Diffusion Maps

Mladen Victor WICKERHAUSER

Washington University in St. Louis, Missouri
victor@wustl.edu
http://www.math.wustl.edu/~victor

Dimensionality Reduction and Manifold Estimation
PMF - University of Zagreb
Winter, 2022

Goals for Diffusion Maps

Setup: $\mathcal{V}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\} \subset \mathbf{R}^{\boldsymbol{d}}$ is a finite data set.

- Expect both d and n to be large.
- Some sufficiently close pairs in \mathcal{V} are related.
- Start with some relation S on those pairs, defined on a small subset $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.
- Normalize S for use in a diffusion process.
- Extend S by diffusion to all of $\mathcal{V} \times \mathcal{V}$.
- Use the diffusion time parameter to:
- define diffusion distances,
- decompose the geometry of \mathcal{V} by scales.

Similarity from Distance

For pairs $\mathbf{x}, \mathbf{y} \in \mathcal{V}$:

- Small distance is good. EG: Norm $\|\mathbf{x}-\mathbf{y}\|<\epsilon$
- ... or use a more general metric: $\mathrm{d}(\mathbf{x}, \mathbf{y})<\epsilon$

But there is no natural value (other than perhaps ∞) for initially unrelated points.

So use similarity, like adjacency or connectedness:

- Adjacency: $A(i, j)=1$ iff $\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right) \in \mathcal{E}$, otherwise zero.
- Connectedness: Markov transition probability $M(i, j)$.

Transform distance to similarity using a kernel.

Kernels and Affinity

Affinity is defined with a kernel $k: \mathbf{R}^{d} \times \mathbf{R}^{d} \rightarrow \mathbf{R}$:

- $k(\mathbf{x}, \mathbf{y})=k(\mathbf{y}, \mathbf{x})$ is symmetric,
- $k(\mathbf{x}, \mathbf{y}) \geq 0$, with $k(\mathbf{x}, \mathbf{x})>0$,

Restrict to finite $\mathcal{V}=\left\{\mathbf{v}_{i}\right\} \subset \mathbf{R}^{d}$ to get a kernel matrix:

$$
K(i, j) \stackrel{\text { def }}{=} k\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)
$$

Symmetry of k implies $K^{T}=K$ is symmetric.
Remark. K is a weighted adjacency matrix for the complete (undirected) graph on \mathcal{V}

Gaussian Kernel

This is an "adjustable" kernel wth parameter $\sigma>0$:

$$
k(\mathbf{x}, \mathbf{y}) \stackrel{\text { def }}{=} \exp \left(-\frac{\|\mathbf{x}-\mathbf{y}\|^{2}}{\sigma^{2}}\right)
$$

- evidently symmetric and nonnegative
- fit $\sigma>0$ to the data (how?)
- $k(\mathbf{x}, \mathbf{y}) \rightarrow 1$ as $\|\mathbf{x}-\mathbf{y}\| \rightarrow 0$
- $k(\mathbf{x}, \mathbf{y}) \rightarrow 0$ rapidly as $\|\mathbf{x}-\mathbf{y}\| \rightarrow \infty$

Gaussian kernel matrix is positive: for all i, j,

$$
K(i, j) \stackrel{\text { def }}{=} k\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)>0
$$

Normalization to Row Stochastic

Degree matrix: $D(i, j)=0$ if $i \neq j$, else

$$
D(i, i) \stackrel{\text { def }}{=} \sum_{j} K(i, j)=\sum_{j} k\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)>0
$$

Transition matrix:

$$
P \stackrel{\text { def }}{=} D^{-1} K .
$$

Lemma
P is row stochastic.

Remark. $\quad P$ is not symmetric, in general.

Properties

Let P be the transition matrix obtained from the gaussian kernel matrix on \mathcal{V}. Then

- P is positive.
- P is ergodic, since positive matrices are irreducible and aperiodic.
- P can be made almost band diagonal, with $\sum_{|i-j|>b} P(i, j)<\epsilon$, for any fixed $b \geq 1$ and $\epsilon>0$, by choosing $\sigma=\sigma(b, \epsilon)>0$ small enough.

Row Stochastic Spectral Radius

Lemma

If P is row stochastic, then $\rho(P)=1$.
Proof.
Let $\mathbf{1}=(1, \ldots, 1)$. Then $P \mathbf{1}=\mathbf{1}$, so $\rho(P) \geq 1$.
Now, $\|P\|_{\infty}=1$ by definition, and likewise $\left\|P^{k}\right\|_{\infty}=1$ for all k (exercise!). But if $\rho(P)>1$, then $\lim _{k \rightarrow \infty}\left\|P^{k}\right\|_{\infty}=\infty$.
Conclude that $\rho(P)=1$.
By the Perron-Frobenius theorem, such P has a maximal eigenvalue $\rho(P)=1$ of multiplicity 1 , with all other eigenvalues satisfying $|\lambda|<1$.

