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1 Optimality of K-L.
Let {x1, . . . ,xN} be a collection of points in Rd, treated as samples from a
d-variate normal distribution.

The mean of the distribution is estimated by the average

E(x) ≈ x̄ def=
N∑

n=1
xn,

and the covariance is likewise estimated by the sample covariance matrix

cov (x) = E([x− x̄][x− x̄]T ) ≈M ∈ Rd×d,

where

M(i, j) = 1
N − 1

N∑
n=1

[xn(i)− x̄(i)][xn(j)− x̄(j)].

This M is a positive semidefinite symmetric matrix, in fact positive definite if
there are at least d distinct values in {x1, . . . ,xN}, and it may therefore be
diagonalized by an orthogonal similarity transformation M 7→ UTMU , as will
be discussed below. That diagonalizing transformation is called the empiri-
cal Karhunen-Loève transform, and it is an optimum for various functions on
orthogonal matrices as will be seen.

1.1 Matrices and Eigenvalues
Let M be a d× d matrix. Write M(i, j) for the element in row i and column j,
for i, j ∈ {1, . . . , d}. This is the notation used by Octave, a software system for
linear algebra computations.

An eigenvalue λ of M is a number for which there exists a nonzero eigen-
vector, say v ∈ Rd, such that Mv = λv, or equivalently,

(λI −M)v = 0,
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where I is the d× d identity matrix and 0 is the zero vector:

I =

1 0
. . .

0 1

 ; 0 =

0
...
0

 .

Matrix I has I(i, i) = 1, i = 1, . . . , d and I(i, j) = 0 at all i, j with i 6= j. The
ones are said to lie on the main diagonal.

Eigenvalues are roots of the characteristic polynomial of M :

q(λ) def= det(λI −M).

This q is a polynomial of degree d, and its coefficients are themselves homogenous
polynomials of degree d in the coefficients {M(i, j) : 1 ≤ i, j ≤ d}, of which there
are d2.

Note that λ is an eigenvalue iff q(λ) = det(λI − M) = 0, iff λI − M is
singular, iff there exists a nonzero solution v to (λI −M)v = 0.

By the Fundamental Theorem of Algebra, polynomial q may be factored into
linear terms in its d complex-number roots λ1, . . . , λd:

q(λ) =
d∏

k=1
(λ− λk).

The number of appearances in this product of a particular root, namely a par-
ticular eigenvalue, is called its multiplicity.

1.2 Positive Definite Symmetric Matrices
Suppose that the real-valued d× d square matrix M is symmetric, namely that
MT = M . By the Spectral Theorem, there is an orthogonal d × d matrix V ,
namely one satisfying V V T = V TV = I, whose columns form an orthonormal
basis for Rd, such that

M = V DV T , D =

λ1 0
. . .

0 λd

 ,

where D is a diagonal matrix containing the eigenvalues of M , with repetitions
according to their multiplicity.

Say that such a matrix M is positive definite, and write M > 0, iff (∀i)λi > 0.
Theorem 1. Symmetric matrix M is positive definite if and only if xTMx > 0
for every nonzero vector x ∈ Rd.
Proof. ( =⇒ ) Suppose that M = V DV T is positive definite, and x is nonzero.
Let y = V T x so that x = V y and xT = (V y)T = yTV T . Then y 6= 0, so

xTMx = yTV TV DV TV y = yTDy =
d∑

i=1
λiy

2
i > 0, for y =

y1
...
yd

 ∈ Rd,
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since (∀i)λi > 0 and (∃i)yi 6= 0 so that y2
i > 0.

(⇐= ) Let v be an eigenvector of M with eigenvalue λ. Then

λ‖v‖2 = vT (λv) = vTMv > 0.

Since ‖v‖2 > 0, conclude that λ > 0

Now consider principal submatrices, which are obtained from M by deleting
rows and columns simultaneously.

Theorem 2. Any principal submatrix of a positive definite symmetric matrix
is positive definite symmetric.

Proof. The principal submatrix inherits symmetry since rows and columns are
removed simultaneously.

Now let M be a d × d matrix and let N be a principal k × k submatrix of
M . Suppose that nonzero y ∈ Rd satisfies

yTNy ≤ 0.

Then the vector x ∈ Rd obtained by injecting y into Rd at the retained row and
column coordinates, with zeros at the deleted coordinates, will also be nonzero
and will satisfy

xTMx ≤ 0.

Conclude that if any principal submatrix is not positive definite, then M is not
positive definite.

Some immediate consequences for a positive definite M are:

• All diagonal elements are positive: (∀i)M(i, i) > 0.

• The eigenvalues of any principal submatrix are all positve.

• Any principal submatrix will be invertible.

Remark. In Octave notation, the principal submatrix with kept rows and
columns (i1, . . . , ik) is obtained from matrix M as follows:

kept=[i1,...,ik]; N=M(kept,kept);

The kept rows and columns are, of course, the complement in (1, . . . , d) of the
deleted rows and columns.
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1.3 Parametrization by Orthogonals
Let M be a d× d positive definite symmetric matrix, so that M = UDUT with
diagonal matrix D of its positive eigenvalues D(k, k) = λk and its diagonalizing
orthogonal matrix U .

