Perron-Frobenius Theorem

Mladen Victor WICKERHAUSER

Washington University in St. Louis, Missouri victor@wustl.edu http://www.math.wustl.edu/~victor

Dimensionality Reduction and Manifold Estimation PMF — University of Zagreb *Winter, 2022*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Positive and Nonnegative Square Matrices

These arise in graph theory, probability, and other contexts.

- ▶ Nonnegative $M = M(i, j) \ge 0$, for i, j = 1, ..., n.
- Positive if M(i,j) > 0, all i, j.
- ▶ Irreducible if *M* is nonnegative and $\exp(M) I$ is positive.

Lemma

M is irreducible if and only if $(\forall i, j)(\exists k)M^k(i, j) > 0$.

Proof.

Exercise.

Local Similarity

Given points $\mathbf{V} = {\mathbf{v}_1, \dots, \mathbf{v}_m} \subset \mathbf{R}^d$ (or, more generally, in some metric space).

Define a nonnegative, symmetric similarity function s on a subset of $\mathbf{V} \times \mathbf{V}$ of sufficiently similar pairs:

$$s(i,j) = s(j,i) = \begin{cases} s(\mathbf{v}_i, \mathbf{v}_j), & \|\mathbf{v}_i - \mathbf{v}_j\| < \epsilon, \\ 0, & \text{otherwise.} \end{cases}$$

Here $\epsilon > 0$ is a threshold (in the original metric) that defines "sufficiently similar."

Remark. Specifying *k* nearest neighbors by metric is an alternative criterion for sufficiently similar.

Global Similarity

Goal: Extend the similarity function to all of $\textbf{V}\times\textbf{V}.$

Method 1: Combine similarity over all paths of nonzero similarity.

- like the initial step in multidimensional scaling
- like finding shortest paths in weighted graphs
- but searching over many paths has high complexity

Method 2: Construct a diffusion process

- similarity is like an infinitestimal generator
- seek existence of long-time equilibrium solutions
- computation: find stationary distributions for Markov chains

Choose Method 2 for generality and speed.

Extend the similarity function to all of $\mathbf{V}\times\mathbf{V}$ by

exponentiating an infinitesimal generator, as in diffusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

iterating a transition matrix, as for a Markov chain

In the discrete case, these are both applications for the Perron-Frobenius theorem.

Graphs

Let G be a graph with vertices $\mathcal{V} = \{1, \dots, n\}$, edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.

Adjacency matrix:

$$egin{aligned} \mathcal{A}(i,j) = egin{cases} 1, & (i,j) \in \mathcal{E}, \ 0, & ext{otherwise.} \end{aligned}$$

Generalization: weighted graphs A(i, j) = w_{ij} ≥ 0 if (i, j) ∈ E.
Degree matrix:

$$D(i,j) = \begin{cases} \#\{k : (i,k) \in \mathcal{E}\}, & i = j, \\ 0, & \text{otherwise.} \end{cases}$$

This is a diagonal $n \times n$ matrix. For a weighted graph, use $D(i, i) = \sum_{j=1}^{n} w_{ij}$.

Transition Matrices

Suppose a graph has adjacency matrix A and degree matrix D. Transition matrix:

 $T = D^{-1}A$

Lemma

Row sums of T are always 1.

Proof.

Fix *i*, compute

$$\sum_{j=1}^{n} T(i,j) = D(i,i)^{-1} \sum_{j=1}^{n} A(i,j) = \frac{\sum_{j=1}^{n} w_{ij}}{\sum_{j=1}^{n} w_{ij}} = 1.$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Stochastic Matrices

Row stochastic *M*: Nonnegative with unit row sums:

$$(\forall i)\sum_{j=1}^n M(i,j) = 1.$$

Column stochastic: Nonnegative with unit column sums:

$$(\forall j)\sum_{i=1}^n M(i,j) = 1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Doubly stochastic: both row and column stochastic.

