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Positive and Nonnegative Square Matrices

These arise in graph theory, probability, and other contexts.
» Nonnegative M = M(i,j) >0, for i,j=1,...,n.
» Positive if M(i,j) >0, all i,j.
» Irreducible if M is nonnegative and exp(M) — [ is positive.

Lemma
M s irreducible if and only if (Vi, j)(3k)M*(i, ) > 0.

Proof.

Exercise.



Local Similarity

Given points V = {vy,...,vy} C R? (or, more generally, in some
metric space).

Define a nonnegative, symmetric similarity function s on a subset
of V x V of sufficiently similar pairs:

iy Vj)s i — Vil <E¢,
s(i,j):s(j,i):{s(v’ v v =il <e

0, otherwise.

Here € > 0 is a threshold (in the original metric) that defines
“sufficiently similar.”

Remark. Specifying k nearest neighbors by metric is an
alternative criterion for sufficiently similar.



Global Similarity

Goal: Extend the similarity function to all of V x V.
Method 1: Combine similarity over all paths of nonzero similarity.
> like the initial step in multidimensional scaling

» like finding shortest paths in weighted graphs

» but searching over many paths has high complexity
Method 2: Construct a diffusion process

» similarity is like an infinitestimal generator
> seek existence of long-time equilibrium solutions

» computation: find stationary distributions for Markov chains



Diffusion Maps

Choose Method 2 for generality and speed.

Extend the similarity function to all of V x V by

P> exponentiating an infinitesimal generator, as in diffusion

> iterating a transition matrix, as for a Markov chain

In the discrete case, these are both applications for the
Perron-Frobenius theorem.



Graphs

Let G be a graph with vertices V = {1,...,n}, edges € C V x V.

» Adjacency matrix:

1, (i,j) €€,
0, otherwise.

Generalization: weighted graphs A(i,j) = w; > 0if (i,j) € £.
» Degree matrix:

o #k:(i,k)e &}, i=],
p(ij) = | €8 .

0, otherwise.
This is a diagonal n x n matrix.

For a weighted graph, use D(i, i) = >7_; wy.



Transition Matrices

Suppose a graph has adjacency matrix A and degree matrix D.
Transition matrix:
T=D'A

Lemma
Row sums of T are always 1.

Proof.

Fix i/, compute

n Wl
E T(i,j)= D(i,i) 15 A(i,j) = nl =1
j=1 Z =1 W’J



Stochastic Matrices

Row stochastic M: Nonnegative with unit row sums:
n
(Vi)Y _M(i,j) =1.
j=1
Column stochastic: Nonnegative with unit column sums:
n
(%)) 2} M(i.j) = 1.
=

Doubly stochastic: both row and column stochastic.



Probability Vectors

Define a row pdf to be a probability function written as a row
vector on the finite space Q = {1,...,n}:

p:(Pl pn); (Vi)p >0, > p=1
j=1

Similarly, column pdf q is a column vector with nonnegative entries
that sum to 1.

Lemma
For row stochastic M, if p is a row pdf, then pM is a row pdf. [

Also, column stochastic M maps column pdf q to column pdf Mq.
Both proofs are left as exercises.



Finite Stationary Markov Chains

Stochastic process on the finite state space Q = {1,..., n}.

Map initial pdf po to pdfs p1,p2,...,Pk,... by iterated
application of stochastic M.

Stationary if the same M is used at each step.
Questions:
def . .
> does poo = limg_oo Pk exist?

P can po, be found by iteration? How fast will it converge?

P is pso independent of pg?

If a limit poo exists, it is called a stationary distribution for M.



Eigenvalue Problem

Stationary distributions q = po (for the column stochastic case)
solve the eigenvalue equation

q= Mq
with column stochastic M having eigenvalue 1.

Since q is a (column) pdf, the solution is unique if and only if
eigenvalue 1 has multiplicity 1. (Prove this as an exercise.)

Solution q is a limit of iterations of M if all other eigenvalues A\ of
M satisfy || < 1.

