Markov Chain Monte Carlo

Mladen Victor WICKERHAUSER

Washington University in St. Louis, Missouri victor@wustl.edu
http://www.math.wustl.edu/~victor

Dimensionality Reduction and Manifold Estimation PMF — University of Zagreb Winter, 2022

Goals

Find a global maximum for $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$.

- Expect d to be large.
- Only evaluate ratios $f(\mathbf{x}) / f(\mathbf{y})$.
- Assume f is regular (continuous, maybe smooth).

Method: Markov chain Monte Carlo (MCMC).

Probability Spaces

These are triples $(\Omega, \mathcal{F}, \operatorname{Pr})$, with

- Set Ω, called the probability space,
- Measurable subsets $A \subset \Omega$ forming a σ-algebra \mathcal{F} of events, satisfying
- $\Omega, \emptyset \in \mathcal{F}$, and $A \in \mathcal{F} \Longrightarrow \Omega \backslash A \in \mathcal{F}$,
- $\left\{A_{i}: i \in \mathbf{N}\right\} \subset \mathcal{F} \Longrightarrow \cup_{i} A_{i} \in \mathcal{F}$ and $\cap_{i} A_{i} \in \mathcal{F}$,
- Probability function $\operatorname{Pr}: \mathcal{F} \rightarrow \mathbf{R}$ satisfying
- $(\forall A \in \mathcal{F}) 0 \leq \operatorname{Pr}(A) \leq 1$, with $\operatorname{Pr}(\Omega)=1$ and $\operatorname{Pr}(\emptyset)=0$,
- $\operatorname{Pr}(\Omega \backslash A)=1-\operatorname{Pr}(A)$,
- If $A, B \in \mathcal{F}$ with $A \subset B$, then $\operatorname{Pr}(A) \leq \operatorname{Pr}(B)$.
- If $\left\{A_{i}: i \in \mathbf{N}\right\} \subset \mathcal{F}$ is a countable collection of disjoint measurable sets, then $\operatorname{Pr}\left(\cup_{i} A_{i}\right)=\sum_{i} \operatorname{Pr}\left(A_{i}\right)$.

Bayes' Rule for Events

Conditional probability: for $A, B \in \mathcal{F}$ with $\operatorname{Pr}(B) \neq 0$,

$$
\operatorname{Pr}(A \mid B) \stackrel{\text { def }}{=} \frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

Bayes' Rule: for $A, B \in \mathcal{F}$ with $\operatorname{Pr}(A) \neq 0$ and $\operatorname{Pr}(B) \neq 0$,

$$
\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)=\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)
$$

The proof is obvious from the definition, since

$$
\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} \operatorname{Pr}(B)=\operatorname{Pr}(A \cap B)=\frac{\operatorname{Pr}(B \cap A)}{\operatorname{Pr}(A)} \operatorname{Pr}(A)
$$

The nonvanishing of $\operatorname{Pr}(A)$ and $\operatorname{Pr}(B)$ is only needed to define the conditional probabilities.

Interpretation

Consider

- $E \in \mathcal{F}$ is an experiment
- $H \in \mathcal{F}$ is a hypothesis

Then
$-\operatorname{Pr}(H \mid E)$ is a test of H (by p-value!)

- $\operatorname{Pr}(E \mid H)$ is a model predicting E from H

Use Bayes' rule to test the hypothesis from the result:

$$
\operatorname{Pr}(H \mid E)=\operatorname{Pr}(E \mid H) \operatorname{Pr}(H) / \operatorname{Pr}(E) \propto \operatorname{Pr}(E \mid H) \operatorname{Pr}(H)
$$

This requires a prior probability $\operatorname{Pr}(H)$
After the experiment, $\operatorname{Pr}(H \mid E)$ is the posterior probability of H.