Probability Vectors

Define a row pdf to be a probability function written as a row vector on the finite space $\Omega = \{1, ..., n\}$:

$$\mathbf{p} = \begin{pmatrix} p_1 & \dots & p_n \end{pmatrix};$$
 $(\forall j) p_j \ge 0;$ $\sum_{j=1}^n p_j = 1.$

Similarly, column pdf \mathbf{q} is a column vector with nonnegative entries that sum to 1.

Lemma

For row stochastic M, if \mathbf{p} is a row pdf, then \mathbf{p} M is a row pdf. \Box

Also, column stochastic M maps column pdf **q** to column pdf M**q**. Both proofs are left as exercises.

Finite Stationary Markov Chains

Stochastic process on the *finite* state space $\Omega = \{1, \ldots, n\}$.

Map initial pdf \mathbf{p}_0 to pdfs $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_k, \dots$ by iterated application of stochastic M.

Stationary if the same M is used at each step.

Questions:

• does
$$\mathbf{p}_{\infty} \stackrel{\text{def}}{=} \lim_{k \to \infty} \mathbf{p}_k$$
 exist?

• can \mathbf{p}_{∞} be found by iteration? How fast will it converge?

• is
$$\mathbf{p}_{\infty}$$
 independent of \mathbf{p}_0 ?

If a limit \mathbf{p}_{∞} exists, it is called a *stationary distribution* for *M*.

Eigenvalue Problem

Stationary distributions $\mathbf{q} = \mathbf{p}_{\infty}$ (for the column stochastic case) solve the eigenvalue equation

$$\mathbf{q} = M\mathbf{q}$$

with column stochastic M having eigenvalue 1.

Since **q** is a (column) pdf, the solution is unique if and only if eigenvalue 1 has multiplicity 1. (Prove this as an exercise.)

Solution **q** is a limit of iterations of *M* if all other eigenvalues λ of *M* satisfy $|\lambda| < 1$.

Convergence $\|\mathbf{p}_{\infty} - \mathbf{p}_{k}\| = O(|\lambda|^{-k})$ as $k \to \infty$, where $|\lambda| < 1$ is largest-magnitude eigenvalue with $|\lambda| < 1$.

Spectral Radius and Matrix Norms

Spectral radius for $n \times n$ matrix M with eigenvalues $\{\lambda_i\} \subset \mathbf{C}$:

$$\rho(M) \stackrel{\text{def}}{=} \max\{|\lambda_1|,\ldots,|\lambda_n|\},\$$

Matrix norm for $n \times n$ matrices M, N and scalars c, satisfies:

$$\blacksquare \|M\| \ge 0, \text{ with } \|M\| = 0 \iff M = 0; \|cM\| = |c| \|M\|.$$

▶
$$||M + N|| \le ||M|| + ||N||$$
 and $||MN|| \le ||M|| ||N||$.

Theorem

Any two norms on a finite-dimensional vector space are equivalent: $\|\cdot\|_{\alpha} \sim \|\cdot\|_{\beta}$, meaning $(\exists K > 0)(\forall M) \|M\|_{\alpha} \leq K \|M\|_{\beta}$.

Proof.

See mfmm30-32.pdf on class website. Note that $K = K(\alpha, \beta, n)$ depends on the norms and on the dimension.

Example Matrix Norms

Fredholm Norm: $||M||_F \stackrel{\text{def}}{=} \left(\sum_{i,j} |M(i,j)|^2\right)^{1/2}$ (this is Euclidean norm on $\mathbf{C}^{n \times n}$, the matrix coefficients) One Norm: $||M||_1 \stackrel{\text{def}}{=} \max_i \sum_i |M(i, j)|$ Infinity Norm: $||M||_{\infty} \stackrel{\text{def}}{=} \max_{i} \sum_{i} |M(i,j)|$ Operator Norm: $\|M\|_{\text{op}} \stackrel{\text{def}}{=} \sup_{\mathbf{x} \neq 0} \frac{\|M\mathbf{x}\|}{\|\mathbf{x}\|} = \sup_{\|\mathbf{x}\|=1} \|M\mathbf{x}\|.$ Lemma $\|M\|_{\text{op}} = \rho(M^*M)^{1/2}$ is the largest singular value of M. Proof. $\|M\|_{\mathrm{op}}^2 = \sup_{\|\mathbf{x}\|=1} \|M\mathbf{x}\|^2 = \sup_{\|\mathbf{x}\|=1} \langle M^*M\mathbf{x}, \mathbf{x} \rangle = \rho(M^*M).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Induced Operator Norms

