Perron-Frobenius Theorem

Mladen Victor WICKERHAUSER

Washington University in St. Louis, Missouri victor@wustl.edu
http://www.math.wustl.edu/~victor

Dimensionality Reduction and Manifold Estimation PMF — University of Zagreb Winter, 2022

Positive and Nonnegative Square Matrices

These arise in graph theory, probability, and other contexts.

- Nonnegative $M=M(i, j) \geq 0$, for $i, j=1, \ldots, n$.
- Positive if $M(i, j)>0$, all i, j.
- Irreducible if M is nonnegative and $\exp (M)-I$ is positive.

Lemma
M is irreducible if and only if $(\forall i, j)(\exists k) M^{k}(i, j)>0$.
Proof.
Exercise.

Local Similarity

Given points $\mathbf{V}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\} \subset \mathbf{R}^{\boldsymbol{d}}$ (or, more generally, in some metric space).

Define a nonnegative, symmetric similarity function s on a subset of $\mathbf{V} \times \mathbf{V}$ of sufficiently similar pairs:

$$
s(i, j)=s(j, i)= \begin{cases}s\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right), & \left\|\mathbf{v}_{i}-\mathbf{v}_{j}\right\|<\epsilon \\ 0, & \text { otherwise }\end{cases}
$$

Here $\epsilon>0$ is a threshold (in the original metric) that defines "sufficiently similar."

Remark. Specifying k nearest neighbors by metric is an alternative criterion for sufficiently similar.

Global Similarity

Goal: Extend the similarity function to all of $\mathbf{V} \times \mathbf{V}$.
Method 1: Combine similarity over all paths of nonzero similarity.

- like the initial step in multidimensional scaling
- like finding shortest paths in weighted graphs
- but searching over many paths has high complexity

Method 2: Construct a diffusion process

- similarity is like an infinitestimal generator
- seek existence of long-time equilibrium solutions
- computation: find stationary distributions for Markov chains

Diffusion Maps

Choose Method 2 for generality and speed.
Extend the similarity function to all of $\mathbf{V} \times \mathbf{V}$ by

- exponentiating an infinitesimal generator, as in diffusion
- iterating a transition matrix, as for a Markov chain

In the discrete case, these are both applications for the Perron-Frobenius theorem.

Graphs

Let G be a graph with vertices $\mathcal{V}=\{1, \ldots, n\}$, edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.

- Adjacency matrix:

$$
A(i, j)= \begin{cases}1, & (i, j) \in \mathcal{E} \\ 0, & \text { otherwise }\end{cases}
$$

Generalization: weighted graphs $A(i, j)=w_{i j} \geq 0$ if $(i, j) \in \mathcal{E}$.

- Degree matrix:

$$
D(i, j)= \begin{cases}\#\{k:(i, k) \in \mathcal{E}\}, & i=j \\ 0, & \text { otherwise }\end{cases}
$$

This is a diagonal $n \times n$ matrix.
For a weighted graph, use $D(i, i)=\sum_{j=1}^{n} w_{i j}$.

Transition Matrices

Suppose a graph has adjacency matrix A and degree matrix D.
Transition matrix:

$$
T=D^{-1} A
$$

Lemma
Row sums of T are always 1 .
Proof.
Fix i, compute

$$
\sum_{j=1}^{n} T(i, j)=D(i, i)^{-1} \sum_{j=1}^{n} A(i, j)=\frac{\sum_{j=1}^{n} w_{i j}}{\sum_{j=1}^{n} w_{i j}}=1
$$

Stochastic Matrices

Row stochastic M: Nonnegative with unit row sums:

$$
(\forall i) \sum_{j=1}^{n} M(i, j)=1
$$

Column stochastic: Nonnegative with unit column sums:

$$
(\forall j) \sum_{i=1}^{n} M(i, j)=1
$$

Doubly stochastic: both row and column stochastic.

Probability Vectors

Define a row pdf to be a probability function written as a row vector on the finite space $\Omega=\{1, \ldots, n\}$:

$$
\mathbf{p}=\left(\begin{array}{lll}
p_{1} & \cdots & p_{n}
\end{array}\right) ; \quad(\forall j) p_{j} \geq 0 ; \quad \sum_{j=1}^{n} p_{j}=1
$$

Similarly, column pdf \mathbf{q} is a column vector with nonnegative entries that sum to 1 .