Convergence ||poo — Pk|| = O(|A|7%) as k — oo, where |\| < 1 is
largest-magnitude eigenvalue with || < 1.



Spectral Radius and Matrix Norms

Spectral radius for n x n matrix M with eigenvalues {)\;} C C:

def
p(M) = max{|)\1|, SRR) p‘"’}v
Matrix norm for n x n matrices M, N and scalars ¢, satisfies:

> [IM]| > 0, with [M]| =0 <> M =0; [|cM]| = c||M].
> [|M + || < [M] + [N]| and [|MN] < [ M] ||N]]

Theorem

Any two norms on a finite-dimensional vector space are equivalent:
|- lla ~ Il - lg, meaning (3K > 0)(YM) [[M||o < KI|M||s. O
Proof.

See mfmm30-32.pdf on class website. Note that K = K(«, 3, n)
depends on the norms and on the dimension. []



Example Matrix Norms

def .2 1/2 .. .
Fredholm Norm: |M||g = (Z,-J]M(/,J)| ) (this is Euclidean

norm on C"*" the matrix coefficients)

One Norm: ||M||1 def max; »>_; |M(i, )]

Infinity Norm: [|M|lec % max; =, |M(i, j)|
M

Operator Norm: ||M||op o sup [ Mx] = sup [[Mx]|.

20 X[ x=1
Lemma
|M|lop = p(M*M)/2 is the largest singular value of M.
Proof.
IMIR, = sup [Mx|2 = sup (M"Mx,x) = p(M"M). s

lIx[=1 lIx/[=1



Induced Operator Norms

Let || - ||x be any norm on C".

For n x n matrix M, define its induced operator norm by

def | Mx||x
x#0  |1X[|x

IM]

X,op —
The resulting function || - ||x,op is @ matrix norm.

Lemma
Let || - || be any matrix norm. Then ||I|| > 1.

Proof.
I1#0,s0 [ >0, and |[[]]> > [|/2]| = ||{]], so [[/]] > 1.



Continuity of Matrix Norms

Fix n and let || - || be any matrix norm on n x n matrices.

Lemma
M — ||[M|| is a continuous function on the coefficients of M.

Proof.
Since [|[M|[ < |[M — N|| + [[N]| and [|N[| < [N — M| + [[M]], it
follows that
[IMI = INJ| < 1M = N
Since || - || ~ || - ||, there is some 0 < K < oo such that

IM— N|| < K||[M — NJ||g. Conclude that
(M= INJI| < IM = NIl < KI[M = ||

so that || - || is (Lipschitz) continuous with respect to Euclidean
norm on C"*" the vector space of matrix coefficients. O



Matrix Norm and Boundedness

Fix n and let || - || be any matrix norm on n x n matrices.

Lemma

There is some constant K > 0 such that, for all n x n matrices M
and all vectors x, ||Mx|| < K||M|| ||x||, where ||x|| is the Euclidean
norm of x € C".

Proof.
Define the matrix X(/, ) = x; (each column is a copy of x).
Then [[X|lF = v/nllx[|, and [[MX|[F = v/ Mx]|.
But there exists K > 0 such that | M|/ < K||M]|, so

IMx]| =

IMX[lr < =Ml X][F < KIIMI[ ]I,

2
NG f

by the equivalence of matrix norms || - || ~ || - ||¢. O



Norm versus Spectral Radius

Suppose that || - || is any matrix norm.
Lemma

If p(M) > 1, then lim_,o || M¥|| = cc.
Proof.

Since p(M) > 1, M has an eigenvalue A with |A| > 1. Let v # 0
be an eigenvector for A\. Then as kK — oc,

M¥k MK
HMkHOp = sup || XH Z || VH _ |>\|k - 0.
x20 ]| vl
But || - [lop ~ || - ||, so | MK|| > %HI\/I"HOp for some 0 < K < o0, so

|MK|| — oo as k — 0. O



Special Case: Nilpotent Matrices

If M is nilpotent, namely M* = 0 for some k, then p(M) =0,
because any eigenvalue A with eigenvector v # 0 satisfies

0=0v=Mv=)Xv, — X\=0, = X=0.