Let $\|\cdot\|_X$ be any norm on \mathbf{C}^n .

For $n \times n$ matrix M, define its induced operator norm by

$$\|M\|_{\mathbf{X},\mathrm{op}} \stackrel{\mathrm{def}}{=} \sup_{\mathbf{x}\neq\mathbf{0}} \frac{\|M\mathbf{x}\|_{\mathbf{X}}}{\|\mathbf{x}\|_{\mathbf{X}}}.$$

The resulting function $\|\cdot\|_{X,op}$ is a matrix norm.

Lemma Let $\|\cdot\|$ be any matrix norm. Then $\|I\| \ge 1$.

Proof.

 $I \neq 0$, so ||I|| > 0, and $||I||^2 \ge ||I^2|| = ||I||$, so $||I|| \ge 1$.

・ロト・西ト・西ト・西ト・日・ シック

Continuity of Matrix Norms

Fix *n* and let $\|\cdot\|$ be any matrix norm on $n \times n$ matrices.

Lemma

 $M \mapsto \|M\|$ is a continuous function on the coefficients of M.

Proof.

Since $\|M\| \le \|M - N\| + \|N\|$ and $\|N\| \le \|N - M\| + \|M\|$, it follows that

$$||M|| - ||N|| \le ||M - N||.$$

Since $\|\cdot\| \sim \|\cdot\|_F$, there is some $0 < K < \infty$ such that $\|M - N\| \le K \|M - N\|_F$. Conclude that

$$|||M|| - ||N||| \le ||M - N|| \le K ||M - N||_F$$

so that $\|\cdot\|$ is (Lipschitz) continuous with respect to Euclidean norm on $\mathbf{C}^{n \times n}$, the vector space of matrix coefficients.

Matrix Norm and Boundedness

Fix *n* and let $\|\cdot\|$ be any matrix norm on $n \times n$ matrices.

Lemma

There is some constant K > 0 such that, for all $n \times n$ matrices M and all vectors \mathbf{x} , $||M\mathbf{x}|| \le K ||M|| \, ||\mathbf{x}||$, where $||\mathbf{x}||$ is the Euclidean norm of $\mathbf{x} \in \mathbf{C}^n$.

Proof.

Define the matrix $X(i,j) = \mathbf{x}_i$ (each column is a copy of \mathbf{x}). Then $||X||_F = \sqrt{n} ||\mathbf{x}||$, and $||MX||_F = \sqrt{n} ||M\mathbf{x}||$. But there exists K > 0 such that $||M||_F \le K ||M||$, so

$$\|M\mathbf{x}\| = \frac{1}{\sqrt{n}} \|MX\|_F \le \frac{1}{\sqrt{n}} \|M\|_F \|X\|_F \le K \|M\| \|\mathbf{x}\|_F$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

by the equivalence of matrix norms $\|\cdot\| \sim \|\cdot\|_F$.

Norm versus Spectral Radius

Suppose that $\|\cdot\|$ is any matrix norm.

Lemma If $\rho(M) > 1$, then $\lim_{k \to \infty} \|M^k\| = \infty$.

Proof.

