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Positive and Nonnegative Square Matrices

These arise in graph theory, probability, and other contexts.

I Nonnegative M = M(i , j) ≥ 0, for i , j = 1, . . . , n.
I Positive if M(i , j) > 0, all i , j .
I Irreducible if M is nonnegative and exp(M)− I is positive.

Lemma
M is irreducible if and only if (∀i , j)(∃k)Mk(i , j) > 0.

Proof.
Exercise.



Local Similarity

Given points V = {v1, . . . , vm} ⊂ Rd (or, more generally, in some
metric space).

Define a nonnegative, symmetric similarity function s on a subset
of V× V of sufficiently similar pairs:

s(i , j) = s(j , i) =
{

s(vi , vj), ‖vi − vj‖ < ε,

0, otherwise.

Here ε > 0 is a threshold (in the original metric) that defines
“sufficiently similar.”

Remark. Specifying k nearest neighbors by metric is an
alternative criterion for sufficiently similar.



Global Similarity

Goal: Extend the similarity function to all of V× V.

Method 1: Combine similarity over all paths of nonzero similarity.

I like the initial step in multidimensional scaling
I like finding shortest paths in weighted graphs
I but searching over many paths has high complexity

Method 2: Construct a diffusion process

I similarity is like an infinitestimal generator
I seek existence of long-time equilibrium solutions
I computation: find stationary distributions for Markov chains



Diffusion Maps

Choose Method 2 for generality and speed.

Extend the similarity function to all of V× V by

I exponentiating an infinitesimal generator, as in diffusion
I iterating a transition matrix, as for a Markov chain

In the discrete case, these are both applications for the
Perron-Frobenius theorem.



Graphs

Let G be a graph with vertices V = {1, . . . , n}, edges E ⊂ V × V.

I Adjacency matrix:

A(i , j) =
{

1, (i , j) ∈ E ,
0, otherwise.

Generalization: weighted graphs A(i , j) = wij ≥ 0 if (i , j) ∈ E .
I Degree matrix:

D(i , j) =
{

#{k : (i , k) ∈ E}, i = j ,
0, otherwise.

This is a diagonal n × n matrix.
For a weighted graph, use D(i , i) =

∑n
j=1 wij .



Transition Matrices

Suppose a graph has adjacency matrix A and degree matrix D.

Transition matrix:
T = D−1A

Lemma
Row sums of T are always 1.

Proof.
Fix i , compute

n∑
j=1

T (i , j) = D(i , i)−1
n∑

j=1
A(i , j) =

∑n
j=1 wij∑n
j=1 wij

= 1.



Stochastic Matrices

Row stochastic M: Nonnegative with unit row sums:

(∀i)
n∑

j=1
M(i , j) = 1.

Column stochastic: Nonnegative with unit column sums:

(∀j)
n∑

i=1
M(i , j) = 1.

Doubly stochastic: both row and column stochastic.



Probability Vectors

Define a row pdf to be a probability function written as a row
vector on the finite space Ω = {1, . . . , n}:

p =
(

p1 . . . pn
)

; (∀j)pj ≥ 0;
n∑

j=1
pj = 1.

Similarly, column pdf q is a column vector with nonnegative entries
that sum to 1.

Lemma
For row stochastic M, if p is a row pdf, then pM is a row pdf.

Also, column stochastic M maps column pdf q to column pdf Mq.
Both proofs are left as exercises.



Finite Stationary Markov Chains

Stochastic process on the finite state space Ω = {1, . . . , n}.

Map initial pdf p0 to pdfs p1,p2, . . . ,pk , . . . by iterated
application of stochastic M.

Stationary if the same M is used at each step.

Questions:

I does p∞
def= limk→∞ pk exist?

I can p∞ be found by iteration? How fast will it converge?
I is p∞ independent of p0?

If a limit p∞ exists, it is called a stationary distribution for M.