Conversely, if p(M) =0, then M is nilpotent. This follows from
the Cayley-Hamilton theorem below.

If M is diagonalizable, then p(M) is its largest singular value, but
this is false for more general M. Example: nonzero nilpotent

(o1 » (00 7o (00

with eigenvalues 0,0 so p(N) = 0, but with singular values 0, 1.



Jordan Canonical Form

Theorem
A square matrix M with eigenvalues {\;} has a Jordan canonical
form: M = SJS~ with invertible S and block diagonal

- Block J; corresponds to eigenvalue ;.
- The order n; of J; (and of N;) is at most the multiplicity of \;.
- N; is nilpotent, with N,-k =0 for all k > n;. ]

Corollary: M* = (SJS™1)k = SJks—1, O



Cayley-Hamilton Theorem

Theorem
If x is the characteristic polynomial of matrix M, then x(M) = 0.

Proof.
Let M = SJS~! be the Jordan canonical form of M. Then

x(J1) 0
X(M)=Sx(/)st=5
0 X(Jm)
where J; = \;l + N; is a Jordan block. Let n; be its order, so

nilpotent N = 0. Now write x(z) = [[;(z — A;)" to see

X(47) = il + Nj = X" T =AD" = NPT (i = A1) = 0.
J#i i#j

Conclude that x(J) = 0, so therefore x(M) = 0. O



Powers of Jordan Blocks

Lemma

Let J = X+ N be an m x m Jordan block for eigenvalue A\. Then
limk_s00 JX = 0 if and only if |\| < 1.

Proof.

Obviously true for m = 1, so suppose m > 1 with nilpotent N # 0.
Since N™ = 0, expand JX = (Al + N)k, for k > m —1, as

k k
Jk = >\kl + <1>)\k1N 4.4 (m - 1) )\k+1mem—1.

If || < 1, then JX = O(k™ L A[FF1=m) — 0 as k — oo.

If [\] > 1, then JKN™=1 = \kKN™=1 does not converge to 0 as
k — oo, and since N™1 is constant, neither does J* . O



Powers of Square Matrices

Corollary

Let M be a square matrix with spectral radius p(M). Then
limg_y00 M¥ = 0 if and only if p(M) < 1.

Proof.

Let M = SJS™! be the Jordan canonical decomposition of M.
Then M* = SJkS=! for all k =1,2,..., and since S is
nonsingular, limg_,oc MX = 0 if and only if limy_e J¥ = 0.

If p(M) < 1, then limy_,oo JK =0, so limy_.oo MK = 0.

But if p(M) > 1, then there exists some eigenvalue A of M with
IA| > 1, so limy_yoo JK # 0, so limy_,oo MX £ 0. O

Note: Every matrix norm is a continuous function of the matrix
coefficients, so limk_,« || M¥|| = 0 if and only if p(M) < 1.



Zero Spectral Radius Implies Nilpotent

Corollary

Let M be an n x n matrix with spectral radius p(M) = 0. Then
there exists 1 < k < n such that M¥ = 0.

Proof.

Let M = SJS™! be the Jordan canonical decomposition of M.
Since p(M) = 0, all eigenvalues of M must be zero, so every
Jordan block J; = N; is nilpotent with order n; < n equal to the
order of block J;.

Let k = max; n;. Then 1 < k < n, and (Vi) JK =0.

Thus JX =0, so Mk = SJkS—1 = 0.

Alternate proof. Every eigenvalue is zero, so x(z) = z", so by the
Cayley-Hamilton theorem, x(M) = M" = 0. O



Gel'fand’'s Formula

Lemma
For any n x n matrix M and norm || -

Proof.
If p(M) =0, then M" = 0 by the Cayley-Hamilton Theorem.
Hence Mk = 0 for all k > n, so limy_,o | M¥||¥/* = 0 = p(M).