Random Variables

This is a function $X: \Omega \rightarrow \mathbf{R}$ that is measurable:

$$
(\forall t \in \mathbf{R})\{\omega \in \Omega: X(\omega) \leq t\} \in \mathcal{F}
$$

Then X has a cumulative distribution function (cdf):

$$
F(t) \stackrel{\text { def }}{=} \operatorname{Pr}(\{\omega \in \Omega: X(\omega) \leq t\}), \quad t \in \mathbf{R},
$$

with $0 \leq F(t) \leq 1, F(t) \rightarrow 0$ as $t \rightarrow-\infty$, and $F(t) \rightarrow 1$ as $t \rightarrow+\infty$

If F is differentiable, then $F^{\prime}(t)$ is called the density of X.

Probability Spaces from Distributions

Canonical choices for $(\Omega, \mathcal{F}, \operatorname{Pr})$, given an r.v. X :

- $\Omega=\mathbf{R}$
- \mathcal{F} is the smallest σ-algebra that contains \emptyset, Ω, and $\{\omega \in \mathbf{R}: X(\omega) \leq t\}$ for all $t \in \mathbf{R}$. (This is sometimes denoted by \mathcal{F}_{X}, the σ-algebra "generated" by the r.v. X.)
- Pr is defined on intervals by $\operatorname{Pr}((a, b]) \stackrel{\text { def }}{=} F(b)-F(a)$, then extended to \mathcal{F} by countable additivity.

Remark. $\mathcal{F} \subset \mathcal{B}$, the Borel subsets, which form the smallest σ-algebra that contains all open subsets of \mathbf{R}. Also:

Lemma
Every open set in \mathbf{R} is a countable disjoint union of open intervals.

Random Vectors

Random vectors, for $k>1$, are \mathbf{R}^{k}-valued random variables:

- Write $X=\left(X_{1}, \ldots, X_{k}\right)$, where X_{i} is a random variable.
- Joint distribution (jcdf) is

$$
F\left(t_{1}, \ldots, t_{k}\right) \stackrel{\text { def }}{=} \operatorname{Pr}\left(\left\{X_{1} \leq t_{1}\right\} \cap \cdots \cap\left\{X_{k} \leq t_{k}\right\}\right)
$$

- Joint density (jpdf), if it exists, is a function $f\left(t_{1}, \ldots, t_{k}\right)$ satisfying

$$
\operatorname{Pr}\left(X_{1} \in A_{1} \wedge \cdots \wedge X_{k} \in A_{k}\right)=\int_{A_{1}} \cdots \int_{A_{k}} f\left(t_{1}, \ldots, t_{k}\right) d t_{1} \cdots d t_{k}
$$

$$
\text { (For } i=1, \ldots, k, A_{i} \subset \mathbf{R} \text { is a measurable subset.) }
$$

Remark. R.v. is either "random vector" or "random variable."

Independence

Say that the coordinates of random vector X are independent iff, for all values of t_{1}, \ldots, t_{k},

$$
F\left(t_{1}, \ldots, t_{k}\right)=F_{1}\left(t_{1}\right) \cdots F_{k}\left(t_{k}\right)
$$

for some cumulative distribution functions F_{1}, \ldots, F_{k}.
Equivalently, if there is a density, say that the coordinates of X are independent iff

$$
f\left(t_{1}, \ldots, t_{k}\right)=f_{1}\left(t_{1}\right) \cdots f_{k}\left(t_{k}\right)
$$

for some functions f_{1}, \ldots, f_{k}.

Marginal Densities

For joint density $f=f(\mathbf{x}, \mathbf{y})$ obtain marginal densities by partial integration:

$$
f_{X}(\mathbf{x}) \stackrel{\text { def }}{=} \int_{Y} f(\mathbf{x}, \mathbf{y}) d \mathbf{y} .
$$

Here Y denotes all values of \mathbf{y}.
Theorem
Random vectors X, Y with joint pdf f are independent iff

$$
f(\mathbf{x}, \mathbf{y})=f_{X}(\mathbf{x}) f_{Y}(\mathbf{y}), \quad \text { a.e. }(\mathbf{x}, \mathbf{y})
$$

where f_{X}, f_{Y} are the X and Y marginals, respectively.