The main diagonal elements ofM are convex combinations of the eigenvalues:

M(i, i) =
∑
j,k

U(i, j)D(j, k)UT (k, i) =
d∑

k=1
U(i, k)2λk

Since U is orthogonal, its rows have unit norm, so for each i the sequence
U(i, 1)2, . . . , U(i, d)2 sums to 1. More is actually true: the columns of U also
have unit norm, so for each j the sequence U(1, j)2, . . . , U(d, j)2 also sums to 1.
The matrix of squared elements of U is therefore doubly stochastic.

Recall that a function f : R → R is concave iff, for any x, y ∈ R and any
t ∈ [0, 1],

f(tx+ [1− t]y) ≥ tf(x) + [1− t]f(y). (1)

Remark. This definition applies more generally to a function with a convex
domain K ⊂ Rd, namely a set K for which x,y ∈ K =⇒ tx + [1− t]y ∈ K for
all 0 ≤ t ≤ 1.
Theorem 3. Suppose that f : R → R is a concave function, x1, . . . , xd are real
numbers, and A is a doubly stochastic d× d matrix. Then

d∑
k=1

f(yk) ≥
d∑

k=1
f(xk), where

y1
...
yd

 = A

x1
...
xd


Proof. For each k, write

yk =
d∑

j=1
A(k, j)xj .

By Eq.1, since f is concave,

f(yk) ≥
d∑

j=1
A(k, j)f(xj).

Now sum over k = 1, . . . , d to get
d∑

k=1
f(yk) ≥

d∑
k=1

d∑
j=1

A(k, j)f(xj)

=
d∑

j=1

(
d∑

k=1
A(k, j)

)
f(xj) =

d∑
j=1

f(xj),

since A is doubly stochastic, so
d∑

k=1
A(k, j) = 1 for all j.
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1.4 Maximizing Coding Gain
Suppose that M is a positive definite symmetric d × d matrix. Let U be any
d× d orthogonal matrix and define

MU
def= UTMU.

Such a similarity transformation preserves symmetry:

MT
U = (UTMU)T = UTMT (UT )T = UTMU = MU .

It also preserves eigenvalues. Suppose that λ is an eigenvalue of M . Let x be a
nonzero vector with Mx = λx, let y = UT x 6= 0, and compute

MU y = UTMUUT x = UTMx = λUT x = λy.

Thus λ is an eigenvalue of MU . A similar argument shows that every eigenvalue
of MU is also an eigenvalue of M . Hence MU has all positive eigenvalues just
like M and is likewise positive definite.

Transform coding gain from U measures the concentration of variance onto
the main diagonal elements of MU :

G(U) def=
d∑

k=1
log 1

MU (k, k) = log
d∏

k=1

1
MU (k, k) ,

This requires MU (k, k) > 0, all k, which is assured by Theorem 2 and its
consequences.

Theorem 4. For any orthogonal U ,

G(U) ≤ − log detM.

Equality holds if and only if U diagonalizes M .

Proof. Observe that log is a concave function, and that

−G(U) =
d∑

k=1
logMU (k, k)

But the diagonal elements of MU (k, k) are the output of a doubly stochastic
matrix applied to the vector of eigenvalues λ1, . . . , λd of M . By Theorem 3,

−G(U) ≥
d∑

k=1
log λk = log detM,

from which the inequality follows.
Equality holds if and only if U diagonalizesM , in which caseMU is a diagonal

matrix with some permutation of the eigenvalues on its main diagonal.
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1.5 Minimizing Entropy
Recall that the trace of a matrix M , denoted trM , is the sum of it main diagonal
elements, and also the sum of its eigenvalues:

trM def=
d∑

k=1
M(k, k) =

d∑
k=1

λk.

Thus trace is invariant under similarity transformations:

(∀U)trMU = trM.

Dividing MU by trM normalizes the main diagonal to be nonnegative with sum
1. It may then be considered a discrete pdf, and its concentration measured by
entropy:

d∑
k=1

pU (k) log 1
pU (k) ,

where pU (k) def= MU (k, k)/trMU = MU (k, k)/trM .
However, the normalization is unnecessary since the function x→ x log(1/x =

−x log x is concave on all of R+, as may be easily checked by differentiation.
It may be also extended to x = 0 by continuity as 0 log 0 = 0 log(1/0) = 0.
Instead, consider the unnormalized entropy

H(U) def=
d∑

k=1
MU (k, k) log 1

MU (k, k) .

This function has a feature in common with H, proved by a similar application
of Theorem 3:

Theorem 5. The minimum value of H(U), which is

d∑
k=1

λk log 1
λk

is attained at any orthogonal matrix U that diagonalizes M .

1.6 Information Cost Functions
Any concave function f : R → R defines an information cost function:

I(U) def=
d∑

k=1
f(MU (k, k)).

Again, Theorem 3 implies that I behaves like transform coding gain:

Theorem 6. The minimum value of I(U) is attained at any orthogonal matrix
U that diagonalizes M .
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Since the Karhonen-Loève transform is the diagonalizing orthogonal matrix
for the empirical covariance matrix, these results may be summarized as follows:

Theorem 7. Suppose that M is the empirical covariance matrix for a set of
samples {x1, . . . ,xN} ⊂ Rd. Let I(U) be any information cost function on the
main diagonal of MU . Then the Karhonen-Loève transform U , which makes
MU diagonal, attains the minimum value for I(U).
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