Supplement 3: Compression

Mladen Victor Wickerhauser PMF 2022: Dimensionality Reduction and Manifold Estimation

July 22, 2022

1 Optimality of K-L.

Let $\{\mathbf{x}_1, \ldots, \mathbf{x}_N\}$ be a collection of points in \mathbf{R}^d , treated as samples from a *d*-variate normal distribution.

The mean of the distribution is estimated by the average

$$\mathbf{E}(\mathbf{x}) \approx \bar{\mathbf{x}} \stackrel{\text{def}}{=} \sum_{n=1}^{N} \mathbf{x}_n,$$

and the covariance is likewise estimated by the sample covariance matrix

$$\operatorname{cov}\left(\mathbf{x}\right) = \operatorname{E}([\mathbf{x} - \bar{\mathbf{x}}][\mathbf{x} - \bar{\mathbf{x}}]^T) \approx M \in \mathbf{R}^{d \times d},$$

where

$$M(i,j) = \frac{1}{N-1} \sum_{n=1}^{N} [\mathbf{x}_n(i) - \bar{x}(i)] [\mathbf{x}_n(j) - \bar{x}(j)].$$

This M is a positive semidefinite symmetric matrix, in fact positive definite if there are at least d distinct values in $\{\mathbf{x}_1, \ldots, \mathbf{x}_N\}$, and it may therefore be diagonalized by an orthogonal similarity transformation $M \mapsto U^T M U$, as will be discussed below. That diagonalizing transformation is called the *empiri*cal Karhunen-Loève transform, and it is an optimum for various functions on orthogonal matrices as will be seen.

1.1 Matrices and Eigenvalues

Let M be a $d \times d$ matrix. Write M(i, j) for the element in row i and column j, for $i, j \in \{1, \ldots, d\}$. This is the notation used by Octave, a software system for linear algebra computations.

An eigenvalue λ of M is a number for which there exists a nonzero eigenvector, say $\mathbf{v} \in \mathbf{R}^d$, such that $M\mathbf{v} = \lambda v$, or equivalently,

$$(\lambda I - M)\mathbf{v} = \mathbf{0},$$

where I is the $d \times d$ identity matrix and **0** is the zero vector:

$$I = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}; \qquad \mathbf{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Matrix I has I(i,i) = 1, i = 1, ..., d and I(i,j) = 0 at all i, j with $i \neq j$. The ones are said to lie on the *main diagonal*.

Eigenvalues are roots of the *characteristic polynomial* of M:

$$q(\lambda) \stackrel{\text{def}}{=} \det(\lambda I - M).$$

This q is a polynomial of degree d, and its coefficients are themselves homogenous polynomials of degree d in the coefficients $\{M(i, j) : 1 \leq i, j \leq d\}$, of which there are d^2 .

Note that λ is an eigenvalue iff $q(\lambda) = \det(\lambda I - M) = 0$, iff $\lambda I - M$ is singular, iff there exists a nonzero solution \mathbf{v} to $(\lambda I - M)\mathbf{v} = \mathbf{0}$.

By the Fundamental Theorem of Algebra, polynomial q may be factored into linear terms in its d complex-number roots $\lambda 1, \ldots, \lambda_d$:

$$q(\lambda) = \prod_{k=1}^{d} (\lambda - \lambda_k).$$

The number of appearances in this product of a particular root, namely a particular eigenvalue, is called its *multiplicity*.

1.2 Positive Definite Symmetric Matrices

Suppose that the real-valued $d \times d$ square matrix M is symmetric, namely that $M^T = M$. By the Spectral Theorem, there is an orthogonal $d \times d$ matrix V, namely one satisfying $VV^T = V^T V = I$, whose columns form an orthonormal basis for \mathbf{R}^d , such that

$$M = V D V^T, \qquad D = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_d \end{pmatrix},$$

where D is a diagonal matrix containing the eigenvalues of M, with repetitions according to their multiplicity.

Say that such a matrix M is positive definite, and write M > 0, iff $(\forall i)\lambda_i > 0$.

Theorem 1. Symmetric matrix M is positive definite if and only if $\mathbf{x}^T M \mathbf{x} > 0$ for every nonzero vector $\mathbf{x} \in \mathbf{R}^d$.

Proof. (\implies) Suppose that $M = VDV^T$ is positive definite, and **x** is nonzero. Let $\mathbf{y} = V^T \mathbf{x}$ so that $\mathbf{x} = V \mathbf{y}$ and $\mathbf{x}^T = (V \mathbf{y})^T = \mathbf{y}^T V^T$. Then $\mathbf{y} \neq \mathbf{0}$, so

$$\mathbf{x}^T M \mathbf{x} = \mathbf{y}^T V^T V D V^T V \mathbf{y} = \mathbf{y}^T D \mathbf{y} = \sum_{i=1}^d \lambda_i y_i^2 > 0, \quad \text{for } \mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} \in \mathbf{R}^d,$$

since $(\forall i)\lambda_i > 0$ and $(\exists i)y_i \neq 0$ so that $y_i^2 > 0$.