Lemma
For row stochastic M, if \mathbf{p} is a row $p d f$, then $\mathbf{p} M$ is a row $p d f$.
Also, column stochastic M maps column pdf \mathbf{q} to column pdf $M \mathbf{q}$. Both proofs are left as exercises.

Finite Stationary Markov Chains

Stochastic process on the finite state space $\Omega=\{1, \ldots, n\}$.
Map initial pdf \mathbf{p}_{0} to pdfs $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{k}, \ldots$ by iterated application of stochastic M.

Stationary if the same M is used at each step.
Questions:

- does $\mathbf{p}_{\infty} \stackrel{\text { def }}{=} \lim _{k \rightarrow \infty} \mathbf{p}_{k}$ exist?
- can \mathbf{p}_{∞} be found by iteration? How fast will it converge?
- is \mathbf{p}_{∞} independent of \mathbf{p}_{0} ?

If a limit \mathbf{p}_{∞} exists, it is called a stationary distribution for M.

Eigenvalue Problem

Stationary distributions $\mathbf{q}=\mathbf{p}_{\infty}$ (for the column stochastic case) solve the eigenvalue equation

$$
\mathbf{q}=M \mathbf{q}
$$

with column stochastic M having eigenvalue 1 .
Since \mathbf{q} is a (column) pdf, the solution is unique if and only if eigenvalue 1 has multiplicity 1 . (Prove this as an exercise.)
Solution \mathbf{q} is a limit of iterations of M if all other eigenvalues λ of M satisfy $|\lambda|<1$.
Convergence $\left\|\mathbf{p}_{\infty}-\mathbf{p}_{k}\right\|=O\left(|\lambda|^{-k}\right)$ as $k \rightarrow \infty$, where $|\lambda|<1$ is largest-magnitude eigenvalue with $|\lambda|<1$.

Spectral Radius and Matrix Norms

Spectral radius for $n \times n$ matrix M with eigenvalues $\left\{\lambda_{i}\right\} \subset \mathbf{C}$:

$$
\rho(M) \stackrel{\text { def }}{=} \max \left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right\}
$$

Matrix norm for $n \times n$ matrices M, N and scalars c, satisfies:

- $\|M\| \geq 0$, with $\|M\|=0 \Longleftrightarrow M=0 ;\|c M\|=|c|\|M\|$.
- $\|M+N\| \leq\|M\|+\|N\|$ and $\|M N\| \leq\|M\|\|N\|$.

Theorem
Any two norms on a finite-dimensional vector space are equivalent: $\|\cdot\|_{\alpha} \sim\|\cdot\|_{\beta}$, meaning $(\exists K>0)(\forall M)\|M\|_{\alpha} \leq K\|M\|_{\beta}$.

Proof.
See mfmm30-32.pdf on class website. Note that $K=K(\alpha, \beta, n)$ depends on the norms and on the dimension.

Example Matrix Norms

Fredholm Norm: $\|M\|_{F} \stackrel{\text { def }}{=}\left(\sum_{i, j}|M(i, j)|^{2}\right)^{1 / 2}$ (this is Euclidean norm on $\mathbf{C}^{n \times n}$, the matrix coefficients)
One Norm: $\|M\|_{1} \stackrel{\text { def }}{=} \max _{j} \sum_{i}|M(i, j)|$
Infinity Norm: $\|M\|_{\infty} \stackrel{\text { def }}{=} \max _{i} \sum_{j}|M(i, j)|$
Operator Norm: $\|M\|_{\text {op }} \stackrel{\text { def }}{=} \sup _{\mathbf{x} \neq 0} \frac{\|M \mathbf{x}\|}{\|\mathbf{x}\|}=\sup _{\|\mathbf{x}\|=1}\|M \mathbf{x}\|$.
Lemma
$\|M\|_{\mathrm{op}}=\rho\left(M^{*} M\right)^{1 / 2}$ is the largest singular value of M.
Proof.
$\|M\|_{\mathrm{op}}^{2}=\sup _{\|\mathbf{x}\|=1}\|M \mathbf{x}\|^{2}=\sup _{\|\mathbf{x}\|=1}\left\langle M^{*} M \mathbf{x}, \mathbf{x}\right\rangle=\rho\left(M^{*} M\right)$.