Else p(M) > 0, so let 0 < € < p(M) be given and put

, (M) = limy o0 || M¥|[V/K.

def 1 def 1
[V Ly VI VI S
p(M) — € T (M) +e

Then 0 < p(M4) <1 < p(M_), so |MK|| — 0 while |MX| — oo
as k — oo. Hence for all sufficiently large k,

Mk K lIM

s0 p(M) — e < ||MK||V/k < p(M) + e. O



Fixed Point Existence

Theorem (Brouwer)
If f : X — X is a continuous endomorphism on compact convex
X C C", then f has a fixed point: (Ix € X) f(x) = x. O

Application: for invertible n x n matrix M with ||M||, < 1, the
map
x — Mx

is defined and continuous from the closed unit ball in C” into itself,
and thus has a fixed point.

Problem: avoid the trivial fixed point M0 = 0.



Power Method

Lemma

If M has a maximal eigenvalue \ = r, with |\| < r for all its other
eigenvalues, then the iteration X1 = %Mxk starting from almost
any xq (that is, any xo with a nonzero projection into the
r-eigenspace) will converge to an r-eigenvector.

Proof.
Write xg = v & u with v # 0 in r-eigenspace X, and u € X:-.
Then (:M)*v = v while (1 M)*u — 0 as k — oco. O

Remark. The same holds for iteration with renormalization:

1
—M k=0,1,2,...
xk+1 ||M H xk? P B |

For almost every xq, limg_.o Xk is a unit r-eigenvector.



Perron-Frobenius |

Theorem
For any positive n x n matrix M with spectral radius r = p(M):

. . C N << .
1. 0 < min; ZJ: M(i,j) <r< mlaxzj: M(i,j),
2. r is an eigenvalue for M,

3. every other eigenvalue A of M satisfies |\| < r,

4. there exists a positive r-eigenvector v of M, namely
v=(v1,...,vn) with (Vi)v; >0,

5. eigenvalue r has multiplicity 1, and

6. every other eigenvector with all positive coordinates is a
positive scalar multiple of v.



PFI.1: Lower Bound for Spectral Radius

If M is positive, then Mk is positive for all k > 0, so
def . k(- - .
ik = mim;I\/l(/,J) > 0, k=1,2,...
Let 1 =(1,...,1) and compute

2
MK 1
o o I 1 RN
”M HOP— ”]'H \/ﬁ z]: EJ:M (lv./) = Mk

But py1 > pipk (Exercise!), so px > pk. Now apply Gel'fand

p(M) = fim [MKIEE > lim (i) > lim (id)Y% > g,

which means that

p(M) = min Z M(i,j) > 0|




PFI.1: Upper Bound for Spectral Radius

For positive M, put

def ..
W= max Y M) = MK
7

By the submultiplicativity of the matrix norm || - ||,

Y1 = Moo < (Moo M |00 = 717k,
SO Yk < 7{‘ for all k. Apply the Gel'fand formula with this norm,
p(M) = lim [M¥|1% <
k—00

Jim ()< lim ()K= .
—00 k—o0

Conclude that | p(M) < maxz M(i, )|
Jj




Gershgorin's Theorem

The bounds on p(M) are a special case of:

Theorem
Suppose M is an n x n matrix over C. Fori =1,...,n, define the
Gershgorin disc G; C C by

G = {zeC:lz— MG i) <M.}

J#
Then every eigenvalue of M lies in | J; G;.
Proof.
This relatively simple proof is left as an exercise. O

Thus, the largest eigenvalue z = p(M) of positive M must satisfy
z < M(i, i)+ 352 M(i,j) for some i, so z < max; >-; M(i, ).



Proof of PFI.2 and PFI.3

Assume that p(M) =1, else use M/p(M). Thus for eigenvalues A:
(VA) A <1 (3N) A =1.

Suppose |A\| =1 but A # 1. Then (3m € ZT)Re A\ < 0.