Eigenvalue Problem

Stationary distributions q = p∞ (for the column stochastic case)
solve the eigenvalue equation

q = Mq

with column stochastic M having eigenvalue 1.

Since q is a (column) pdf, the solution is unique if and only if
eigenvalue 1 has multiplicity 1. (Prove this as an exercise.)

Solution q is a limit of iterations of M if all other eigenvalues λ of
M satisfy |λ| < 1.

Convergence ‖p∞ − pk‖ = O(|λ|−k) as k →∞, where |λ| < 1 is
largest-magnitude eigenvalue with |λ| < 1.



Spectral Radius and Matrix Norms

Spectral radius for n × n matrix M with eigenvalues {λi} ⊂ C:

ρ(M) def= max{|λ1|, . . . , |λn|},

Matrix norm for n × n matrices M,N and scalars c, satisfies:

I ‖M‖ ≥ 0, with ‖M‖ = 0 ⇐⇒ M = 0; ‖cM‖ = |c| ‖M‖.
I ‖M + N‖ ≤ ‖M‖+ ‖N‖ and ‖MN‖ ≤ ‖M‖ ‖N‖.

Theorem
Any two norms on a finite-dimensional vector space are equivalent:
‖ · ‖α ∼ ‖ · ‖β, meaning (∃K > 0)(∀M) ‖M‖α ≤ K‖M‖β.

Proof.
See mfmm30-32.pdf on class website. Note that K = K (α, β, n)
depends on the norms and on the dimension.



Example Matrix Norms

Fredholm Norm: ‖M‖F
def=

(∑
i ,j |M(i , j)|2

)1/2
(this is Euclidean

norm on Cn×n, the matrix coefficients)

One Norm: ‖M‖1
def= maxj

∑
i |M(i , j)|

Infinity Norm: ‖M‖∞
def= maxi

∑
j |M(i , j)|

Operator Norm: ‖M‖op
def= sup

x 6=0

‖Mx‖
‖x‖ = sup

‖x‖=1
‖Mx‖.

Lemma
‖M‖op = ρ(M∗M)1/2 is the largest singular value of M.

Proof.
‖M‖2op = sup

‖x‖=1
‖Mx‖2 = sup

‖x‖=1
〈M∗Mx, x〉 = ρ(M∗M).



Induced Operator Norms

Let ‖ · ‖X be any norm on Cn.

For n × n matrix M, define its induced operator norm by

‖M‖X,op
def= sup

x 6=0

‖Mx‖X
‖x‖X

.

The resulting function ‖ · ‖X,op is a matrix norm.

Lemma
Let ‖ · ‖ be any matrix norm. Then ‖I‖ ≥ 1.

Proof.
I 6= 0, so ‖I‖ > 0, and ‖I‖2 ≥ ‖I2‖ = ‖I‖, so ‖I‖ ≥ 1.



Continuity of Matrix Norms

Fix n and let ‖ · ‖ be any matrix norm on n × n matrices.

Lemma
M 7→ ‖M‖ is a continuous function on the coefficients of M.

Proof.
Since ‖M‖ ≤ ‖M − N‖+ ‖N‖ and ‖N‖ ≤ ‖N −M‖+ ‖M‖, it
follows that ∣∣∣‖M‖ − ‖N‖∣∣∣ ≤ ‖M − N‖.

Since ‖ · ‖ ∼ ‖ · ‖F , there is some 0 < K <∞ such that
‖M − N‖ ≤ K‖M − N‖F . Conclude that∣∣∣‖M‖ − ‖N‖∣∣∣ ≤ ‖M − N‖ ≤ K‖M − N‖F

so that ‖ · ‖ is (Lipschitz) continuous with respect to Euclidean
norm on Cn×n, the vector space of matrix coefficients.



Matrix Norm and Boundedness

Fix n and let ‖ · ‖ be any matrix norm on n × n matrices.