The dual principal eigenvector \mathbf{v} (which solves $\mathbf{v} P=\mathbf{v}$), normalized to be a pdf, is called a stationary distribution.

Principal Eigenvectors

Lemma
P has a stationary distribution $\pi P=\pi$ given by

$$
\pi(j)=\frac{D(j, j)}{\sum_{i} D(i, i)}
$$

Proof.
Write $P=D^{-1} K$. Since $\pi D^{-1}=\frac{1}{\sum_{i} D(i, i)} \mathbf{1}$ and $K=K^{T}$, compute

$$
\pi P=\frac{1}{\sum_{i} D(i, i)} \mathbf{1} K=\frac{1}{\sum_{i} D(i, i)} \mathbf{1} K^{T}=\pi
$$

since $1 K^{T}$ is the vector of row sums of K which are just the degrees $\{D(i, i)\}$ of the vertices.

Reversibility

Lemma

The Markov chain with transition matrix P is reversible.

Proof.

For any indices i, j, by the symmetry of K in $P=D^{-1} K$,

$$
\begin{aligned}
\pi(i) P(i, j) & =\frac{D(i, i)}{\sum_{l} D(I, l)} \frac{1}{D(i, i)} K(i, j)=\frac{K(i, j)}{\sum_{l} D(I, l)}=\frac{K(j, i)}{\sum_{l} D(I, l)} \\
& =\frac{D(j, j)}{\sum_{l} D(I, l)} \frac{1}{D(j, j)} K(j, i)=\pi(j) P(j, i)
\end{aligned}
$$

This is exactly the detailed balance equation.

Diffusion Distances

Remark. For any power k, the (row stochastic) matrix P^{k} also has π as a stationary distribution.

Given P and its stationary distribution π, define a distance function on $\mathcal{V}=\left\{\mathbf{v}_{i}\right\}$ for every power $k>0$ of P :

$$
d_{k}(i, j)^{2}=d_{k}\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)^{2} \stackrel{\text { def }}{=} \sum_{l} \frac{\left[P^{k}(i, I)-P^{k}(j, I)\right]^{2}}{\pi(I)}
$$

Idea: get a multiscale geometric analysis of \mathcal{V} from dyadic distances

$$
d_{1}, d_{2}, d_{4}, d_{8}, \ldots,
$$

with the limit $d_{\infty}\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)=0$ giving the largest scale, at which all points in \mathcal{V} are identical.

Interpretations

- Rows of P^{k} are the posterior distributions after k steps, from elementary intial distributions.
- $d_{k}(i, j)$ is a weighted L^{2} distance between distributions $u \mapsto P^{k}(i, u)$ and $u \mapsto P^{k}(j, u)$.
- d_{k} is a likelihood summed over all paths of length k.

Singular Vector Expansion

Suppose that $P=U S V^{\top}$ is a singular value decomposition of the $n \times n$ matrix P, where U, V are orthogonal, and S is diagonal:
$U=\left(\begin{array}{ccc}\vdots & & \vdots \\ \mathbf{u}_{1} & \ldots & \mathbf{u}_{n} \\ \vdots & & \vdots\end{array}\right) ; \quad V=\left(\begin{array}{ccc}\vdots & & \vdots \\ \mathbf{v}_{1} & \ldots & \mathbf{v}_{n} \\ \vdots & & \vdots\end{array}\right) ; \quad S=\left(\begin{array}{ccc}s_{1} & & \\ & \ddots & \\ & & s_{n}\end{array}\right)$,
with $0 \leq s_{1} \leq s_{2} \leq \cdots \leq s_{n}$. Then

$$
P=\sum_{l} s_{l} \mathbf{u}_{l} \otimes \mathbf{v}_{l} \text { meaning } \quad P(i, j)=\sum_{l} s_{l} \mathbf{u}_{l}(i) \mathbf{v}_{l}(j) .
$$

Exercise: prove this.
Remark. Need more, like $U=V$, to represent P^{k} for $k>1$.

Symmetrizing

K is symmetric but P is not, so introduce an intermediate:

$$
A=\Pi^{1 / 2} P \Pi^{-1 / 2}, \quad \text { where } \Pi=\left(\begin{array}{ccc}
\pi(1) & & \\
& \ddots & \\
& & \pi(n) .
\end{array}\right)
$$

This A is symmetric:

$$
A(i, j)=\frac{\sqrt{\pi(i)}}{\sqrt{\pi(j)}} P(i, j)=\frac{K(i, j)}{\sqrt{\pi(i)} \sqrt{\pi(j)}},
$$

so its eigenvectors form an orthonormal basis $\Theta=\left(\theta_{l}\right)$, with corresponding eigenvalues $\left\{\lambda_{l}\right\}$. Then

$$
A=\sum_{l} \lambda_{l} \theta_{l} \otimes \theta_{l} \quad \text { meaning } \quad A(i, j)=\sum_{l} \lambda_{l} \theta_{l}(i) \theta_{l}(j) .
$$

Note: It may be assumed that $\lambda_{1}=1$ with $\theta_{1}=\sqrt{\pi}$.

