alpha_1-1}\cdots p_k^{n_k\alpha_k-1},$$

Recognize Dirichlet density with new shape parameters $\mathbf{a} + \mathbf{n}$.

Initial Choices

Uninformative Dirichlet prior: Shape parameters $\mathbf{a}=\mathbf{1}$ gives the uniform density on \mathbf{p} .

Repeated experiments: outcomes of experiments \mathbf{n} and \mathbf{n}' add to give new shape parameters $\mathbf{a} + \mathbf{n} + \mathbf{n}'$.

Exercise: Fix i with $1 \le i \le k$. Under what conditions $Var(p_i) \to 0$ as the number of experiments tends to infinity?

Monte Carlo Integration

Theorem

Suppose that $\{X_k : k = 1, 2, ...\}$ is an ergodic Markov chain on a finite state space $S = \{1, ..., m\}$. Let $\pi \in \mathbf{R}^m$ be its stationary distribution. Then for any bounded function F on S,

$$\frac{1}{N}\sum_{k=1}^{N}F(X_k)\to\sum_{i=1}^{m}F(i)\pi(i),$$

almost surely as $N \to \infty$.

Proof.

Exercise.

Remark. The Birkhoff ergodic theorem is a more general version of this result. Its proof may be found in MetropHastingsEtc.pdf on the class website.

Metropolis Algorithm

Goal: given $g = C\pi$ with pdf $\pi \in \mathbf{R}^m$ and unknown constant C, construct an ergodic Markov chain with stationary pdf π .

Idea: from an initial Markov chain with transition function M,

- ▶ If $X_n = i$, sample random j from distribution $M(i, \cdot)$.
- ▶ Define an acceptance function $0 \le a(i,j) \le 1$.
- Let $X_{n+1} = j$ with probability a(i, j), else keep $X_{n+1} = i$.
- ▶ Increment $n \leftarrow n + 1$ and repeat.

Theorem (Metropolis-Hastings)

To get the desired stationary distribution for X, choose

$$a(i,j) = \min\left\{1, \frac{\pi(j)M(j,i)}{\pi(i)M(i,j)}\right\} = \min\left\{1, \frac{g(j)M(j,i)}{g(i)M(i,j)}\right\}.$$

Simplifications

▶ If M(i,j) = M(j,i) is symmetric, then

$$a(i,j) = \min\left\{1, \frac{g(j)M(j,i)}{g(i)M(i,j)}\right\} = \min\left\{1, \frac{g(j)}{g(i)}\right\}.$$

If M is ergodic with stationary pdf p, then $\lim_{k\to\infty} M^k(i,j) = p(j)$ for all j. Use this limit to get

$$(\forall i)a(i,j) = \min\left\{1, \frac{g(j)p(i)}{g(i)p(j)}\right\}.$$

▶ If g(j) = L(j)p(j) is a Bayesian posterior with prior p and likelihood L, then

$$(\forall i)a(i,j) = \min\left\{1, \frac{g(j)p(i)}{g(i)p(j)}\right\} = \min\left\{1, \frac{L(j)}{L(i)}\right\}.$$

Programming Issues

- See the example R code in 07metro.txt
- ▶ Reduce the influence of intial state X_0 with a "burn-in" period.
- Estimate convergence with multiple chains X^I , $I=1,2,\ldots$, and for large N let

$$\Phi_I(N) = \frac{1}{N} \sum_{k=1}^N F(X_k^I),$$

Then $Var(\Phi(N))$ is an estimate for mean squared error in $\langle F, \pi \rangle \approx E(\Phi(N))$.

Extend to random vectors componentwise by "Gibbs sampling".

Gibbs Sampling

Suppose X, Y are random vectors with joint pdf $f(\mathbf{x}, \mathbf{y})$.

To generate samples (X, Y) from f, find:

- ▶ marginal pdfs $f_X(\mathbf{x})$ and $f_Y(\mathbf{y})$
- ▶ conditional pdfs $f_{X|Y}(\mathbf{x}, \mathbf{y})$ and $f_{Y|X}(\mathbf{x}, \mathbf{y})$

Then iterate for n = 1, 2, ... from initial $X = \mathbf{x}_0$ and $Y = \mathbf{y}_0$:

- ▶ get sample $X = \mathbf{x}_{n+1}$ using $f_{X|Y}(\cdot, \mathbf{y}_n)$,
- ▶ get sample $Y = \mathbf{y}_{n+1}$ using $f_{Y|X}(\mathbf{x}_n, \cdot)$,

Remark. If X, Y are independent, then $f_{X|Y}(\cdot, \mathbf{y}) = f_Y(\mathbf{y})$ and $f_{Y|X}(\mathbf{x}, \cdot) = f_X(\mathbf{x})$, so only the marginal pdfs are needed.

Example: Dirichlet Gibbs Sampling

Let $\alpha_0 \stackrel{\text{def}}{=} \alpha_1 + \cdots + \alpha_k$ in the Dirichlet pdf on $\mathbf{p} = (p_1, \dots, p_k)$:

$$f(\mathbf{p}) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1)\cdots\Gamma(\alpha_k)} p_1^{\alpha_1-1}\cdots p_k^{\alpha_k-1}.$$

Lemma

If $X = (X_1, ..., X_k)$ has the Dirchlet pdf, namely $X \sim \text{Dirichlet}(\alpha_1, ..., \alpha_k)$, then the marginal pdf for X_1 , removing p_j for all j = 2, ... k, is:

$$f_1(p_1) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1)\Gamma(\alpha_0 - \alpha_1)} p_1^{\alpha_1 - 1} (1 - p_1)^{\alpha_0 - \alpha_1 - 1}$$

In other words, $X_1 \sim B(\alpha_1, \alpha_0 - \alpha_1)$.

Dirichlet Conditional PDF

The conditional pdf $f_{2,...,k|1}(\mathbf{p})$, given $X_1 = p_1$, is therefore

$$\frac{f(\mathbf{p})}{f_{1}(p_{1})} = \frac{\Gamma(\alpha_{0})\Gamma(\alpha_{1})\Gamma(\alpha_{0} - \alpha_{1})}{\Gamma(\alpha_{0})\Gamma(\alpha_{1})\Gamma(\alpha_{2})\cdots\Gamma(\alpha_{k})} \frac{p_{1}^{\alpha_{1}-1}p_{2}^{\alpha_{2}-1}\cdots p_{k}^{\alpha_{k}-1}}{p_{1}^{\alpha_{1}-1}(1-p_{1})^{\alpha_{0}-\alpha_{1}-1}}$$

$$= \frac{\Gamma(\alpha_{2}+\cdots+\alpha_{k})}{\Gamma(\alpha_{2})\cdots\Gamma(\alpha_{k})} \frac{p_{2}^{\alpha_{2}-1}\cdots p_{k}^{\alpha_{k}-1}}{(1-p_{1})^{\alpha_{2}+\cdots+\alpha_{k}-1}}$$

$$= \frac{\Gamma(\alpha_{2}+\cdots+\alpha_{k})}{\Gamma(\alpha_{2})\cdots\Gamma(\alpha_{k})} \bar{p}_{2}^{\alpha_{2}-1}\cdots\bar{p}_{k}^{\alpha_{k}-1}(1-p_{1})^{k-1},$$

where $\bar{p}_i = p_i/(1-p_1) = p_i/(p_2+\cdots+p_k)$, for $i=2,\ldots,k$, so that $\bar{p}_2+\cdots+\bar{p}_k=1$.