Bayes' Rule for Densities

Conditional density:

$$
f_{X \mid Y}(\mathbf{x} \mid \mathbf{y}) \stackrel{\text { def }}{=} \frac{f(\mathbf{x}, \mathbf{y})}{f_{Y}(\mathbf{y})}
$$

where f is the joint density for the r.v. (X, Y), and f_{Y} is the Y-marginal density

$$
f_{Y}(\mathbf{y})=\int_{X} f(\mathbf{x}, \mathbf{y}) d \mathbf{x}
$$

Then, with corresponding definitions for f_{Y} and $f_{Y \mid X}$,

$$
f_{X \mid Y}(\mathbf{x} \mid \mathbf{y}) f_{Y}(\mathbf{y})=f(\mathbf{x}, \mathbf{y})=f_{Y \mid X}(\mathbf{y} \mid \mathbf{x}) f_{X}(\mathbf{x}) .
$$

Interpretation

Consider two random vectors X, Y :

- X is a vector of fixed, but unobservable parameters;
- Y is a vector of observable variables.

Then

- f_{X} is a prior density describing the uncertainty in X,
- $f_{Y \mid X}$ is the density model for Y at each value of X,
- $f_{X \mid Y}$ is a posterior density describing the uncertainty in X after an experiment produces a particular result Y.

Bayes' rule: $f_{X \mid Y} \propto f_{Y \mid X} f_{X}$ gives the posterior density for X.
Problem: need to use pdfs without normalization.

Techniques and Examples

- Interchange parameters and variables in joint densities.
- Conjugate densities
- Simple algebraic relationships
- Use densities with means, modes, variances, etc., that can be determined from parameters without normalization.
- Special functions
- Not suitable for empirical densities.
- Use mode rather than expectation
- Search with ratios of the posterior
- Seek global maximum likelihood probabilistically

Multinomial Random Vectors

Fix $k \in \mathbf{Z}^{+}$, fix $p_{1}, \ldots, p_{k} \in[0,1]$ with $\sum_{i} p_{i}=1$, and say that r.v. X is multinomial with parameters n and $\left\{p_{i}\right\}$ iff

- X takes values in k-tuples of nonnegative integers
$\mathbf{n}=\left(n_{1}, \ldots, n_{k}\right)$, with fixed $n=n_{1}+\cdots+n_{k}$.
- The probability of the event $A=\{\omega \in \Omega: X=\mathbf{n}\}$ is

$$
\operatorname{Pr}(A)=\binom{n_{1}+\cdots+n_{k}}{n_{1}, \ldots, n_{k}} p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}
$$

- The multinomial coefficient

$$
\binom{n}{n_{1}, \ldots, n_{k}}=\binom{n_{1}+\cdots+n_{k}}{n_{1}, \ldots, n_{k}} \stackrel{\text { def }}{=} \frac{\left(n_{1}+\cdots+n_{k}\right)!}{n_{1}!\cdots n_{k}!}
$$

is the number of ways to choose n_{i} objects in category i, for $i=1, \ldots, k$, if there are n total choices made.

Dirichlet Random Vectors

Fix $k \in \mathbf{Z}^{+}$, fix $\alpha_{1}, \ldots, \alpha_{k} \in[1,+\infty)$, and say that r.v. X is Dirichlet with parameters $\left\{\alpha_{i}\right\}$ if

- X takes values in k-tuples of nonnegative real numbers $\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right)$, satisfying $p_{1}+\cdots+p_{k}=1$.
- The probability density function at \mathbf{p} is

$$
f(\mathbf{p})=\frac{\Gamma\left(\alpha_{1}+\cdots+\alpha_{k}\right)}{\Gamma\left(\alpha_{1}\right) \ldots \Gamma\left(\alpha_{k}\right)} p_{1}^{\alpha_{1}-1} \cdots p_{k}^{\alpha_{k}-1}
$$