Since $\rho(M) > 1$, M has an eigenvalue λ with $|\lambda| > 1$. Let $\mathbf{v} \neq \mathbf{0}$ be an eigenvector for λ . Then as $k \to \infty$,

$$\|M^k\|_{\mathrm{op}} = \sup_{\mathbf{x}\neq \mathbf{0}} \frac{\|M^k \mathbf{x}\|}{\|\mathbf{x}\|} \geq \frac{\|M^k \mathbf{v}\|}{\|\mathbf{v}\|} = |\lambda|^k \to \infty.$$

But $\|\cdot\|_{\text{op}} \sim \|\cdot\|$, so $\|M^k\| \ge \frac{1}{K} \|M^k\|_{\text{op}}$ for some $0 < K < \infty$, so $\|M^k\| \to \infty$ as $k \to \infty$.

Special Case: Nilpotent Matrices

If *M* is nilpotent, namely $M^k = 0$ for some *k*, then $\rho(M) = 0$, because any eigenvalue λ with eigenvector $\mathbf{v} \neq \mathbf{0}$ satisfies

$$\mathbf{0} = 0\mathbf{v} = M^k \mathbf{v} = \lambda^k \mathbf{v}, \implies \lambda^k = 0, \implies \lambda = 0.$$

Conversely, if $\rho(M) = 0$, then *M* is nilpotent. This follows from the Cayley-Hamilton theorem below.

If *M* is diagonalizable, then $\rho(M)$ is its largest singular value, but this is false for more general *M*. Example: nonzero nilpotent

$$N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad N^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \qquad N^T N = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},$$

with eigenvalues 0,0 so $\rho(N) = 0$, but with singular values 0,1.

Jordan Canonical Form

Theorem

A square matrix M with eigenvalues $\{\lambda_i\}$ has a Jordan canonical form: $M = SJS^{-1}$ with invertible S and block diagonal

$$J = \begin{pmatrix} J_1 & 0 \\ & \ddots & \\ 0 & & J_m \end{pmatrix}, \quad \text{for } J_i = \begin{pmatrix} \lambda_i & 1 & 0 \\ & \lambda_i & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda_i \end{pmatrix} = \lambda_i I + N_i$$

- Block J_i corresponds to eigenvalue λ_i .
- The order n_i of J_i (and of N_i) is at most the multiplicity of λ_i .

A D N A 目 N A E N A E N A B N A C N

- N_i is nilpotent, with $N_i^k = 0$ for all $k \ge n_i$.

Corollary: $M^k = (SJS^{-1})^k = SJ^kS^{-1}$.

Cayley-Hamilton Theorem

Theorem

If χ is the characteristic polynomial of matrix M, then $\chi(M) = 0$.

Proof.

Let $M = SJS^{-1}$ be the Jordan canonical form of M. Then

$$\chi(M) = S\chi(J)S^{-1} = S\begin{pmatrix} \chi(J_1) & 0 \\ & \ddots & \\ 0 & & \chi(J_m) \end{pmatrix},$$

where $J_i = \lambda_i I + N_i$ is a Jordan block. Let n_i be its order, so nilpotent $N_i^{n_i} = 0$. Now write $\chi(z) = \prod_j (z - \lambda_j)^{n_j}$ to see

$$\chi(J_i) = (\lambda_i I + N_i - \lambda_i I)^{n_i} \prod_{j \neq i} (J_i - \lambda_j I)^{n_j} = N_i^{n_i} \prod_{i \neq j} (J_i - \lambda_j I)^{n_j} = 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclude that $\chi(J) = 0$, so therefore $\chi(M) = 0$.

Powers of Jordan Blocks

Lemma

Let $J = \lambda I + N$ be an $m \times m$ Jordan block for eigenvalue λ . Then $\lim_{k\to\infty} J^k = 0$ if and only if $|\lambda| < 1$.

Proof.

Obviously true for m = 1, so suppose m > 1 with nilpotent $N \neq 0$. Since $N^m = 0$, expand $J^k = (\lambda I + N)^k$, for $k \ge m - 1$, as

$$J^{k} = \lambda^{k} I + \binom{k}{1} \lambda^{k-1} N + \dots + \binom{k}{m-1} \lambda^{k+1-m} N^{m-1}$$

If $|\lambda| < 1$, then $J^k = O(k^{m-1}|\lambda|^{k+1-m}) \to 0$ as $k \to \infty$.

