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Goals for Diffusion Maps

Setup: V = {v1,...,v,} C R? is a finite data set.

» Expect both d and n to be large.
» Some sufficiently close pairs in V are related.

» Start with some relation S on those pairs, defined on a small
subset £ CV x V.

> Normalize S for use in a diffusion process.
» Extend S by diffusion to all of V x V.

» Use the diffusion time parameter to:

» define diffusion distances,
» decompose the geometry of V by scales.



Similarity from Distance

For pairs x,y € V:

» Small distance is good. EG: Norm ||x —y|| < €

> ...or use a more general metric: d(x,y) < €

But there is no natural value (other than perhaps oo) for initially
unrelated points.

So use similarity, like adjacency or connectedness:

» Adjacency: A(i,j) = 1iff (v, vj) € €, otherwise zero.
» Connectedness: Markov transition probability M(i, j).

Transform distance to similarity using a kernel.



Kernels and Affinity

Affinity is defined with a kernel k : RY x R — R:

> k(x,y) = k(y,x) is symmetric,
> k(x,y) >0, with k(x,x) >0,

Restrict to finite V = {v;} C RY to get a kernel matrix:

. . def
K(I7.j) = k(V,’,Vj)

Symmetry of k implies KT = K is symmetric.

Remark. K is a weighted adjacency matrix for the complete
(undirected) graph on V



Gaussian Kernel

This is an “adjustable” kernel wth parameter o > 0:

_yl2
k(x,y) def exp (_Hx yl )

o2

> evidently symmetric and nonnegative
» fit 0 > 0 to the data (how?)
> k(x,y) > las|x—y||—0
> k(x,y) — 0 rapidly as ||x — y|| — oo

Gaussian kernel matrix is positive: for all i, J,

K(i,j) < k(vj,vj) >0



Normalization to Row Stochastic

Degree matrix: D(i,j) =0 if i # j, else
D(i,)) € STK(i,j) =3 k(vi,v) >0
J J

Transition matrix:

p & p-1gk.

Lemma
P is row stochastic.

Remark. P is not symmetric, in general.



Properties

Let P be the transition matrix obtained from the gaussian kernel
matrix on V. Then

> P is positive.

> P is ergodic, since positive matrices are irreducible and
aperiodic.

» P can be made almost band diagonal, with
> ji—ji>b P(i,j) <€, for any fixed b > 1 and € > 0, by
choosing o = (b, €) > 0 small enough.



Row Stochastic Spectral Radius

Lemma
If P is row stochastic, then p(P) = 1.

Proof.

Let1=(1,...,1). Then P1 =1, s0 p(P) > 1.

Now, ||P||c = 1 by definition, and likewise ||P¥||s = 1 for all k
(exercise!). But if p(P) > 1, then limy_.o ||P¥|lcc = 0.

Conclude that p(P) = 1. O

By the Perron-Frobenius theorem, such P has a maximal
eigenvalue p(P) = 1 of multiplicity 1, with all other eigenvalues
satisfying |\| < 1.

The dual principal eigenvector v (which solves vP = v), normalized
to be a pdf, is called a stationary distribution.



Principal Eigenvectors

Lemma
P has a stationary distribution P = 7 given by
. D(,Jj
w(j) = 20D
Zi D(I7 I)
Proof.
Write P = D71K. Since n1D1 = ﬁl and K = KT,
compute
1 1
TP = — 1K = — 1K =,
ZiD(I7I) ZiD(Ial)

since 1K T is the vector of row sums of K which are just the
degrees {D(i, i)} of the vertices.



Reversibility

Lemma
The Markov chain with transition matrix P is reversible.

Proof.
For any indices i, j, by the symmetry of K in P = D71K,
o D(i, i) 1 . K(i,J) K(j,i)
w(i)P(i, —K(i,j) = =
WP = o0y o6, ) = 5000y = 55,00.7)

_ DG 1 b
= 5,00.0G KU = PG

This is exactly the detailed balance equation. O




Diffusion Distances

Remark. For any power k, the (row stochastic) matrix P* also
has 7 as a stationary distribution.