Lemma
There is some constant K > 0 such that, for all n × n matrices M
and all vectors x, ‖Mx‖ ≤ K‖M‖ ‖x‖, where ‖x‖ is the Euclidean
norm of x ∈ Cn.

Proof.
Define the matrix X (i , j) = xi (each column is a copy of x).
Then ‖X‖F =

√
n ‖x‖, and ‖MX‖F =

√
n ‖Mx‖.

But there exists K > 0 such that ‖M‖F ≤ K‖M‖, so

‖Mx‖ = 1√
n‖MX‖F ≤

1√
n‖M‖F‖X‖F ≤ K‖M‖ ‖x‖,

by the equivalence of matrix norms ‖ · ‖ ∼ ‖ · ‖F .



Norm versus Spectral Radius

Suppose that ‖ · ‖ is any matrix norm.

Lemma
If ρ(M) > 1, then limk→∞ ‖Mk‖ =∞.

Proof.
Since ρ(M) > 1, M has an eigenvalue λ with |λ| > 1. Let v 6= 0
be an eigenvector for λ. Then as k →∞,

‖Mk‖op = sup
x 6=0

‖Mkx‖
‖x‖ ≥ ‖M

kv‖
‖v‖ = |λ|k →∞.

But ‖ · ‖op ∼ ‖ · ‖, so ‖Mk‖ ≥ 1
K ‖M

k‖op for some 0 < K <∞, so
‖Mk‖ → ∞ as k →∞.



Special Case: Nilpotent Matrices

If M is nilpotent, namely Mk = 0 for some k, then ρ(M) = 0,
because any eigenvalue λ with eigenvector v 6= 0 satisfies

0 = 0v = Mkv = λkv, =⇒ λk = 0, =⇒ λ = 0.

Conversely, if ρ(M) = 0, then M is nilpotent. This follows from
the Cayley-Hamilton theorem below.

If M is diagonalizable, then ρ(M) is its largest singular value, but
this is false for more general M. Example: nonzero nilpotent

N =
(

0 1
0 0

)
, N2 =

(
0 0
0 0

)
, NT N =

(
0 0
0 1

)
,

with eigenvalues 0, 0 so ρ(N) = 0, but with singular values 0, 1.



Jordan Canonical Form

Theorem
A square matrix M with eigenvalues {λi} has a Jordan canonical
form: M = SJS−1 with invertible S and block diagonal

J =

J1 0
. . .

0 Jm

 , for Ji =


λi 1 0

λi
. . .
. . . 1

0 λi

 = λi I + Ni

- Block Ji corresponds to eigenvalue λi .
- The order ni of Ji (and of Ni ) is at most the multiplicity of λi .
- Ni is nilpotent, with Nk

i = 0 for all k ≥ ni .

Corollary: Mk = (SJS−1)k = SJkS−1.



Cayley-Hamilton Theorem
Theorem
If χ is the characteristic polynomial of matrix M, then χ(M) = 0.

Proof.
Let M = SJS−1 be the Jordan canonical form of M. Then

χ(M) = Sχ(J)S−1 = S

χ(J1) 0
. . .

0 χ(Jm)

 ,
where Ji = λi I + Ni is a Jordan block. Let ni be its order, so
nilpotent Nni

i = 0. Now write χ(z) =
∏

j(z − λj)nj to see

χ(Ji ) = (λi I + Ni − λi I)ni
∏
j 6=i

(Ji − λj I)nj = Nni
i
∏
i 6=j

(Ji − λj I)nj = 0.

Conclude that χ(J) = 0, so therefore χ(M) = 0.



Powers of Jordan Blocks

Lemma
Let J = λI + N be an m ×m Jordan block for eigenvalue λ. Then
limk→∞ Jk = 0 if and only if |λ| < 1.

Proof.
Obviously true for m = 1, so suppose m > 1 with nilpotent N 6= 0.

