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1 Optimality of K-L.

Let {x1,...,xn} be a collection of points in RY, treated as samples from a
d-variate normal distribution.
The mean of the distribution is estimated by the average

N
E(x) ~x et an,
n=1

and the covariance is likewise estimated by the sample covariance matriz
cov (x) = E([x — x][x — x]T) ~ M € R™*4,

where
1 N
M(i,j) = = D_[xa(i) = 2(D)]xa(5) = 2(7)]-
n=1
This M is a positive semidefinite symmetric matrix, in fact positive definite if
there are at least d distinct values in {x1,...,xy}, and it may therefore be
diagonalized by an orthogonal similarity transformation M + UT MU, as will
be discussed below. That diagonalizing transformation is called the empiri-
cal Karhunen-Loéve transform, and it is an optimum for various functions on
orthogonal matrices as will be seen.

1.1 Matrices and Eigenvalues

Let M be a d x d matrix. Write M (4, j) for the element in row ¢ and column j,
for 4,5 € {1,...,d}. This is the notation used by Octave, a software system for
linear algebra computations.

An eigenvalue A of M is a number for which there exists a nonzero eigen-
vector, say v € R%, such that Mv = \v, or equivalently,

(M — M)v =0,



where [ is the d x d identity matrix and 0 is the zero vector:
1 0 0
. ;o 0=1:
0 1 0
Matrix [ has I(i,4) =1,7=1,...,d and I(¢,j) = 0 at all 4,5 with ¢ # j. The

ones are said to lie on the main diagonal.
Eigenvalues are roots of the characteristic polynomial of M:

I =

g\ & det(\I — M).
This q is a polynomial of degree d, and its coefficients are themselves homogenous
polynomials of degree d in the coefficients {M (¢, 7) : 1 < 4,5 < d}, of which there
are d?.
Note that A is an eigenvalue iff ¢(A) = det(A] — M) = 0, iff A\ — M is
singular, iff there exists a nonzero solution v to (AJ — M)v = 0.
By the Fundamental Theorem of Algebra, polynomial ¢ may be factored into

linear terms in its d complex-number roots Al,..., Ay
d
g\ =TT = )
k=1

The number of appearances in this product of a particular root, namely a par-
ticular eigenvalue, is called its multiplicity.

1.2 Positive Definite Symmetric Matrices

Suppose that the real-valued d x d square matrix M is symmetric, namely that
MT = M. By the Spectral Theorem, there is an orthogonal d x d matrix V,
namely one satisfying VVT = VTV = I, whose columns form an orthonormal
basis for R¢, such that

A\ 0
M=vDVY D= :
0 A\

where D is a diagonal matrix containing the eigenvalues of M, with repetitions
according to their multiplicity.
Say that such a matrix M is positive definite, and write M > 0, iff (Vi)\; > 0.

Theorem 1. Symmetric matriz M is positive definite if and only if xT Mx > 0
for every nonzero vector x € R%.

Proof. (=) Suppose that M = VDV is positive definite, and x is nonzero.
Let y = VTx so that x = Vy and xI = (Vy)?T = y?V7T. Then y # 0, so
d Y1
xI'Mx =y'VvIvDVTVy =y Dy = Z \iy? >0, fory= S R,
i=1
Yd



since (Vi)A\; > 0 and (3i)y; # 0 so that y? > 0.
(<= Let v be an eigenvector of M with eigenvalue A. Then

AV =vI(wv) = vIMv > 0.
Since ||v||? > 0, conclude that A > 0 O

Now consider principal submatrices, which are obtained from M by deleting
rows and columns simultaneously.

Theorem 2. Any principal submatriz of a positive definite symmetric matrix
1s positive definite symmetric.

Proof. The principal submatrix inherits symmetry since rows and columns are
removed simultaneously.

Now let M be a d x d matrix and let N be a principal k& X k submatrix of
M. Suppose that nonzero y € R? satisfies

y Ny <0.

Then the vector x € R obtained by injecting y into R at the retained row and
column coordinates, with zeros at the deleted coordinates, will also be nonzero
and will satisfy

x Mx <0.

Conclude that if any principal submatrix is not positive definite, then M is not
positive definite. O

Some immediate consequences for a positive definite M are:
o All diagonal elements are positive: (Vi)M (i,7) > 0.
e The eigenvalues of any principal submatrix are all positve.

e Any principal submatrix will be invertible.

Remark. In Octave notation, the principal submatrix with kept rows and
columns (41, ...,17) is obtained from matrix M as follows:

kept=[il,...,ik]; N=M(kept,kept);

The kept rows and columns are, of course, the complement in (1,...,d) of the
deleted rows and columns.



1.3 Parametrization by Orthogonals

Let M be a d x d positive definite symmetric matrix, so that M = UDUT with
diagonal matrix D of its positive eigenvalues D(k, k) = A\ and its diagonalizing
orthogonal matrix U.