Given P and its stationary distribution 7, define a distance
function on V = {v;} for every power k > 0 of P:

K(i 1Y — Pk(i. )2
(i, J)? = di(ur, ) < 37 12 ")W(,f -
/

Idea: get a multiscale geometric analysis of V' from dyadic

distances
d17 d27 d47 d8a ceey

with the limit d(vj, v;) = 0 giving the largest scale, at which all
points in V are identical.



Interpretations

> Rows of PX are the posterior distributions after k steps, from
elementary intial distributions.

» di(i,]) is a weighted L? distance between distributions
u s Pk(i,u) and u+— PX(j, u).

» d, is a likelihood summed over all paths of length k.



Singular Vector Expansion

Suppose that P = USV'T is a singular value decomposition of the

n x n matrix P, where U, V are orthogonal, and S is diagonal:

S1

with 0 <s1 <5 <---<s,. Then

P = Zs/u/@)v, meaning  P(i,J) Zs,u/ vy
I

Exercise: prove this.

Remark. Need more, like U = V, to represent P for k > 1.



Symmetrizing

K is symmetric but P is not, so introduce an intermediate:

(1)
A=NY2pN"Y2  \where N =
m(n).
This A is symmetric:
. K(i i

RVZ0) V() V()

so its eigenvectors form an orthonormal basis © = (6,), with
corresponding eigenvalues {\;}. Then

A= ZA,G,@H/ meaning A(i,j) = Z)\/G/( )0,(j).
/

Note: It may be assumed that A\; = 1 with 6; = /7.



Eigenvalue Expansion

The relation between A and P gives

. VTU) gy o def N
P 1, = )\ = 9 ] 9 = A¢ / ¢ )
(i,J) E/ / =0 1(10:(j) E/ 1i1()o1(j)

where ¥;(i) = 0,(i)/+/7(i) and ¢;(j) = 0,;(j)/7 ().
Bases W = (¢)) = M~/20 and & = (¢;) = N'/2© are

biorthogonal duals:

1, p=aq,

Vido=1=0"V  meaning (¢, ¢q) = {
0, p#gq.

(This is because ©7© = I by construction.)



Biorthogonal Functional Calculus

Lemma
A1

P =WA®T, with A =
An-

Corollary
1y is an eigenvector of P with eigenvalue ).

Corollary
Pk = WAKOT .

Exercise: Perform the computations to prove these results.



Eigenvector Expansion of Powers

Lemma
Let vy be an eigenvector of the eigenvalue \; of P. Then

1/2
= (Z NZK [y (i) — 1/1/(1)]2>
]

Proof. )
Recognize dk(i,j)*> =3, [F\’/k% - T/k%} as the squared L2

norm of the difference two functions (of u) with orthonormal
expansions (in {6,}):

> urs PR(i u)//7( —Z,)\k 1/(10;(u), and

> u = PR, u)/v/m(u) = 5 M ()0i(u).

Apply Parseval’s formula to get the result.



Diffusion Maps

For k =1,2,..., define the mapping ¥, : V — R" by
Wi(vi) = V() = (Mun(i) ... Mwa())

which is the ith row of WAX.

Theorem
W, is an injection from YV C R? into R" that maps diffusion
distance to Euclidean distance:

di(vis vj) = [[Wk(vi) — Wi (v;)]]-

Remark. It follows that dy is a metric on V, for every
k=1,2,...



Numerical Rank

If 1 =Xy > |A\2| > --- are chosen in decreasing order, then
truncating W to the first m coordinates gives the
least-L2-distortion approximation in R™ to the full data set V.

Fix € > 0 and define the numerical rank of the matrix P* to be

def .
ne = #: N> e

Then n. — 1 as k — oo since |\j| < 1 forall j > 1.

Thus for large k, the diffusion map Wy injects V into R!.