Induced Operator Norms

Let $\|\cdot\|_{x}$ be any norm on \mathbf{C}^{n}.
For $n \times n$ matrix M, define its induced operator norm by

$$
\|M\|_{\mathrm{X}, \mathrm{op}} \stackrel{\text { def }}{=} \sup _{\mathbf{x} \neq \mathbf{0}} \frac{\|M \mathbf{x}\|_{X}}{\|\mathbf{x}\|_{X}}
$$

The resulting function $\|\cdot\|_{\mathrm{X}, \mathrm{op}}$ is a matrix norm.

Lemma
Let $\|\cdot\|$ be any matrix norm. Then $\|I\| \geq 1$.
Proof.
$I \neq 0$, so $\|I\|>0$, and $\|I\|^{2} \geq\left\|I^{2}\right\|=\|I\|$, so $\|I\| \geq 1$.

Continuity of Matrix Norms

Fix n and let $\|\cdot\|$ be any matrix norm on $n \times n$ matrices.
Lemma
$M \mapsto\|M\|$ is a continuous function on the coefficients of M.
Proof.
Since $\|M\| \leq\|M-N\|+\|N\|$ and $\|N\| \leq\|N-M\|+\|M\|$, it follows that

$$
|\|M\|-\|N\|| \leq\|M-N\|
$$

Since $\|\cdot\| \sim\|\cdot\|_{F}$, there is some $0<K<\infty$ such that $\|M-N\| \leq K\|M-N\|_{F}$. Conclude that

$$
|\|M\|-\|N\|| \leq\|M-N\| \leq K\|M-N\|_{F}
$$

so that $\|\cdot\|$ is (Lipschitz) continuous with respect to Euclidean norm on $\mathbf{C}^{n \times n}$, the vector space of matrix coefficients.

Matrix Norm and Boundedness

Fix n and let $\|\cdot\|$ be any matrix norm on $n \times n$ matrices.
Lemma
There is some constant $K>0$ such that, for all $n \times n$ matrices M and all vectors $\mathbf{x},\|M \mathbf{x}\| \leq K\|M\|\|\mathbf{x}\|$, where $\|\mathbf{x}\|$ is the Euclidean norm of $\mathbf{x} \in \mathbf{C}^{n}$.

Proof.
Define the matrix $X(i, j)=\mathbf{x}_{i}$ (each column is a copy of \mathbf{x}).
Then $\|X\|_{F}=\sqrt{n}\|\mathbf{x}\|$, and $\|M X\|_{F}=\sqrt{n}\|M \mathbf{x}\|$.
But there exists $K>0$ such that $\|M\|_{F} \leq K\|M\|$, so

$$
\|M \mathbf{x}\|=\frac{1}{\sqrt{n}}\|M X\|_{F} \leq \frac{1}{\sqrt{n}}\|M\|_{F}\|X\|_{F} \leq K\|M\|\|\mathbf{x}\|
$$

by the equivalence of matrix norms $\|\cdot\| \sim\|\cdot\|_{F}$.

Norm versus Spectral Radius

Suppose that $\|\cdot\|$ is any matrix norm.
Lemma
If $\rho(M)>1$, then $\lim _{k \rightarrow \infty}\left\|M^{k}\right\|=\infty$.
Proof.
Since $\rho(M)>1, M$ has an eigenvalue λ with $|\lambda|>1$. Let $\mathbf{v} \neq \mathbf{0}$ be an eigenvector for λ. Then as $k \rightarrow \infty$,

$$
\left\|M^{k}\right\|_{\mathrm{op}}=\sup _{\mathbf{x} \neq \mathbf{0}} \frac{\left\|M^{k} \mathbf{x}\right\|}{\|\mathbf{x}\|} \geq \frac{\left\|M^{k} \mathbf{v}\right\|}{\|\mathbf{v}\|}=|\lambda|^{k} \rightarrow \infty
$$

But $\|\cdot\|_{\text {op }} \sim\|\cdot\|$, so $\left\|M^{k}\right\| \geq \frac{1}{K}\left\|M^{k}\right\|_{\text {op }}$ for some $0<K<\infty$, so $\left\|M^{k}\right\| \rightarrow \infty$ as $k \rightarrow \infty$.