If $|\lambda| \ge 1$, then $J^k N^{m-1} = \lambda^k N^{m-1}$ does not converge to 0 as $k \to \infty$, and since N^{m-1} is constant, neither does J^k .

Powers of Square Matrices

Corollary

Let *M* be a square matrix with spectral radius $\rho(M)$. Then $\lim_{k\to\infty} M^k = 0$ if and only if $\rho(M) < 1$.

Proof.

Let $M = SJS^{-1}$ be the Jordan canonical decomposition of M. Then $M^k = SJ^kS^{-1}$ for all k = 1, 2, ..., and since S is nonsingular, $\lim_{k\to\infty} M^k = 0$ if and only if $\lim_{k\to\infty} J^k = 0$. If $\rho(M) < 1$, then $\lim_{k\to\infty} J^k = 0$, so $\lim_{k\to\infty} M^k = 0$. But if $\rho(M) \ge 1$, then there exists some eigenvalue λ of M with $|\lambda| \ge 1$, so $\lim_{k\to\infty} J^k \ne 0$, so $\lim_{k\to\infty} M^k \ne 0$.

Note: Every matrix norm is a continuous function of the matrix coefficients, so $\lim_{k\to\infty} ||M^k|| = 0$ if and only if $\rho(M) < 1$.

Zero Spectral Radius Implies Nilpotent

Corollary

Let M be an $n \times n$ matrix with spectral radius $\rho(M) = 0$. Then there exists $1 \le k \le n$ such that $M^k = 0$.

Proof.

Let $M = SJS^{-1}$ be the Jordan canonical decomposition of M. Since $\rho(M) = 0$, all eigenvalues of M must be zero, so every Jordan block $J_i = N_i$ is nilpotent with order $n_i \le n$ equal to the order of block J_i .

Let $k = \max_i n_i$. Then $1 \le k \le n$, and $(\forall i) J_i^k = 0$. Thus $J^k = 0$, so $M^k = SJ^kS^{-1} = 0$.

Alternate proof: Every eigenvalue is zero, so $\chi(z) = z^n$, so by the Cayley-Hamilton theorem, $\chi(M) = M^n = 0$.

Gel'fand's Formula

Lemma

For any $n \times n$ matrix M and norm $\|\cdot\|$, $\rho(M) = \lim_{k\to\infty} \|M^k\|^{1/k}$.

Proof.

If $\rho(M) = 0$, then $M^n = 0$ by the Cayley-Hamilton Theorem. Hence $M^k = 0$ for all $k \ge n$, so $\lim_{k\to\infty} ||M^k||^{1/k} = 0 = \rho(M)$. Else $\rho(M) > 0$, so let $0 < \epsilon < \rho(M)$ be given and put

$$M_- \stackrel{\mathrm{def}}{=} rac{1}{
ho(\mathcal{M})-\epsilon} M, \qquad M_+ \stackrel{\mathrm{def}}{=} rac{1}{
ho(\mathcal{M})+\epsilon} M.$$

Then $0 < \rho(M_+) < 1 < \rho(M_-)$, so $||M_+^k|| \to 0$ while $||M_-^k|| \to \infty$ as $k \to \infty$. Hence for all sufficiently large k,

$$\frac{\|M^k\|}{(\rho(M)+\epsilon)^k} = \|M^k_+\| < 1 < \|M^k_-\| = \frac{\|M^k\|}{(\rho(M)-\epsilon)^k},$$

so $\rho(M) - \epsilon < \|M^k\|^{1/k} < \rho(M) + \epsilon.$

Fixed Point Existence

Theorem (Brouwer)

If $f : X \to X$ is a continuous endomorphism on compact convex $X \subset \mathbf{C}^n$, then f has a fixed point: $(\exists x \in X) f(x) = x$.