Let € = %minj M™(j,j) > 0. Then T e pmm _elis a positive
matrix, with an eigenvalue A — ¢, so p(T) > |A\™ — €| > 1. Now

(Vi,j)0 < T(i,j) < M™(i,j) = (Vi,j, k)0 < T(i,j) < M™(i,j).
Thus (V&) | TX||g < |IM™||£. Apply Gel'fand with || - || to get
p(T) < p(M™) = p(M)™ = 1.

Contradiction! so is the unique eigenvalue with |\| = 1.



PFl.4: Positive Eigenvector

Some positive xg near 1 will have a nonzero component in the
r-eigenspace. The power method converges from that xg:

1
=—M k=0,1,2,...
Xp41 HMXkH X, s Ly &y

For all k, xx has all positive coordinates, so the r-eigenvector
v = limy_,, X, has nonnegative coordinates vy, ..., v,.

But if v; = 0 for some i, then Mv = rv implies
O—V-—Ezn:/\/l(i v, = (V)v;=0
—/—rj:1 AR J)vi =Y,

since (Vj)M(i,j) > 0. This is a contradiction since ||v|]| = r > 0 by
construction. Conclude that v is a positive eigenvector.



PFI.5: Multiplicity One

Let v be a positive r-eigenvector.

Suppose that u is another r-eigenvector. Without loss, some
component of u is positive, else use —u.

def . .
Fora >0, letw = v—oau. Any w # 0 is an r-eigenvector.
There is a maximal positive a for which w is nonnegative. By
maximality, some component of w must be 0.

However, any nonnegative r-eigenvector must in fact be positive by

PFl.4. Hencew =0, sou = év.

Conclude that there cannot be another linearly independent
r-eigenvector.



PFI.6: Positive Eigenvectors

Let v = (v1,...,Vv,) be the r-eigenvector with all positive
coordinates from PFI.5, so (Vi)v; > 0.

Let x = (x1,...,xn) be another positive eigenvector, so (Vi)x; > 0.
Then x is an r-eigenvector, since (x,v) > 0 implies that x cannot
be in the (orthogonal) eigenspace of any other eigenvalue of M.

Since the r-eigenspace is one-dimensional, x = cv. Thus
(Vi) xi = cv;. This is possible if and only if ¢ > 0.

Conclude that x = cv is another positive r-eigenvector if and only
if ¢ > 0.

This completes the proof of Perron-frobenius I. O



Perron-Frobenius I

Theorem
If M is a nonnegative irreducible n x n matrix with p(M) = r > 0,
then all results for PFI hold with these changes:

PFIl.4:  there exists an eigenvector v = (v1,...,v,) of M, with

eigenvalue r, such that | (Vi)v; > 0],
PFI.6: every other eigenvector with coordinates

is a positive scalar multiple of v,

Proof.
Idea: since N = exp(M) — [ is positive, apply PFl to N. But
Mv = Av implies Nv = [exp(A) — 1]v. O



Markov Matrices

Row stochastic nonnegative M:
(Vi yM(i.j) = 0; (Vi) 3 M(ij) = 1.
J

Say that such an M is ergodic if
» M is irreducible: exp(M) — [ is positive, and
» M is aperiodic: (Vi) period(i) = 1, where
period(i) % ged{k > 1: M(i,i) # 0}.

Lemma
If M is ergodic, then limy_,oo M¥ exists and has constant rows v
satisfying vM = v.



Adjacency Matrices

Lemma
The adjacency matrix for a connected graph is irreducible.

Proof.

Form the transition matrix T = D~ 1A, where A is the adjacency
matrix and D is the degree matrix. This is row stochastic.

Since the graph is connected, every pair of vertices i, are
connected by a path whose probability is T*(i,) > 0, where k is
the path length. Therefore,

Vi, ))3K)TH(i,j) > 0, = (¥i,/)(3k)A(i,j) > 0.

This implies that exp(A) — | = ", 51 £ AK > 0.



Diffusion Matrices

Normalize a similarity matrix to be row stochastic.



