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Goals for Diffusion Maps

Setup: V = {v1, . . . , vn} ⊂ Rd is a finite data set.

I Expect both d and n to be large.
I Some sufficiently close pairs in V are related.
I Start with some relation S on those pairs, defined on a small

subset E ⊂ V × V.
I Normalize S for use in a diffusion process.
I Extend S by diffusion to all of V × V.
I Use the diffusion time parameter to:

I define diffusion distances,
I decompose the geometry of V by scales.



Similarity from Distance

For pairs x, y ∈ V:

I Small distance is good. EG: Norm ‖x− y‖ < ε

I . . . or use a more general metric: d(x, y) < ε

But there is no natural value (other than perhaps ∞) for initially
unrelated points.

So use similarity, like adjacency or connectedness:

I Adjacency: A(i , j) = 1 iff (vi , vj) ∈ E , otherwise zero.
I Connectedness: Markov transition probability M(i , j).

Transform distance to similarity using a kernel.



Kernels and Affinity

Affinity is defined with a kernel k : Rd × Rd → R:

I k(x, y) = k(y, x) is symmetric,
I k(x, y) ≥ 0, with k(x, x) > 0,

Restrict to finite V = {vi} ⊂ Rd to get a kernel matrix:

K (i , j) def= k(vi , vj)

Symmetry of k implies K T = K is symmetric.

Remark. K is a weighted adjacency matrix for the complete
(undirected) graph on V



Gaussian Kernel

This is an “adjustable” kernel wth parameter σ > 0:

k(x, y) def= exp
(
−‖x− y‖2

σ2

)

I evidently symmetric and nonnegative
I fit σ > 0 to the data (how?)
I k(x, y)→ 1 as ‖x− y‖ → 0
I k(x, y)→ 0 rapidly as ‖x− y‖ → ∞

Gaussian kernel matrix is positive: for all i , j ,

K (i , j) def= k(vi , vj) > 0



Normalization to Row Stochastic

Degree matrix: D(i , j) = 0 if i 6= j , else

D(i , i) def=
∑

j
K (i , j) =

∑
j

k(vi , vj) > 0

Transition matrix:
P def= D−1K .

Lemma
P is row stochastic.

Remark. P is not symmetric, in general.



Properties

Let P be the transition matrix obtained from the gaussian kernel
matrix on V. Then

I P is positive.
I P is ergodic, since positive matrices are irreducible and

aperiodic.
I P can be made almost band diagonal, with∑

|i−j|>b P(i , j) < ε, for any fixed b ≥ 1 and ε > 0, by
choosing σ = σ(b, ε) > 0 small enough.



Row Stochastic Spectral Radius

Lemma
If P is row stochastic, then ρ(P) = 1.

Proof.
Let 1 = (1, . . . , 1). Then P1 = 1, so ρ(P) ≥ 1.
Now, ‖P‖∞ = 1 by definition, and likewise ‖Pk‖∞ = 1 for all k
(exercise!). But if ρ(P) > 1, then limk→∞ ‖Pk‖∞ =∞.
Conclude that ρ(P) = 1.

By the Perron-Frobenius theorem, such P has a maximal
eigenvalue ρ(P) = 1 of multiplicity 1, with all other eigenvalues
satisfying |λ| < 1.

The dual principal eigenvector v (which solves vP = v), normalized
to be a pdf, is called a stationary distribution.



Principal Eigenvectors

Lemma
P has a stationary distribution πP = π given by

π(j) = D(j , j)∑
i D(i , i) .

Proof.
Write P = D−1K . Since πD−1 = 1∑

i D(i ,i)1 and K = K T ,
compute

πP = 1∑
i D(i , i)1K = 1∑

i D(i , i)1K T = π,

since 1K T is the vector of row sums of K which are just the
degrees {D(i , i)} of the vertices.



Reversibility

Lemma
The Markov chain with transition matrix P is reversible.

Proof.
For any indices i , j , by the symmetry of K in P = D−1K ,

π(i)P(i , j) = D(i , i)∑
l D(l , l)

1
D(i , i)K (i , j) = K (i , j)∑

l D(l , l) = K (j , i)∑
l D(l , l)

= D(j , j)∑
l D(l , l)

1
D(j , j)K (j , i) = π(j)P(j , i).

This is exactly the detailed balance equation.



Diffusion Distances

Remark. For any power k, the (row stochastic) matrix Pk also
has π as a stationary distribution.