- Function Γ, analytic on \mathbf{R}^{+}(and also on $\mathbf{C} \backslash\{0\}$), is

$$
\Gamma(z) \stackrel{\text { def }}{=} \int_{0}^{\infty} t^{z-1} e^{-t} d t
$$

It satisfies $\Gamma(1)=\Gamma(2)=1$ and $(\forall z>0) \Gamma(z+1)=z \Gamma(z)$, so that $\Gamma(n)=(n-1)$! for all integers $n \geq 1$.

Canonical Simplexes

Fix $k \in \mathbf{Z}$ with $k \geq 2$. Put $\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right)$.
If \mathbf{p} the parameter vector of a multinomial random vector, or in the domain of a Dirichlet random vector, then \mathbf{p} is confined to a simplex:

$$
(\forall i) p_{i} \geq 0 ; \quad \sum_{i=1}^{k} p_{i}=1
$$

This is a compact convex set in \mathbf{R}^{k-1} parameterized by

$$
p_{1} \in[0,1], p_{2} \in\left[0,1-p_{1}\right], \ldots, p_{k-1} \in\left[0,1-\left(p_{1}+\cdots+p_{k-2}\right)\right]
$$

with $p_{k}=1-\left(p_{1}+\cdots p_{k-1}\right)$ determined by $k-1$ previous choices.

Conjugate Densities

Let $F=F(\mathbf{a} ; \mathbf{x})$ be a joint probability density function for a random vector taking values $\mathbf{x} \in \mathbf{R}^{n}$, with shape parameters $\mathbf{a}=\left(a_{1}, \ldots, \mathbf{a}_{m}\right)$.

Example: Dirichlet density, shape parameters $\left\{\alpha_{i}\right\}$, variables $\left\{p_{i}\right\}$. A conjugate density is another density (or probability function, for discrete r.v.s) with the roles of \mathbf{a} and \mathbf{x} interchanged.

Example: multinomial probability function versus Dirichlet density.

Dirichlet Properties

Describe uncertainty in Dirichlet r.v. $X=\left(X_{1}, \ldots, X_{k}\right)$ with p.d.f. f, using shape parameters $\mathbf{a}=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$:

- Write $A=\sum_{j} \alpha_{j}$.
- Mean $\mathrm{E}\left(X_{i}\right)=\alpha_{i} / A$, so $\mathrm{E}(X)=A^{-1} \mathbf{a}$
- Mode arg max $f=(A-k)^{-1}(\mathbf{a}-\mathbf{1})$
- Variances $\operatorname{Var}\left(X_{i}\right)=\alpha_{i}\left(A-\alpha_{i}\right) /\left(A^{2}(A+1)\right)$.
- Covariance $\operatorname{cov}\left(X_{i}, X_{j}\right)=\alpha_{i}\left(\delta_{i j} A-\alpha_{j}\right) /\left(A^{2}(A+1)\right)$.

Application

Setup: unknown success parameters \mathbf{p} in sampling k categories.
Prior density: Dirichlet with shape $\mathbf{a}=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$.
Experiment: collect n samples with n_{i} in category i. $i=1, \ldots, k$.
Bayes' rule gives the posterior density:

$$
f_{\text {posterior }}(\mathbf{p} \mid \mathbf{n}) \propto f_{\text {prior }}(\mathbf{p}) \mathbf{f}_{\text {experiment }}(\mathbf{n} \mid \mathbf{p})
$$

with $\mathbf{n}=\left(n_{1}, \ldots, n_{k}\right)$.

$$
\left(p_{1}^{\alpha_{1}-1} \cdots p_{k}^{\alpha_{k}-1}\right)\left(p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}\right) \propto p_{1}^{n_{1}+\alpha_{1}-1} \cdots p_{k}^{n_{k} \alpha_{k}-1}
$$

Recognize Dirichlet density with new shape parameters $\mathbf{a}+\mathbf{n}$.