Application: for invertible $n \times n$ matrix M with $\|M\|_{\text{op}} \leq 1$, the map

$$\mathbf{x}\mapsto M\mathbf{x}$$

is defined and continuous from the closed unit ball in \mathbf{C}^n into itself, and thus has a fixed point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Problem: avoid the trivial fixed point $M\mathbf{0} = \mathbf{0}$.

Power Method

Lemma

If *M* has a maximal eigenvalue $\lambda = r$, with $|\lambda| < r$ for all its other eigenvalues, then the iteration $\mathbf{x}_{k+1} = \frac{1}{r}M\mathbf{x}_k$ starting from almost any \mathbf{x}_0 (that is, any \mathbf{x}_0 with a nonzero projection into the *r*-eigenspace) will converge to an *r*-eigenvector.

Proof.

Write $\mathbf{x}_0 = \mathbf{v} \oplus \mathbf{u}$ with $\mathbf{v} \neq \mathbf{0}$ in *r*-eigenspace X_r and $\mathbf{u} \in X_r^{\perp}$. Then $(\frac{1}{r}M)^k \mathbf{v} = \mathbf{v}$ while $(\frac{1}{r}M)^k \mathbf{u} \to \mathbf{0}$ as $k \to \infty$.

Remark. The same holds for iteration with renormalization:

$$\mathbf{x}_{k+1} = \frac{1}{\|M\mathbf{x}_k\|} M\mathbf{x}_k, \qquad k = 0, 1, 2, \dots$$

For almost every \mathbf{x}_0 , $\lim_{k\to\infty} \mathbf{x}_k$ is a unit *r*-eigenvector.

Perron-Frobenius I

Theorem

For any positive $n \times n$ matrix M with spectral radius $r = \rho(M)$:

- 1. $0 < \min_i \sum_j M(i,j) \le r \le \max_i \sum_j M(i,j),$
- 2. r is an eigenvalue for M,
- 3. every other eigenvalue λ of M satisfies $|\lambda| < r$,
- 4. there exists a positive r-eigenvector \mathbf{v} of M, namely $\mathbf{v} = (v_1, \dots, v_n)$ with $(\forall i)v_i > 0$,
- 5. eigenvalue r has multiplicity 1, and
- every other eigenvector with all positive coordinates is a positive scalar multiple of v.

PFI.1: Lower Bound for Spectral Radius

If M is positive, then M^k is positive for all k > 0, so

$$\mu_k \stackrel{\text{def}}{=} \min_i \sum_j M^k(i,j) > 0, \qquad k = 1, 2, \dots$$

Let $\boldsymbol{1}=(1,\ldots,1)$ and compute

$$\|\boldsymbol{M}^{k}\|_{\mathrm{op}} \geq \frac{\|\boldsymbol{M}^{k}\boldsymbol{1}\|}{\|\boldsymbol{1}\|} = \frac{1}{\sqrt{n}} \sqrt{\sum_{i} \left[\sum_{j} \boldsymbol{M}^{k}(i,j)\right]^{2}} \geq \mu_{k}$$

But $\mu_{k+1} \ge \mu_1 \mu_k$ (Exercise!), so $\mu_k \ge \mu_1^k$. Now apply Gel'fand:

$$\rho(M) = \lim_{k \to \infty} \|M^k\|_{\mathrm{op}}^{1/k} \ge \lim_{k \to \infty} (\mu_k)^{1/k} \ge \lim_{k \to \infty} (\mu_1^k)^{1/k} \ge \mu_1,$$

which means that $\rho(M) \ge \min_i \sum_j M(i,j) > 0$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

PFI.1: Upper Bound for Spectral Radius

For positive M, put

$$\gamma_k \stackrel{\mathrm{def}}{=} \max_i \sum_j M^k(i,j) = \|M^k\|_{\infty}.$$