Given P and its stationary distribution π, define a distance
function on V = {vi} for every power k > 0 of P:

dk(i , j)2 = dk(vi , vj)2 def=
∑

l

[Pk(i , l)− Pk(j , l)]2
π(l)

Idea: get a multiscale geometric analysis of V from dyadic
distances

d1, d2, d4, d8, . . . ,

with the limit d∞(vi , vj) = 0 giving the largest scale, at which all
points in V are identical.



Interpretations

I Rows of Pk are the posterior distributions after k steps, from
elementary intial distributions.

I dk(i , j) is a weighted L2 distance between distributions
u 7→ Pk(i , u) and u 7→ Pk(j , u).

I dk is a likelihood summed over all paths of length k.



Singular Vector Expansion

Suppose that P = USV T is a singular value decomposition of the
n × n matrix P, where U,V are orthogonal, and S is diagonal:

U =


...

...
u1 . . . un
...

...

 ; V =


...

...
v1 . . . vn
...

...

 ; S =

s1
. . .

sn

 ,
with 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn. Then

P =
∑

l
slul ⊗ vl meaning P(i , j) =

∑
l

slul (i)vl (j).

Exercise: prove this.

Remark. Need more, like U = V , to represent Pk for k > 1.



Symmetrizing
K is symmetric but P is not, so introduce an intermediate:

A = Π1/2PΠ−1/2, where Π =

π(1)
. . .

π(n).

 ,
This A is symmetric:

A(i , j) =
√
π(i)√
π(j)

P(i , j) = K (i , j)√
π(i)

√
π(j)

,

so its eigenvectors form an orthonormal basis Θ = (θl ), with
corresponding eigenvalues {λl}. Then

A =
∑

l
λlθl ⊗ θl meaning A(i , j) =

∑
l
λlθl (i)θl (j).

Note: It may be assumed that λ1 = 1 with θ1 =
√
π.



Eigenvalue Expansion

The relation between A and P gives

P(i , j) =
∑

l
λl

√
π(j)√
π(i)

θl (i)θl (j) def=
∑

l
λlψl (i)φl (j),

where ψl (i) = θl (i)/
√
π(i) and φl (j) = θl (j)

√
π(j).

Bases Ψ = (ψl ) = Π−1/2Θ and Φ = (φl ) = Π1/2Θ are
biorthogonal duals:

ΨT Φ = I = ΦT Ψ meaning 〈ψp, φq〉 =
{

1, p = q,
0, p 6= q.

(This is because ΘT Θ = I by construction.)



Biorthogonal Functional Calculus

Lemma

P = ΨΛΦT , with Λ =

λ1
. . .

λn.

.

Corollary
ψl is an eigenvector of P with eigenvalue λl .

Corollary
Pk = ΨΛkΦT .

Exercise: Perform the computations to prove these results.



Eigenvector Expansion of Powers

Lemma
Let ψl be an eigenvector of the eigenvalue λl of P. Then

dk(i , j) =
(∑

l
λ2k

l [ψl (i)− ψl (j)]2
)1/2

Proof.
Recognize dk(i , j)2 =

∑
u

[
Pk(i ,u)√
π(u)
− Pk(j,u)√

π(u)

]2
as the squared L2

norm of the difference two functions (of u) with orthonormal
expansions (in {θl}):
I u 7→ Pk(i , u)/

√
π(u) =

∑
l λ

k
l ψl (i)θl (u), and

I u 7→ Pk(j , u)/
√
π(u) =

∑
l λ

k
l ψl (j)θl (u).

Apply Parseval’s formula to get the result.



Diffusion Maps

For k = 1, 2, . . . , define the mapping Ψk : V → Rn by

Ψk(vi ) = Ψk(i) =
(
λk

1ψ1(i) . . . λk
nψn(i)

)
,

which is the ith row of ΨΛk .

Theorem
Ψk is an injection from V ⊂ Rd into Rn that maps diffusion
distance to Euclidean distance:

dk(vi , vj) = ‖Ψk(vi )−Ψk(vj)‖.

Remark. It follows that dk is a metric on V, for every
k = 1, 2, . . .



Numerical Rank

If 1 = λ1 > |λ2| ≥ · · · are chosen in decreasing order, then
truncating Ψk to the first m coordinates gives the
least-L2-distortion approximation in Rm to the full data set V.

Fix ε > 0 and define the numerical rank of the matrix Pk to be

nε
def= #{j : |λj |k ≥ ε}

Then nε → 1 as k →∞ since |λj | < 1 for all j > 1.

Thus for large k, the diffusion map Ψk injects V into R1.