 (\Leftarrow) Let **v** be an eigenvector of M with eigenvalue λ . Then

$$\lambda \|\mathbf{v}\|^2 = \mathbf{v}^T (\lambda \mathbf{v}) = \mathbf{v}^T M \mathbf{v} > 0$$

Since $\|\mathbf{v}\|^2 > 0$, conclude that $\lambda > 0$

Now consider *principal submatrices*, which are obtained from M by deleting rows and columns simultaneously.

Theorem 2. Any principal submatrix of a positive definite symmetric matrix is positive definite symmetric.

Proof. The principal submatrix inherits symmetry since rows and columns are removed simultaneously.

Now let M be a $d \times d$ matrix and let N be a principal $k \times k$ submatrix of M. Suppose that nonzero $\mathbf{y} \in \mathbf{R}^d$ satisfies

$$\mathbf{y}^T N \mathbf{y} \leq 0.$$

Then the vector $\mathbf{x} \in \mathbf{R}^d$ obtained by injecting \mathbf{y} into \mathbf{R}^d at the retained row and column coordinates, with zeros at the deleted coordinates, will also be nonzero and will satisfy

$$\mathbf{x}^T M \mathbf{x} \leq 0.$$

Conclude that if any principal submatrix is not positive definite, then M is not positive definite.

Some immediate consequences for a positive definite M are:

- All diagonal elements are positive: $(\forall i)M(i,i) > 0$.
- The eigenvalues of any principal submatrix are all positve.
- Any principal submatrix will be invertible.

Remark. In Octave notation, the principal submatrix with kept rows and columns (i_1, \ldots, i_k) is obtained from matrix M as follows:

kept=[i1,...,ik]; N=M(kept,kept);

The kept rows and columns are, of course, the complement in $(1, \ldots, d)$ of the deleted rows and columns.

1.3 Parametrization by Orthogonals

Let M be a $d \times d$ positive definite symmetric matrix, so that $M = UDU^T$ with diagonal matrix D of its positive eigenvalues $D(k, k) = \lambda_k$ and its diagonalizing orthogonal matrix U.

The main diagonal elements of M are convex combinations of the eigenvalues:

$$M(i,i) = \sum_{j,k} U(i,j)D(j,k)U^{T}(k,i) = \sum_{k=1}^{d} U(i,k)^{2}\lambda_{k}$$

Since U is orthogonal, its rows have unit norm, so for each *i* the sequence $U(i, 1)^2, \ldots, U(i, d)^2$ sums to 1. More is actually true: the columns of U also have unit norm, so for each *j* the sequence $U(1, j)^2, \ldots, U(d, j)^2$ also sums to 1. The matrix of squared elements of U is therefore *doubly stochastic*.

Recall that a function $f : \mathbf{R} \to \mathbf{R}$ is *concave* iff, for any $x, y \in \mathbf{R}$ and any $t \in [0, 1]$,

$$f(tx + [1 - t]y) \ge tf(x) + [1 - t]f(y).$$
(1)

Remark. This definition applies more generally to a function with a convex domain $K \subset \mathbf{R}^d$, namely a set K for which $\mathbf{x}, \mathbf{y} \in K \implies t\mathbf{x} + [1-t]\mathbf{y} \in K$ for all $0 \le t \le 1$.

Theorem 3. Suppose that $f : \mathbf{R} \to \mathbf{R}$ is a concave function, x_1, \ldots, x_d are real numbers, and A is a doubly stochastic $d \times d$ matrix. Then

$$\sum_{k=1}^{d} f(y_k) \ge \sum_{k=1}^{d} f(x_k), \quad \text{where } \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix}$$

Proof. For each k, write

$$y_k = \sum_{j=1}^d A(k,j) x_j.$$

By Eq.1, since f is concave,

$$f(y_k) \ge \sum_{j=1}^d A(k,j)f(x_j).$$

Now sum over $k = 1, \ldots, d$ to get

$$\sum_{k=1}^{d} f(y_k) \geq \sum_{k=1}^{d} \sum_{j=1}^{d} A(k,j) f(x_j)$$
$$= \sum_{j=1}^{d} \left(\sum_{k=1}^{d} A(k,j) \right) f(x_j) = \sum_{j=1}^{d} f(x_j),$$
since A is doubly stochastic, so
$$\sum_{k=1}^{d} A(k,j) = 1 \text{ for all } j.$$