Initial Choices

Uninformative Dirichlet prior: Shape parameters $\mathbf{a}=\mathbf{1}$ gives the uniform density on \mathbf{p}.

Repeated experiments: outcomes of experiments \mathbf{n} and \mathbf{n}^{\prime} add to give new shape parameters $\mathbf{a}+\mathbf{n}+\mathbf{n}^{\prime}$.

Exercise: Fix i with $1 \leq i \leq k$. Under what conditions $\operatorname{Var}\left(p_{i}\right) \rightarrow 0$ as the number of experiments tends to infinity?

Monte Carlo Integration

Theorem

Suppose that $\left\{X_{k}: k=1,2, \ldots\right\}$ is an ergodic Markov chain on a finite state space $S=\{1, \ldots, m\}$. Let $\pi \in \mathbf{R}^{m}$ be its stationary distribution. Then for any bounded function F on S,

$$
\frac{1}{N} \sum_{k=1}^{N} F\left(X_{k}\right) \rightarrow \sum_{i=1}^{m} F(i) \pi(i)
$$

almost surely as $N \rightarrow \infty$.
Proof.
Exercise.

Remark. The Birkhoff ergodic theorem is a more general version of this result. Its proof may be found in MetropHastingsEtc.pdf on the class website.

Metropolis Algorithm

Goal: given $g=C \pi$ with pdf $\pi \in \mathbf{R}^{m}$ and unknown constant C, construct an ergodic Markov chain with stationary pdf π.

Idea: from an initial Markov chain with transition function M,

- If $X_{n}=i$, sample random j from distribution $M(i, \cdot)$.
- Define an acceptance function $0 \leq a(i, j) \leq 1$.
- Let $X_{n+1}=j$ with probability $a(i, j)$, else keep $X_{n+1}=i$.
- Increment $n \leftarrow n+1$ and repeat.

Theorem (Metropolis-Hastings)

To get the desired stationary distribution for X, choose

$$
a(i, j)=\min \left\{1, \frac{\pi(j) M(j, i)}{\pi(i) M(i, j)}\right\}=\min \left\{1, \frac{g(j) M(j, i)}{g(i) M(i, j)}\right\}
$$

Simplifications

- If $M(i, j)=M(j, i)$ is symmetric, then

$$
a(i, j)=\min \left\{1, \frac{g(j) M(j, i)}{g(i) M(i, j)}\right\}=\min \left\{1, \frac{g(j)}{g(i)}\right\} .
$$

- If M is ergodic with stationary pdf p, then
$\lim _{k \rightarrow \infty} M^{k}(i, j)=p(j)$ for all j. Use this limit to get

$$
(\forall i) a(i, j)=\min \left\{1, \frac{g(j) p(i)}{g(i) p(j)}\right\}
$$

- If $g(j)=L(j) p(j)$ is a Bayesian posterior with prior p and likelihood L, then

$$
(\forall i) a(i, j)=\min \left\{1, \frac{g(j) p(i)}{g(i) p(j)}\right\}=\min \left\{1, \frac{L(j)}{L(i)}\right\}
$$

Programming Issues

- See the example R code in 07metro.txt
- Reduce the influence of intial state X_{0} with a "burn-in" period.
- Estimate convergence with multiple chains $X^{\prime}, I=1,2, \ldots$, and for large N let

$$
\Phi_{l}(N)=\frac{1}{N} \sum_{k=1}^{N} F\left(X_{k}^{\prime}\right)
$$

Then $\operatorname{Var}(\Phi(N))$ is an estimate for mean squared error in $\langle F, \pi\rangle \approx \mathrm{E}(\Phi(N))$.

- Extend to random vectors componentwise by "Gibbs sampling".