Since Nm = 0, expand Jk = (λI + N)k , for k ≥ m − 1, as

Jk = λk I +
(

k
1

)
λk−1N + · · ·+

(
k

m − 1

)
λk+1−mNm−1.

If |λ| < 1, then Jk = O(km−1|λ|k+1−m)→ 0 as k →∞.

If |λ| ≥ 1, then JkNm−1 = λkNm−1 does not converge to 0 as
k →∞, and since Nm−1 is constant, neither does Jk .



Powers of Square Matrices

Corollary
Let M be a square matrix with spectral radius ρ(M). Then
limk→∞Mk = 0 if and only if ρ(M) < 1.

Proof.
Let M = SJS−1 be the Jordan canonical decomposition of M.
Then Mk = SJkS−1 for all k = 1, 2, . . . , and since S is
nonsingular, limk→∞Mk = 0 if and only if limk→∞ Jk = 0.

If ρ(M) < 1, then limk→∞ Jk = 0, so limk→∞Mk = 0.

But if ρ(M) ≥ 1, then there exists some eigenvalue λ of M with
|λ| ≥ 1, so limk→∞ Jk 6= 0, so limk→∞Mk 6= 0.

Note: Every matrix norm is a continuous function of the matrix
coefficients, so limk→∞ ‖Mk‖ = 0 if and only if ρ(M) < 1.



Zero Spectral Radius Implies Nilpotent

Corollary
Let M be an n × n matrix with spectral radius ρ(M) = 0. Then
there exists 1 ≤ k ≤ n such that Mk = 0.

Proof.
Let M = SJS−1 be the Jordan canonical decomposition of M.
Since ρ(M) = 0, all eigenvalues of M must be zero, so every
Jordan block Ji = Ni is nilpotent with order ni ≤ n equal to the
order of block Ji .
Let k = maxi ni . Then 1 ≤ k ≤ n, and (∀i) Jk

i = 0.
Thus Jk = 0, so Mk = SJkS−1 = 0.

Alternate proof: Every eigenvalue is zero, so χ(z) = zn, so by the
Cayley-Hamilton theorem, χ(M) = Mn = 0.



Gel’fand’s Formula
Lemma
For any n × n matrix M and norm ‖ · ‖, ρ(M) = limk→∞ ‖Mk‖1/k .

Proof.
If ρ(M) = 0, then Mn = 0 by the Cayley-Hamilton Theorem.
Hence Mk = 0 for all k ≥ n, so limk→∞ ‖Mk‖1/k = 0 = ρ(M).
Else ρ(M) > 0, so let 0 < ε < ρ(M) be given and put

M−
def= 1

ρ(M)− εM, M+
def= 1

ρ(M) + ε
M.

Then 0 < ρ(M+) < 1 < ρ(M−), so ‖Mk
+‖ → 0 while ‖Mk

−‖ → ∞
as k →∞. Hence for all sufficiently large k,

‖Mk‖
(ρ(M) + ε)k = ‖Mk

+‖ < 1 < ‖Mk
−‖ = ‖Mk‖

(ρ(M)− ε)k ,

so ρ(M)− ε < ‖Mk‖1/k < ρ(M) + ε.



Fixed Point Existence

Theorem (Brouwer)
If f : X → X is a continuous endomorphism on compact convex
X ⊂ Cn, then f has a fixed point: (∃x ∈ X ) f (x) = x.

Application: for invertible n × n matrix M with ‖M‖op ≤ 1, the
map

x 7→ Mx

is defined and continuous from the closed unit ball in Cn into itself,
and thus has a fixed point.

Problem: avoid the trivial fixed point M0 = 0.



Power Method

Lemma
If M has a maximal eigenvalue λ = r , with |λ| < r for all its other
eigenvalues, then the iteration xk+1 = 1

r Mxk starting from almost
any x0 (that is, any x0 with a nonzero projection into the
r -eigenspace) will converge to an r-eigenvector.