Special Case: Nilpotent Matrices

If M is nilpotent, namely $M^{k}=0$ for some k, then $\rho(M)=0$, because any eigenvalue λ with eigenvector $\mathbf{v} \neq \mathbf{0}$ satisfies

$$
\mathbf{0}=0 \mathbf{v}=M^{k} \mathbf{v}=\lambda^{k} \mathbf{v}, \Longrightarrow \lambda^{k}=0, \Longrightarrow \lambda=0 .
$$

Conversely, if $\rho(M)=0$, then M is nilpotent. This follows from the Cayley-Hamilton theorem below.

If M is diagonalizable, then $\rho(M)$ is its largest singular value, but this is false for more general M. Example: nonzero nilpotent

$$
N=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad N^{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \quad N^{T} N=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

with eigenvalues 0,0 so $\rho(N)=0$, but with singular values 0,1 .

Jordan Canonical Form

Theorem

A square matrix M with eigenvalues $\left\{\lambda_{i}\right\}$ has a Jordan canonical form: $M=S J S^{-1}$ with invertible S and block diagonal

$$
J=\left(\begin{array}{ccc}
J_{1} & & 0 \\
& \ddots & \\
0 & & J_{m}
\end{array}\right), \quad \text { for } J_{i}=\left(\begin{array}{cccc}
\lambda_{i} & 1 & & 0 \\
& \lambda_{i} & \ddots & \\
& & \ddots & 1 \\
0 & & & \lambda_{i}
\end{array}\right)=\lambda_{i} I+N_{i}
$$

- Block J_{i} corresponds to eigenvalue λ_{i}.
- The order n_{i} of J_{i} (and of N_{i}) is at most the multiplicity of λ_{i}.
- N_{i} is nilpotent, with $N_{i}^{k}=0$ for all $k \geq n_{i}$.

Corollary: $M^{k}=\left(S J S^{-1}\right)^{k}=S J^{k} S^{-1}$.

Cayley-Hamilton Theorem

Theorem
If χ is the characteristic polynomial of matrix M, then $\chi(M)=0$.
Proof.
Let $M=S J S^{-1}$ be the Jordan canonical form of M. Then

$$
\chi(M)=S \chi(J) S^{-1}=S\left(\begin{array}{ccc}
\chi\left(J_{1}\right) & & 0 \\
& \ddots & \\
0 & & \chi\left(J_{m}\right)
\end{array}\right),
$$

where $J_{i}=\lambda_{i} I+N_{i}$ is a Jordan block. Let n_{i} be its order, so nilpotent $N_{i}^{n_{i}}=0$. Now write $\chi(z)=\prod_{j}\left(z-\lambda_{j}\right)^{n_{j}}$ to see
$\chi\left(J_{i}\right)=\left(\lambda_{i} I+N_{i}-\lambda_{i} I\right)^{n_{i}} \prod_{j \neq i}\left(J_{i}-\lambda_{j} I\right)^{n_{j}}=N_{i}^{n_{i}} \prod_{i \neq j}\left(J_{i}-\lambda_{j} I\right)^{n_{j}}=0$.
Conclude that $\chi(J)=0$, so therefore $\chi(M)=0$.

Powers of Jordan Blocks

Lemma

Let $J=\lambda I+N$ be an $m \times m$ Jordan block for eigenvalue λ. Then $\lim _{k \rightarrow \infty} J^{k}=0$ if and only if $|\lambda|<1$.

Proof.