Eigenvalue Expansion

The relation between A and P gives

$$
P(i, j)=\sum_{l} \lambda_{l} \frac{\sqrt{\pi(j)}}{\sqrt{\pi(i)}} \theta_{l}(i) \theta_{l}(j) \stackrel{\text { def }}{=} \sum_{l} \lambda_{l} \psi_{l}(i) \phi_{l}(j)
$$

where $\psi_{l}(i)=\theta_{l}(i) / \sqrt{\pi(i)}$ and $\phi_{l}(j)=\theta_{l}(j) \sqrt{\pi(j)}$.
Bases $\psi=\left(\psi_{l}\right)=\Pi^{-1 / 2} \Theta$ and $\Phi=\left(\phi_{l}\right)=\Pi^{1 / 2} \Theta$ are biorthogonal duals:

$$
\Psi^{T} \Phi=I=\Phi^{T} \Psi \quad \text { meaning } \quad\left\langle\psi_{p}, \phi_{q}\right\rangle= \begin{cases}1, & p=q \\ 0, & p \neq q\end{cases}
$$

(This is because $\Theta^{T} \Theta=/$ by construction.)

Biorthogonal Functional Calculus

Lemma
$P=\Psi \wedge \Phi^{T}$, with $\Lambda=\left(\begin{array}{lll}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} .\end{array}\right)$.

Corollary
ψ_{l} is an eigenvector of P with eigenvalue λ_{l}.
Corollary $P^{k}=\Psi \Lambda^{k} \Phi^{T}$.

Exercise: Perform the computations to prove these results.

Eigenvector Expansion of Powers

Lemma

Let ψ_{l} be an eigenvector of the eigenvalue $\lambda_{\text {I }}$ of P. Then

$$
d_{k}(i, j)=\left(\sum_{l} \lambda_{l}^{2 k}\left[\psi_{l}(i)-\psi_{l}(j)\right]^{2}\right)^{1 / 2}
$$

Proof.
Recognize $d_{k}(i, j)^{2}=\sum_{u}\left[\frac{p^{k}(i, u)}{\sqrt{\pi(u)}}-\frac{p^{k}(j, u)}{\sqrt{\pi(u)}}\right]^{2}$ as the squared L^{2} norm of the difference two functions (of u) with orthonormal expansions (in $\left\{\theta_{l}\right\}$):

- $u \mapsto P^{k}(i, u) / \sqrt{\pi(u)}=\sum_{l} \lambda_{l}^{k} \psi_{l}(i) \theta_{l}(u)$, and
- $u \mapsto P^{k}(j, u) / \sqrt{\pi(u)}=\sum_{l} \lambda_{l}^{k} \psi_{l}(j) \theta_{l}(u)$.

Apply Parseval's formula to get the result.

Diffusion Maps

For $k=1,2, \ldots$, define the mapping $\Psi_{k}: \mathcal{V} \rightarrow \mathbf{R}^{n}$ by

$$
\Psi_{k}\left(\mathbf{v}_{i}\right)=\Psi_{k}(i)=\left(\begin{array}{lll}
\lambda_{1}^{k} \psi_{1}(i) & \ldots & \lambda_{n}^{k} \psi_{n}(i)
\end{array}\right)
$$

which is the ith row of $\Psi \Lambda^{k}$.
Theorem
Ψ_{k} is an injection from $\mathcal{V} \subset \mathbf{R}^{d}$ into \mathbf{R}^{n} that maps diffusion distance to Euclidean distance:

$$
d_{k}\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)=\left\|\Psi_{k}\left(\mathbf{v}_{i}\right)-\Psi_{k}\left(\mathbf{v}_{j}\right)\right\|
$$

Remark. It follows that d_{k} is a metric on \mathcal{V}, for every $k=1,2, \ldots$

Numerical Rank

If $1=\lambda_{1}>\left|\lambda_{2}\right| \geq \cdots$ are chosen in decreasing order, then truncating Ψ_{k} to the first m coordinates gives the least- L^{2}-distortion approximation in \mathbf{R}^{m} to the full data set \mathcal{V}.

Fix $\epsilon>0$ and define the numerical rank of the matrix P^{k} to be

$$
n_{\epsilon} \stackrel{\text { def }}{=} \#\left\{j:\left|\lambda_{j}\right|^{k} \geq \epsilon\right\}
$$

Then $n_{\epsilon} \rightarrow 1$ as $k \rightarrow \infty$ since $\left|\lambda_{j}\right|<1$ for all $j>1$.

Thus for large k, the diffusion map Ψ_{k} injects \mathcal{V} into \mathbf{R}^{1}.