The main diagonal elements of M are convex combinations of the eigenvalues:

d
M(iyi) = U(i,))D(, k)UT (ki) = > Ui, k)* A
Jik k=1

Since U is orthogonal, its rows have unit norm, so for each ¢ the sequence
U(i,1)%,...,U(i,d)? sums to 1. More is actually true: the columns of U also
have unit norm, so for each j the sequence U(1,5)?,...,U(d,7)? also sums to 1.
The matrix of squared elements of U is therefore doubly stochastic.
Recall that a function f : R — R is concave iff, for any z,y € R and any
t € [0,1],
Pt +[1—tly) > t£(x) + [1— 1£(y). 1)
Remark. This definition applies more generally to a function with a convex

domain K C R%, namely a set K for which x,y € K = tx+[1—t]y € K for
all0 <t <1.

Theorem 3. Suppose that f : R — R is a concave function, x1,...,xq are real
numbers, and A is a doubly stochastic d x d matriz. Then

d d Y1 1
S f) =S far),  where | | =A]
= = Yd Zd
Proof. For each k, write
d
ye =y A(k, j)z;.
j=1

By Eq.1, since f is concave,

d
Fu) = 57 Ak, ) f ().

j=1
Now sum over k =1,...,d to get
d d
ST = DD Ak §)f(x))
k=1 k=1j=1
d d d
= Z ZA(kJ)) f(z;) = Zf(xj)v
j=1 \k=1 j=1
d
since A is doubly stochastic, so Z A(k,j) =1 for all j. O
k=1



1.4 Maximizing Coding Gain

Suppose that M is a positive definite symmetric d x d matrix. Let U be any
d x d orthogonal matrix and define

My € UTMU.
Such a similarity transformation preserves symmetry:
ME =OUTMU)T =UuTMT(UT)T =UTMU = My.

It also preserves eigenvalues. Suppose that A is an eigenvalue of M. Let x be a
nonzero vector with Mx = Ax, let y = UTx # 0, and compute

Myy =UTMUUTx =UTMx = \UTx = )y.

Thus ) is an eigenvalue of My . A similar argument shows that every eigenvalue
of My is also an eigenvalue of M. Hence My has all positive eigenvalues just
like M and is likewise positive definite.

Transform coding gain from U measures the concentration of variance onto
the main diagonal elements of My :

d
G(U) o Zlogm log H
k=1 k=1

This requires My (k,k) > 0, all k, which is assured by Theorem 2 and its
consequences.

Theorem 4. For any orthogonal U,
G(U) < —logdet M.
Equality holds if and only if U diagonalizes M.

Proof. Observe that log is a concave function, and that

d

~G(U) = _log My (k, k)
k=1

But the diagonal elements of My (k, k) are the output of a doubly stochastic
matrix applied to the vector of eigenvalues Ay, ..., A\g of M. By Theorem 3,

d
> Zlog)\k = logdet M,
k=1

from which the inequality follows.
Equality holds if and only if U diagonalizes M, in which case My is a diagonal
matrix with some permutation of the eigenvalues on its main diagonal. O



1.5 Minimizing Entropy

Recall that the trace of a matrix M, denoted tr M, is the sum of it main diagonal
elements, and also the sum of its eigenvalues:

d d
M E S Mk k) =3 A
k=1 k=1

Thus trace is invariant under similarity transformations:
(VU)tI‘MU =tr M.

Dividing My by tr M normalizes the main diagonal to be nonnegative with sum
1. It may then be considered a discrete pdf, and its concentration measured by
entropy:
d 1
pu(k)log —==,
; pu (k)

where py (k) %< My (k, k) /tr My = My (k, k) /tr M.

However, the normalization is unnecessary since the function z — zlog(1/z =
—zlogx is concave on all of RT, as may be easily checked by differentiation.
It may be also extended to = 0 by continuity as 0log0 = 0log(1/0) = 0.
Instead, consider the unnormalized entropy

U

HU) = > My(k,k)log m
k=1 ’

This function has a feature in common with H, proved by a similar application
of Theorem 3:

Theorem 5. The minimum value of H(U), which is
d
1
Z A log "
k=1 k
1s attained at any orthogonal matriz U that diagonalizes M . O

1.6 Information Cost Functions

Any concave function f: R — R defines an information cost function:

-

d
d
1) = Y f(My(k, k).
k=1
Again, Theorem 3 implies that I behaves like transform coding gain:

Theorem 6. The minimum value of I(U) is attained at any orthogonal matriz
U that diagonalizes M . O



Since the Karhonen-Loeéve transform is the diagonalizing orthogonal matrix
for the empirical covariance matrix, these results may be summarized as follows:

Theorem 7. Suppose that M is the empirical covariance matriz for a set of

samples {x1,...,xy} C R Let I(U) be any information cost function on the
main diagonal of My. Then the Karhonen-Loéve transform U, which makes
My diagonal, attains the minimum value for I1(U). O