Obviously true for $m=1$, so suppose $m>1$ with nilpotent $N \neq 0$.
Since $N^{m}=0$, expand $J^{k}=(\lambda I+N)^{k}$, for $k \geq m-1$, as

$$
J^{k}=\lambda^{k} I+\binom{k}{1} \lambda^{k-1} N+\cdots+\binom{k}{m-1} \lambda^{k+1-m} N^{m-1} .
$$

If $|\lambda|<1$, then $J^{k}=O\left(k^{m-1}|\lambda|^{k+1-m}\right) \rightarrow 0$ as $k \rightarrow \infty$.
If $|\lambda| \geq 1$, then $J^{k} N^{m-1}=\lambda^{k} N^{m-1}$ does not converge to 0 as $k \rightarrow \infty$, and since N^{m-1} is constant, neither does J^{k}.

Powers of Square Matrices

Corollary

Let M be a square matrix with spectral radius $\rho(M)$. Then $\lim _{k \rightarrow \infty} M^{k}=0$ if and only if $\rho(M)<1$.

Proof.
Let $M=S J S^{-1}$ be the Jordan canonical decomposition of M.
Then $M^{k}=S J^{k} S^{-1}$ for all $k=1,2, \ldots$, and since S is nonsingular, $\lim _{k \rightarrow \infty} M^{k}=0$ if and only if $\lim _{k \rightarrow \infty} J^{k}=0$.
If $\rho(M)<1$, then $\lim _{k \rightarrow \infty} J^{k}=0$, so $\lim _{k \rightarrow \infty} M^{k}=0$.
But if $\rho(M) \geq 1$, then there exists some eigenvalue λ of M with $|\lambda| \geq 1$, so $\lim _{k \rightarrow \infty} J^{k} \neq 0$, so $\lim _{k \rightarrow \infty} M^{k} \neq 0$.

Note: Every matrix norm is a continuous function of the matrix coefficients, so $\lim _{k \rightarrow \infty}\left\|M^{k}\right\|=0$ if and only if $\rho(M)<1$.

Zero Spectral Radius Implies Nilpotent

Corollary

Let M be an $n \times n$ matrix with spectral radius $\rho(M)=0$. Then there exists $1 \leq k \leq n$ such that $M^{k}=0$.

Proof.

Let $M=S J S^{-1}$ be the Jordan canonical decomposition of M.
Since $\rho(M)=0$, all eigenvalues of M must be zero, so every Jordan block $J_{i}=N_{i}$ is nilpotent with order $n_{i} \leq n$ equal to the order of block J_{i}.
Let $k=\max _{i} n_{i}$. Then $1 \leq k \leq n$, and $(\forall i) J_{i}^{k}=0$.
Thus $J^{k}=0$, so $M^{k}=S J^{k} S^{-1}=0$.
Alternate proof: Every eigenvalue is zero, so $\chi(z)=z^{n}$, so by the Cayley-Hamilton theorem, $\chi(M)=M^{n}=0$.

Gel'fand's Formula

Lemma
For any $n \times n$ matrix M and norm $\|\cdot\|, \rho(M)=\lim _{k \rightarrow \infty}\left\|M^{k}\right\|^{1 / k}$.

Proof.

If $\rho(M)=0$, then $M^{n}=0$ by the Cayley-Hamilton Theorem.
Hence $M^{k}=0$ for all $k \geq n$, so $\lim _{k \rightarrow \infty}\left\|M^{k}\right\|^{1 / k}=0=\rho(M)$.
Else $\rho(M)>0$, so let $0<\epsilon<\rho(M)$ be given and put

$$
M_{-} \stackrel{\text { def }}{=} \frac{1}{\rho(M)-\epsilon} M, \quad M_{+} \stackrel{\text { def }}{=} \frac{1}{\rho(M)+\epsilon} M .
$$

Then $0<\rho\left(M_{+}\right)<1<\rho\left(M_{-}\right)$, so $\left\|M_{+}^{k}\right\| \rightarrow 0$ while $\left\|M_{-}^{k}\right\| \rightarrow \infty$ as $k \rightarrow \infty$. Hence for all sufficiently large k,

$$
\frac{\left\|M^{k}\right\|}{(\rho(M)+\epsilon)^{k}}=\left\|M_{+}^{k}\right\|<1<\left\|M_{-}^{k}\right\|=\frac{\left\|M^{k}\right\|}{(\rho(M)-\epsilon)^{k}},
$$

so $\rho(M)-\epsilon<\left\|M^{k}\right\|^{1 / k}<\rho(M)+\epsilon$.