Proof.
Write x0 = v⊕ u with v 6= 0 in r -eigenspace Xr and u ∈ X⊥r .
Then (1

r M)kv = v while (1
r M)ku→ 0 as k →∞.

Remark. The same holds for iteration with renormalization:

xk+1 = 1
‖Mxk‖

Mxk , k = 0, 1, 2, . . .

For almost every x0, limk→∞ xk is a unit r -eigenvector.



Perron-Frobenius I

Theorem
For any positive n × n matrix M with spectral radius r = ρ(M):

1. 0 < mini
∑

j
M(i , j) ≤ r ≤ max

i

∑
j

M(i , j),

2. r is an eigenvalue for M,
3. every other eigenvalue λ of M satisfies |λ| < r ,
4. there exists a positive r -eigenvector v of M, namely

v = (v1, . . . , vn) with (∀i)vi > 0,
5. eigenvalue r has multiplicity 1, and
6. every other eigenvector with all positive coordinates is a

positive scalar multiple of v.



PFI.1: Lower Bound for Spectral Radius
If M is positive, then Mk is positive for all k > 0, so

µk
def= min

i

∑
j

Mk(i , j) > 0, k = 1, 2, . . .

Let 1 = (1, . . . , 1) and compute

‖Mk‖op ≥
‖Mk1‖
‖1‖ = 1√

n

√√√√√∑
i

∑
j

Mk(i , j)

2

≥ µk

But µk+1 ≥ µ1µk (Exercise!), so µk ≥ µk
1 . Now apply Gel’fand:

ρ(M) = lim
k→∞

‖Mk‖1/k
op ≥ lim

k→∞
(µk)1/k ≥ lim

k→∞
(µk

1)1/k ≥ µ1,

which means that ρ(M) ≥ min
i

∑
j

M(i , j) > 0 .



PFI.1: Upper Bound for Spectral Radius

For positive M, put

γk
def= max

i

∑
j

Mk(i , j) = ‖Mk‖∞.

By the submultiplicativity of the matrix norm ‖ · ‖∞,

γk+1 = ‖Mk+1‖∞ ≤ ‖M‖∞‖Mk‖∞ = γ1γk ,

so γk ≤ γk
1 for all k. Apply the Gel’fand formula with this norm,

ρ(M) = lim
k→∞

‖Mk‖1/k
∞ ≤ lim

k→∞
(γk)1/k ≤ lim

k→∞
(γk

1 )1/k = γ1.

Conclude that ρ(M) ≤ max
i

∑
j

M(i , j) .



Gershgorin’s Theorem

The bounds on ρ(M) are a special case of:

Theorem
Suppose M is an n × n matrix over C. For i = 1, . . . , n, define the
Gershgorin disc Gi ⊂ C by

Gi
def=

{
z ∈ C : |z −M(i , i)| ≤

∑
j 6=i
|M(i , j)|

}
.

Then every eigenvalue of M lies in
⋃

i Gi .

Proof.
This relatively simple proof is left as an exercise.

Thus, the largest eigenvalue z = ρ(M) of positive M must satisfy
z ≤ M(i , i) +

∑
j 6=i M(i , j) for some i , so z ≤ maxi

∑
j M(i , j).



Proof of PFI.2 and PFI.3

Assume that ρ(M) = 1, else use M/ρ(M). Thus for eigenvalues λ:

(∀λ) |λ| ≤ 1 (∃λ) |λ| = 1.

Suppose |λ| = 1 but λ 6= 1. Then (∃m ∈ Z+)Reλm < 0.

Let ε = 1
2 minj Mm(j , j) > 0. Then T def= Mm − εI is a positive

matrix, with an eigenvalue λm − ε, so ρ(T ) ≥ |λm − ε| > 1. Now

(∀i , j) 0 < T (i , j) ≤ Mm(i , j) =⇒ (∀i , j , k) 0 < T k(i , j) ≤ Mmk(i , j).