1.4 Maximizing Coding Gain

Suppose that M is a positive definite symmetric $d \times d$ matrix. Let U be any $d \times d$ orthogonal matrix and define

$$M_U \stackrel{\text{def}}{=} U^T M U.$$

Such a *similarity transformation* preserves symmetry:

$$M_U^T = (U^T M U)^T = U^T M^T (U^T)^T = U^T M U = M_U$$

It also preserves eigenvalues. Suppose that λ is an eigenvalue of M. Let \mathbf{x} be a nonzero vector with $M\mathbf{x} = \lambda \mathbf{x}$, let $\mathbf{y} = U^T \mathbf{x} \neq \mathbf{0}$, and compute

$$M_U \mathbf{y} = U^T M U U^T \mathbf{x} = U^T M \mathbf{x} = \lambda U^T \mathbf{x} = \lambda \mathbf{y}.$$

Thus λ is an eigenvalue of M_U . A similar argument shows that every eigenvalue of M_U is also an eigenvalue of M. Hence M_U has all positive eigenvalues just like M and is likewise positive definite.

Transform coding gain from U measures the concentration of variance onto the main diagonal elements of M_U :

$$G(U) \stackrel{\text{def}}{=} \sum_{k=1}^{d} \log \frac{1}{M_U(k,k)} = \log \prod_{k=1}^{d} \frac{1}{M_U(k,k)},$$

This requires $M_U(k,k) > 0$, all k, which is assured by Theorem 2 and its consequences.

Theorem 4. For any orthogonal U,

$$G(U) \le -\log \det M.$$

Equality holds if and only if U diagonalizes M.

Proof. Observe that log is a concave function, and that

$$-G(U) = \sum_{k=1}^{d} \log M_U(k,k)$$

But the diagonal elements of $M_U(k,k)$ are the output of a doubly stochastic matrix applied to the vector of eigenvalues $\lambda_1, \ldots, \lambda_d$ of M. By Theorem 3,

$$-G(U) \ge \sum_{k=1}^{d} \log \lambda_k = \log \det M,$$

from which the inequality follows.

Equality holds if and only if U diagonalizes M, in which case M_U is a diagonal matrix with some permutation of the eigenvalues on its main diagonal.

1.5Minimizing Entropy

Recall that the *trace* of a matrix M, denoted tr M, is the sum of it main diagonal elements, and also the sum of its eigenvalues:

tr
$$M \stackrel{\text{def}}{=} \sum_{k=1}^{d} M(k,k) = \sum_{k=1}^{d} \lambda_k.$$

Thus trace is invariant under similarity transformations:

$$(\forall U) \operatorname{tr} M_U = \operatorname{tr} M.$$

Dividing M_U by tr M normalizes the main diagonal to be nonnegative with sum 1. It may then be considered a discrete pdf, and its concentration measured by entropy:

$$\sum_{k=1}^d p_U(k) \log \frac{1}{p_U(k)},$$

where $p_U(k) \stackrel{\text{def}}{=} M_U(k,k)/\operatorname{tr} M_U = M_U(k,k)/\operatorname{tr} M$. However, the normalization is unnecessary since the function $x \to x \log(1/x =$ $-x \log x$ is concave on all of \mathbf{R}^+ , as may be easily checked by differentiation. It may be also extended to x = 0 by continuity as $0 \log 0 = 0 \log(1/0) = 0$. Instead, consider the unnormalized entropy

$$H(U) \stackrel{\text{def}}{=} \sum_{k=1}^{d} M_U(k,k) \log \frac{1}{M_U(k,k)}.$$

This function has a feature in common with H, proved by a similar application of Theorem 3:

Theorem 5. The minimum value of H(U), which is

$$\sum_{k=1}^d \lambda_k \log \frac{1}{\lambda_k}$$

is attained at any orthogonal matrix U that diagonalizes M.

Information Cost Functions 1.6

Any concave function $f : \mathbf{R} \to \mathbf{R}$ defines an *information cost function*:

$$I(U) \stackrel{\text{def}}{=} \sum_{k=1}^{d} f(M_U(k,k)).$$

Again, Theorem 3 implies that I behaves like transform coding gain:

Theorem 6. The minimum value of I(U) is attained at any orthogonal matrix U that diagonalizes M.

Since the Karhonen-Loève transform is the diagonalizing orthogonal matrix for the empirical covariance matrix, these results may be summarized as follows:

Theorem 7. Suppose that M is the empirical covariance matrix for a set of samples $\{\mathbf{x}_1, \ldots, \mathbf{x}_N\} \subset \mathbf{R}^d$. Let I(U) be any information cost function on the main diagonal of M_U . Then the Karhonen-Loève transform U, which makes M_U diagonal, attains the minimum value for I(U).