Fixed Point Existence

Theorem (Brouwer)
If $f: X \rightarrow X$ is a continuous endomorphism on compact convex $X \subset \mathbf{C}^{n}$, then f has a fixed point: $(\exists x \in X) f(x)=x$.

Application: for invertible $n \times n$ matrix M with $\|M\|_{\text {op }} \leq 1$, the map

$$
\mathbf{x} \mapsto M \mathrm{x}
$$

is defined and continuous from the closed unit ball in \mathbf{C}^{n} into itself, and thus has a fixed point.

Problem: avoid the trivial fixed point $\mathbf{M 0}=\mathbf{0}$.

Power Method

Lemma

If M has a maximal eigenvalue $\lambda=r$, with $|\lambda|<r$ for all its other eigenvalues, then the iteration $\mathbf{x}_{k+1}=\frac{1}{r} M \mathbf{x}_{k}$ starting from almost any \mathbf{x}_{0} (that is, any \mathbf{x}_{0} with a nonzero projection into the r-eigenspace) will converge to an r-eigenvector.

Proof.

Write $\mathbf{x}_{0}=\mathbf{v} \oplus \mathbf{u}$ with $\mathbf{v} \neq \mathbf{0}$ in r-eigenspace X_{r} and $\mathbf{u} \in X_{r}^{\perp}$.
Then $\left(\frac{1}{r} M\right)^{k} \mathbf{v}=\mathbf{v}$ while $\left(\frac{1}{r} M\right)^{k} \mathbf{u} \rightarrow \mathbf{0}$ as $k \rightarrow \infty$.
Remark. The same holds for iteration with renormalization:

$$
\mathbf{x}_{k+1}=\frac{1}{\left\|M \mathbf{x}_{k}\right\|} M \mathbf{x}_{k}, \quad k=0,1,2, \ldots
$$

For almost every $\mathbf{x}_{0}, \lim _{k \rightarrow \infty} \mathbf{x}_{k}$ is a unit r-eigenvector.

Perron-Frobenius I

Theorem

For any positive $n \times n$ matrix M with spectral radius $r=\rho(M)$:

1. $0<\min _{i} \sum_{j} M(i, j) \leq r \leq \max _{i} \sum_{j} M(i, j)$,
2. r is an eigenvalue for M,
3. every other eigenvalue λ of M satisfies $|\lambda|<r$,
4. there exists a positive r-eigenvector \mathbf{v} of M, namely $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ with $(\forall i) v_{i}>0$,
5. eigenvalue r has multiplicity 1 , and
6. every other eigenvector with all positive coordinates is a positive scalar multiple of \mathbf{v}.

PFI.1: Lower Bound for Spectral Radius

If M is positive, then M^{k} is positive for all $k>0$, so

$$
\mu_{k} \stackrel{\text { def }}{=} \min _{i} \sum_{j} M^{k}(i, j)>0, \quad k=1,2, \ldots
$$

Let $\mathbf{1}=(1, \ldots, 1)$ and compute

$$
\left\|M^{k}\right\|_{\mathrm{op}} \geq \frac{\left\|M^{k} \mathbf{1}\right\|}{\|\mathbf{1}\|}=\frac{1}{\sqrt{n}} \sqrt{\sum_{i}\left[\sum_{j} M^{k}(i, j)\right]^{2}} \geq \mu_{k}
$$

But $\mu_{k+1} \geq \mu_{1} \mu_{k}$ (Exercise!), so $\mu_{k} \geq \mu_{1}^{k}$. Now apply Gel'fand:

$$
\rho(M)=\lim _{k \rightarrow \infty}\left\|M^{k}\right\|_{\mathrm{op}}^{1 / k} \geq \lim _{k \rightarrow \infty}\left(\mu_{k}\right)^{1 / k} \geq \lim _{k \rightarrow \infty}\left(\mu_{1}^{k}\right)^{1 / k} \geq \mu_{1}
$$

which means that $\rho(M) \geq \min _{i} \sum_{j} M(i, j)>0$.