Thus (∀k) ‖T k‖F ≤ ‖Mmk‖F . Apply Gel’fand with ‖ · ‖F to get

ρ(T ) ≤ ρ(Mm) = ρ(M)m = 1.

Contradiction! so λ = 1 is the unique eigenvalue with |λ| = 1.



PFI.4: Positive Eigenvector

Some positive x0 near 1 will have a nonzero component in the
r -eigenspace. The power method converges from that x0:

xk+1 = 1
‖Mxk‖

Mxk , k = 0, 1, 2, . . .

For all k, xk has all positive coordinates, so the r -eigenvector
v = limk→∞ xk has nonnegative coordinates v1, . . . , vn.

But if vi = 0 for some i , then Mv = rv implies

0 = vi = 1
r

n∑
j=1

M(i , j)vj , =⇒ (∀j)vj = 0,

since (∀j)M(i , j) > 0. This is a contradiction since ‖v‖ = r > 0 by
construction. Conclude that v is a positive eigenvector.



PFI.5: Multiplicity One

Let v be a positive r -eigenvector.

Suppose that u is another r -eigenvector. Without loss, some
component of u is positive, else use −u.

For α > 0, let w def= v− αu. Any w 6= 0 is an r -eigenvector.

There is a maximal positive α for which w is nonnegative. By
maximality, some component of w must be 0.

However, any nonnegative r -eigenvector must in fact be positive by
PFI.4. Hence w = 0, so u = 1

αv.

Conclude that there cannot be another linearly independent
r -eigenvector.



PFI.6: Positive Eigenvectors

Let v = (v1, . . . , vn) be the r -eigenvector with all positive
coordinates from PFI.5, so (∀i)vi > 0.

Let x = (x1, . . . , xn) be another positive eigenvector, so (∀i)xi > 0.
Then x is an r -eigenvector, since 〈x, v〉 > 0 implies that x cannot
be in the (orthogonal) eigenspace of any other eigenvalue of M.

Since the r -eigenspace is one-dimensional, x = cv. Thus
(∀i) xi = cvi . This is possible if and only if c > 0.

Conclude that x = cv is another positive r -eigenvector if and only
if c > 0.

This completes the proof of Perron-frobenius I.



Perron-Frobenius II

Theorem
If M is a nonnegative irreducible n × n matrix with ρ(M) = r > 0,
then all results for PFI hold with these changes:

PFII.4: there exists an eigenvector v = (v1, . . . , vn) of M, with
eigenvalue r , such that (∀i)vi ≥ 0 ,

PFII.6: every other eigenvector with nonnegative coordinates
is a positive scalar multiple of v,

Proof.
Idea: since N = exp(M)− I is positive, apply PFI to N. But
Mv = λv implies Nv = [exp(λ)− 1]v.



Markov Matrices

Row stochastic nonnegative M:

(∀i , j) M(i , j) ≥ 0; (∀i)
∑

j
M(i , j) = 1.

Say that such an M is ergodic if

I M is irreducible: exp(M)− I is positive, and
I M is aperiodic: (∀i) period(i) = 1, where

period(i) def= gcd{k ≥ 1 : Mk(i , i) 6= 0}.

Lemma
If M is ergodic, then limk→∞Mk exists and has constant rows v
satisfying vM = v.



Adjacency Matrices

Lemma
The adjacency matrix for a connected graph is irreducible.

Proof.
Form the transition matrix T = D−1A, where A is the adjacency
matrix and D is the degree matrix. This is row stochastic.
Since the graph is connected, every pair of vertices i , j are
connected by a path whose probability is T k(i , j) > 0, where k is
the path length. Therefore,

(∀i , j)(∃k)T k(i , j) > 0, =⇒ (∀i , j)(∃k)Ak(i , j) > 0.

This implies that exp(A)− I =
∑

k≥1
1
k!Ak > 0.



Diffusion Matrices

Normalize a similarity matrix to be row stochastic.