By the submultiplicativity of the matrix norm $\|\cdot\|_\infty,$

$$\gamma_{k+1} = \|\boldsymbol{M}^{k+1}\|_{\infty} \leq \|\boldsymbol{M}\|_{\infty} \|\boldsymbol{M}^{k}\|_{\infty} = \gamma_{1}\gamma_{k},$$

so $\gamma_k \leq \gamma_1^k$ for all k. Apply the Gel'fand formula with this norm,

$$\rho(M) = \lim_{k \to \infty} \|M^k\|_{\infty}^{1/k} \le \lim_{k \to \infty} (\gamma_k)^{1/k} \le \lim_{k \to \infty} (\gamma_1^k)^{1/k} = \gamma_1$$

$$\mathsf{Conclude that} \; \left| \; \rho(\mathsf{\textit{M}}) \leq \max_{i} \sum_{j} \mathsf{\textit{M}}(i,j) \; \right| \; .$$

Gershgorin's Theorem

The bounds on $\rho(M)$ are a special case of:

Theorem

Suppose *M* is an $n \times n$ matrix over **C**. For i = 1, ..., n, define the Gershgorin disc $G_i \subset \mathbf{C}$ by

$$G_i \stackrel{\mathrm{def}}{=} \Big\{ z \in \mathbf{C} : |z - M(i,i)| \leq \sum_{j \neq i} |M(i,j)| \Big\}.$$

Then every eigenvalue of M lies in $\bigcup_i G_i$.

Proof.

This relatively simple proof is left as an exercise.

Thus, the largest eigenvalue $z = \rho(M)$ of positive M must satisfy $z \le M(i, i) + \sum_{j \ne i} M(i, j)$ for some i, so $z \le \max_i \sum_j M(i, j)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof of PFI.2 and PFI.3

Assume that $\rho(M) = 1$, else use $M/\rho(M)$. Thus for eigenvalues λ :

 $(orall \lambda) |\lambda| \leq 1$ $(\exists \lambda) |\lambda| = 1.$

Suppose $|\lambda| = 1$ but $\lambda \neq 1$. Then $(\exists m \in \mathbf{Z}^+) \operatorname{Re} \lambda^m < 0$.

Let $\epsilon = \frac{1}{2} \min_j M^m(j, j) > 0$. Then $T \stackrel{\text{def}}{=} M^m - \epsilon I$ is a positive matrix, with an eigenvalue $\lambda^m - \epsilon$, so $\rho(T) \ge |\lambda^m - \epsilon| > 1$. Now

$$(\forall i,j) \ 0 < T(i,j) \le M^m(i,j) \implies (\forall i,j,k) \ 0 < T^k(i,j) \le M^{mk}(i,j).$$

Thus $(\forall k) || T^k ||_F \leq || M^{mk} ||_F$. Apply Gel'fand with $|| \cdot ||_F$ to get

$$\rho(T) \le \rho(M^m) = \rho(M)^m = 1.$$

Contradiction! so $\lambda = 1$ is the unique eigenvalue with $|\lambda| = 1$.

PFI.4: Positive Eigenvector

Some positive \mathbf{x}_0 near $\mathbf{1}$ will have a nonzero component in the *r*-eigenspace. The power method converges from that \mathbf{x}_0 :

$$\mathbf{x}_{k+1} = rac{1}{\|M\mathbf{x}_k\|} M\mathbf{x}_k, \qquad k = 0, 1, 2, \dots$$

For all k, \mathbf{x}_k has all positive coordinates, so the *r*-eigenvector $\mathbf{v} = \lim_{k \to \infty} \mathbf{x}_k$ has nonnegative coordinates v_1, \ldots, v_n .

But if $v_i = 0$ for some *i*, then $M\mathbf{v} = r\mathbf{v}$ implies

$$0 = v_i = \frac{1}{r} \sum_{j=1}^n M(i,j)v_j, \implies (\forall j)v_j = 0,$$

since $(\forall j)M(i,j) > 0$. This is a contradiction since $\|\mathbf{v}\| = r > 0$ by construction. Conclude that \mathbf{v} is a positive eigenvector.