PFI.1: Upper Bound for Spectral Radius

For positive M, put

$$
\gamma_{k} \stackrel{\text { def }}{=} \max _{i} \sum_{j} M^{k}(i, j)=\left\|M^{k}\right\|_{\infty}
$$

By the submultiplicativity of the matrix norm $\|\cdot\|_{\infty}$,

$$
\gamma_{k+1}=\left\|M^{k+1}\right\|_{\infty} \leq\|M\|_{\infty}\left\|M^{k}\right\|_{\infty}=\gamma_{1} \gamma_{k}
$$

so $\gamma_{k} \leq \gamma_{1}^{k}$ for all k. Apply the Gel'fand formula with this norm,

$$
\rho(M)=\lim _{k \rightarrow \infty}\left\|M^{k}\right\|_{\infty}^{1 / k} \leq \lim _{k \rightarrow \infty}\left(\gamma_{k}\right)^{1 / k} \leq \lim _{k \rightarrow \infty}\left(\gamma_{1}^{k}\right)^{1 / k}=\gamma_{1} .
$$

Conclude that $\rho(M) \leq \max _{i} \sum_{j} M(i, j)$.

Gershgorin's Theorem

The bounds on $\rho(M)$ are a special case of:
Theorem
Suppose M is an $n \times n$ matrix over \mathbf{C}. For $i=1, \ldots, n$, define the Gershgorin disc $G_{i} \subset \mathbf{C}$ by

$$
G_{i} \stackrel{\text { def }}{=}\left\{z \in \mathbf{C}:|z-M(i, i)| \leq \sum_{j \neq i}|M(i, j)|\right\} .
$$

Then every eigenvalue of M lies in $\bigcup_{i} G_{i}$.
Proof.
This relatively simple proof is left as an exercise.
Thus, the largest eigenvalue $z=\rho(M)$ of positive M must satisfy $z \leq M(i, i)+\sum_{j \neq i} M(i, j)$ for some i, so $z \leq \max _{i} \sum_{j} M(i, j)$.

Proof of PFI. 2 and PFI. 3

Assume that $\rho(M)=1$, else use $M / \rho(M)$. Thus for eigenvalues λ :

$$
(\forall \lambda)|\lambda| \leq 1 \quad(\exists \lambda)|\lambda|=1 .
$$

Suppose $|\lambda|=1$ but $\lambda \neq 1$. Then $\left(\exists m \in \mathbf{Z}^{+}\right) \operatorname{Re} \lambda^{m}<0$.
Let $\epsilon=\frac{1}{2} \min _{j} M^{m}(j, j)>0$. Then $T \stackrel{\text { def }}{=} M^{m}-\epsilon \mid$ is a positive matrix, with an eigenvalue $\lambda^{m}-\epsilon$, so $\rho(T) \geq\left|\lambda^{m}-\epsilon\right|>1$. Now

$$
(\forall i, j) 0<T(i, j) \leq M^{m}(i, j) \Longrightarrow(\forall i, j, k) 0<T^{k}(i, j) \leq M^{m k}(i, j)
$$

Thus $(\forall k)\left\|T^{k}\right\|_{F} \leq\left\|M^{m k}\right\|_{F}$. Apply Gel'fand with $\|\cdot\|_{F}$ to get

$$
\rho(T) \leq \rho\left(M^{m}\right)=\rho(M)^{m}=1
$$

Contradiction! so $\lambda=1$ is the unique eigenvalue with $|\lambda|=1$.

PFI.4: Positive Eigenvector

Some positive \mathbf{x}_{0} near $\mathbf{1}$ will have a nonzero component in the r-eigenspace. The power method converges from that \mathbf{x}_{0} :

$$
\mathbf{x}_{k+1}=\frac{1}{\left\|M \mathbf{x}_{k}\right\|} M \mathbf{x}_{k}, \quad k=0,1,2, \ldots
$$

For all k, \mathbf{x}_{k} has all positive coordinates, so the r-eigenvector $\mathbf{v}=\lim _{k \rightarrow \infty} \mathbf{x}_{k}$ has nonnegative coordinates v_{1}, \ldots, v_{n}.