Gibbs Sampling

Suppose X, Y are random vectors with joint pdf $f(\mathbf{x}, \mathbf{y})$.
To generate samples (X, Y) from f, find:

- marginal pdfs $f_{X}(\mathbf{x})$ and $f_{Y}(\mathbf{y})$
- conditional pdfs $f_{X \mid Y}(\mathbf{x}, \mathbf{y})$ and $f_{Y \mid X}(\mathbf{x}, \mathbf{y})$

Then iterate for $n=1,2, \ldots$ from initial $X=\mathbf{x}_{0}$ and $Y=\mathbf{y}_{0}$:

- get sample $X=\mathbf{x}_{n+1}$ using $f_{X \mid Y}\left(\cdot, \mathbf{y}_{n}\right)$,
- get sample $Y=\mathbf{y}_{n+1}$ using $f_{Y \mid X}\left(\mathbf{x}_{n}, \cdot\right)$,

Remark. If X, Y are independent, then $f_{X \mid Y}(\cdot, \mathbf{y})=f_{Y}(\mathbf{y})$ and $f_{Y \mid X}(\mathbf{x}, \cdot)=f_{X}(\mathbf{x})$, so only the marginal pdfs are needed.

Example: Dirichlet Gibbs Sampling

Let $\alpha_{0} \stackrel{\text { def }}{=} \alpha_{1}+\cdots+\alpha_{k}$ in the Dirichlet pdf on $\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right)$:

$$
f(\mathbf{p})=\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{k}\right)} p_{1}^{\alpha_{1}-1} \cdots p_{k}^{\alpha_{k}-1}
$$

Lemma

If $X=\left(X_{1}, \ldots, X_{k}\right)$ has the Dirchlet pdf, namely
$X \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, then the marginal pdf for X_{1}, removing p_{j} for all $j=2, \ldots k$, is:

$$
f_{1}\left(p_{1}\right)=\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{0}-\alpha_{1}\right)} p_{1}^{\alpha_{1}-1}\left(1-p_{1}\right)^{\alpha_{0}-\alpha_{1}-1}
$$

In other words, $X_{1} \sim B\left(\alpha_{1}, \alpha_{0}-\alpha_{1}\right)$.

Dirichlet Conditional PDF

The conditional pdf $f_{2, \ldots, k \mid 1}(\mathbf{p})$, given $X_{1}=p_{1}$, is therefore

$$
\begin{aligned}
\frac{f(\mathbf{p})}{f_{1}\left(p_{1}\right)} & =\frac{\Gamma\left(\alpha_{0}\right) \Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{0}-\alpha_{1}\right)}{\Gamma\left(\alpha_{0}\right) \Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \cdots \Gamma\left(\alpha_{k}\right)} \frac{p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \cdots p_{k}^{\alpha_{k}-1}}{p_{1}^{\alpha_{1}-1}\left(1-p_{1}\right)^{\alpha_{0}-\alpha_{1}-1}} \\
& =\frac{\Gamma\left(\alpha_{2}+\cdots+\alpha_{k}\right)}{\Gamma\left(\alpha_{2}\right) \cdots \Gamma\left(\alpha_{k}\right)} \frac{p_{2}^{\alpha_{2}-1} \cdots p_{k}^{\alpha_{k}-1}}{\left(1-p_{1}\right)^{\alpha_{2}+\cdots+\alpha_{k}-1}} \\
& =\frac{\Gamma\left(\alpha_{2}+\cdots+\alpha_{k}\right)}{\Gamma\left(\alpha_{2}\right) \cdots \Gamma\left(\alpha_{k}\right)} \bar{p}_{2}^{\alpha_{2}-1} \cdots \bar{p}_{k}^{\alpha_{k}-1}\left(1-p_{1}\right)^{k-1},
\end{aligned}
$$

where $\bar{p}_{i}=p_{i} /\left(1-p_{1}\right)=p_{i} /\left(p_{2}+\cdots+p_{k}\right)$, for $i=2, \ldots, k$, so that $\bar{p}_{2}+\cdots+\bar{p}_{k}=1$.