PFI.5: Multiplicity One

Let \mathbf{v} be a positive *r*-eigenvector.

Suppose that **u** is another *r*-eigenvector. Without loss, some component of **u** is positive, else use $-\mathbf{u}$.

For $\alpha > 0$, let $\mathbf{w} \stackrel{\text{def}}{=} \mathbf{v} - \alpha \mathbf{u}$. Any $\mathbf{w} \neq \mathbf{0}$ is an *r*-eigenvector.

There is a maximal positive α for which **w** is nonnegative. By maximality, some component of **w** must be 0.

However, any nonnegative *r*-eigenvector must in fact be positive by PFI.4. Hence $\mathbf{w} = \mathbf{0}$, so $\mathbf{u} = \frac{1}{\alpha} \mathbf{v}$.

Conclude that there cannot be another linearly independent *r*-eigenvector.

PFI.6: Positive Eigenvectors

Let $\mathbf{v} = (v_1, \dots, v_n)$ be the *r*-eigenvector with all positive coordinates from PFI.5, so $(\forall i)v_i > 0$.

Let $\mathbf{x} = (x_1, \dots, x_n)$ be another positive eigenvector, so $(\forall i)x_i > 0$. Then \mathbf{x} is an *r*-eigenvector, since $\langle \mathbf{x}, \mathbf{v} \rangle > 0$ implies that \mathbf{x} cannot be in the (orthogonal) eigenspace of any other eigenvalue of M.

Since the *r*-eigenspace is one-dimensional, $\mathbf{x} = \mathbf{c}\mathbf{v}$. Thus $(\forall i) x_i = cv_i$. This is possible if and only if c > 0.

Conclude that $\mathbf{x} = c\mathbf{v}$ is another positive *r*-eigenvector if and only if c > 0.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This completes the proof of Perron-frobenius I.

Perron-Frobenius II

Theorem

If M is a nonnegative irreducible $n \times n$ matrix with $\rho(M) = r > 0$, then all results for PFI hold with these changes:

PFII.4: there exists an eigenvector $\mathbf{v} = (v_1, \dots, v_n)$ of M, with eigenvalue r, such that $(\forall i)v_i \ge 0$,

PFII.6: every other eigenvector with nonnegative coordinates is a positive scalar multiple of \mathbf{v} ,

A D N A 目 N A E N A E N A B N A C N

Proof.

Idea: since $N = \exp(M) - I$ is positive, apply PFI to N. But $M\mathbf{v} = \lambda\mathbf{v}$ implies $N\mathbf{v} = [\exp(\lambda) - 1]\mathbf{v}$.

Markov Matrices

Row stochastic nonnegative *M*:

$$(\forall i,j) M(i,j) \ge 0;$$
 $(\forall i) \sum_{j} M(i,j) = 1.$

Say that such an *M* is *ergodic* if

• *M* is aperiodic: $(\forall i)$ period(i) = 1, where

$$\operatorname{period}(i) \stackrel{\text{def}}{=} \operatorname{gcd}\{k \ge 1 : M^k(i,i) \neq 0\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lemma

If *M* is ergodic, then $\lim_{k\to\infty} M^k$ exists and has constant rows **v** satisfying $\mathbf{v}M = \mathbf{v}$.

Adjacency Matrices

Lemma

The adjacency matrix for a connected graph is irreducible.

Proof.

Form the transition matrix $T = D^{-1}A$, where A is the adjacency matrix and D is the degree matrix. This is row stochastic. Since the graph is connected, every pair of vertices i, j are connected by a path whose probability is $T^k(i,j) > 0$, where k is the path length. Therefore,

$$(\forall i,j)(\exists k)T^k(i,j) > 0, \implies (\forall i,j)(\exists k)A^k(i,j) > 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This implies that $\exp(A) - I = \sum_{k \ge 1} \frac{1}{k!} A^k > 0$.

Diffusion Matrices

Normalize a similarity matrix to be row stochastic.

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 9000</p>