But if $v_{i}=0$ for some i, then $M \mathbf{v}=r \mathbf{v}$ implies

$$
0=v_{i}=\frac{1}{r} \sum_{j=1}^{n} M(i, j) v_{j}, \Longrightarrow(\forall j) v_{j}=0,
$$

since $(\forall j) M(i, j)>0$. This is a contradiction since $\|\mathbf{v}\|=r>0$ by construction. Conclude that \mathbf{v} is a positive eigenvector.

PFI.5: Multiplicity One

Let \mathbf{v} be a positive r-eigenvector.
Suppose that \mathbf{u} is another r-eigenvector. Without loss, some component of \mathbf{u} is positive, else use $-\mathbf{u}$.
For $\alpha>0$, let $\mathbf{w} \stackrel{\text { def }}{=} \mathbf{v}-\alpha \mathbf{u}$. Any $\mathbf{w} \neq \mathbf{0}$ is an r-eigenvector.
There is a maximal positive α for which \mathbf{w} is nonnegative. By maximality, some component of \mathbf{w} must be 0 .

However, any nonnegative r-eigenvector must in fact be positive by PFI.4. Hence $\mathbf{w}=\mathbf{0}$, so $\mathbf{u}=\frac{1}{\alpha} \mathbf{v}$.
Conclude that there cannot be another linearly independent r-eigenvector.

PFI.6: Positive Eigenvectors

Let $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ be the r-eigenvector with all positive coordinates from PFI.5, so $(\forall i) v_{i}>0$.

Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be another positive eigenvector, so $(\forall i) x_{i}>0$. Then \mathbf{x} is an r-eigenvector, since $\langle\mathbf{x}, \mathbf{v}\rangle>0$ implies that \mathbf{x} cannot be in the (orthogonal) eigenspace of any other eigenvalue of M.

Since the r-eigenspace is one-dimensional, $\mathbf{x}=\mathbf{c v}$. Thus $(\forall i) x_{i}=c v_{i}$. This is possible if and only if $c>0$.

Conclude that $\mathbf{x}=\mathbf{c v}$ is another positive r-eigenvector if and only if $c>0$.

This completes the proof of Perron-frobenius I.

Perron-Frobenius II

Theorem
If M is a nonnegative irreducible $n \times n$ matrix with $\rho(M)=r>0$, then all results for PFI hold with these changes:

PFII.4: there exists an eigenvector $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ of M, with eigenvalue r, such that $(\forall i) v_{i} \geq 0$,
PFII.6: every other eigenvector with nonnegative coordinates is a positive scalar multiple of \mathbf{v},

Proof.
Idea: since $N=\exp (M)-I$ is positive, apply PFI to N. But $M \mathbf{v}=\lambda \mathbf{v}$ implies $N \mathbf{v}=[\exp (\lambda)-1] \mathbf{v}$.

Markov Matrices

Row stochastic nonnegative M :

$$
(\forall i, j) M(i, j) \geq 0 ; \quad(\forall i) \sum_{j} M(i, j)=1
$$

Say that such an M is ergodic if

- M is irreducible: $\exp (M)-I$ is positive, and
- M is aperiodic: $(\forall i) \operatorname{period}(i)=1$, where

$$
\operatorname{period}(i) \stackrel{\text { def }}{=} \operatorname{gcd}\left\{k \geq 1: M^{k}(i, i) \neq 0\right\}
$$

Lemma
If M is ergodic, then $\lim _{k \rightarrow \infty} M^{k}$ exists and has constant rows \mathbf{v} satisfying $\mathbf{v} M=\mathbf{v}$.

Adjacency Matrices

Lemma

The adjacency matrix for a connected graph is irreducible.
Proof.
Form the transition matrix $T=D^{-1} A$, where A is the adjacency matrix and D is the degree matrix. This is row stochastic. Since the graph is connected, every pair of vertices i, j are connected by a path whose probability is $T^{k}(i, j)>0$, where k is the path length. Therefore,

$$
(\forall i, j)(\exists k) T^{k}(i, j)>0, \Longrightarrow(\forall i, j)(\exists k) A^{k}(i, j)>0 .
$$

This implies that $\exp (A)-I=\sum_{k \geq 1} \frac{1}{k!} A^{k}>0$.

Diffusion Matrices

Normalize a similarity matrix to be row stochastic.

