Supplement 3: Compression

Mladen Victor Wickerhauser
PMF 2022: Dimensionality Reduction and Manifold Estimation

July 22, 2022

1 Optimality of K-L.

Let $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$ be a collection of points in \mathbf{R}^{d}, treated as samples from a d-variate normal distribution.

The mean of the distribution is estimated by the average

$$
\mathrm{E}(\mathbf{x}) \approx \overline{\mathbf{x}} \stackrel{\text { def }}{=} \sum_{n=1}^{N} \mathbf{x}_{n}
$$

and the covariance is likewise estimated by the sample covariance matrix

$$
\operatorname{cov}(\mathbf{x})=\mathrm{E}\left([\mathbf{x}-\overline{\mathbf{x}}][\mathbf{x}-\overline{\mathbf{x}}]^{T}\right) \approx M \in \mathbf{R}^{d \times d}
$$

where

$$
M(i, j)=\frac{1}{N-1} \sum_{n=1}^{N}\left[\mathbf{x}_{n}(i)-\bar{x}(i)\right]\left[\mathbf{x}_{n}(j)-\bar{x}(j)\right]
$$

This M is a positive semidefinite symmetric matrix, in fact positive definite if there are at least d distinct values in $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$, and it may therefore be diagonalized by an orthogonal similarity transformation $M \mapsto U^{T} M U$, as will be discussed below. That diagonalizing transformation is called the empirical Karhunen-Loève transform, and it is an optimum for various functions on orthogonal matrices as will be seen.

1.1 Matrices and Eigenvalues

Let M be a $d \times d$ matrix. Write $M(i, j)$ for the element in row i and column j, for $i, j \in\{1, \ldots, d\}$. This is the notation used by Octave, a software system for linear algebra computations.

An eigenvalue λ of M is a number for which there exists a nonzero eigenvector, say $\mathbf{v} \in \mathbf{R}^{d}$, such that $M \mathbf{v}=\lambda v$, or equivalently,

$$
(\lambda I-M) \mathbf{v}=\mathbf{0}
$$

where I is the $d \times d$ identity matrix and $\mathbf{0}$ is the zero vector:

$$
I=\left(\begin{array}{ccc}
1 & & 0 \\
& \ddots & \\
0 & & 1
\end{array}\right) ; \quad \mathbf{0}=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

Matrix I has $I(i, i)=1, i=1, \ldots, d$ and $I(i, j)=0$ at all i, j with $i \neq j$. The ones are said to lie on the main diagonal.

Eigenvalues are roots of the characteristic polynomial of M :

$$
q(\lambda) \stackrel{\text { def }}{=} \operatorname{det}(\lambda I-M)
$$

This q is a polynomial of degree d, and its coefficients are themselves homogenous polynomials of degree d in the coefficients $\{M(i, j): 1 \leq i, j \leq d\}$, of which there are d^{2}.

Note that λ is an eigenvalue iff $q(\lambda)=\operatorname{det}(\lambda I-M)=0$, iff $\lambda I-M$ is singular, iff there exists a nonzero solution \mathbf{v} to $(\lambda I-M) \mathbf{v}=\mathbf{0}$.

By the Fundamental Theorem of Algebra, polynomial q may be factored into linear terms in its d complex-number roots $\lambda 1, \ldots, \lambda_{d}$:

$$
q(\lambda)=\prod_{k=1}^{d}\left(\lambda-\lambda_{k}\right)
$$

The number of appearances in this product of a particular root, namely a particular eigenvalue, is called its multiplicity.

1.2 Positive Definite Symmetric Matrices

Suppose that the real-valued $d \times d$ square matrix M is symmetric, namely that $M^{T}=M$. By the Spectral Theorem, there is an orthogonal $d \times d$ matrix V, namely one satisfying $V V^{T}=V^{T} V=I$, whose columns form an orthonormal basis for \mathbf{R}^{d}, such that

$$
M=V D V^{T}, \quad D=\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{d}
\end{array}\right)
$$

where D is a diagonal matrix containing the eigenvalues of M, with repetitions according to their multiplicity.

Say that such a matrix M is positive definite, and write $M>0$, iff $(\forall i) \lambda_{i}>0$.
Theorem 1. Symmetric matrix M is positive definite if and only if $\mathbf{x}^{T} M \mathbf{x}>0$ for every nonzero vector $\mathbf{x} \in \mathbf{R}^{d}$.
Proof. (\Longrightarrow) Suppose that $M=V D V^{T}$ is positive definite, and \mathbf{x} is nonzero. Let $\mathbf{y}=V^{T} \mathbf{x}$ so that $\mathbf{x}=V \mathbf{y}$ and $\mathbf{x}^{T}=(V \mathbf{y})^{T}=\mathbf{y}^{T} V^{T}$. Then $\mathbf{y} \neq \mathbf{0}$, so

$$
\mathbf{x}^{T} M \mathbf{x}=\mathbf{y}^{T} V^{T} V D V^{T} V \mathbf{y}=\mathbf{y}^{T} D \mathbf{y}=\sum_{i=1}^{d} \lambda_{i} y_{i}^{2}>0, \quad \text { for } \mathbf{y}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{d}
\end{array}\right) \in \mathbf{R}^{d}
$$

since $(\forall i) \lambda_{i}>0$ and $(\exists i) y_{i} \neq 0$ so that $y_{i}^{2}>0$.
(\Longleftarrow) Let \mathbf{v} be an eigenvector of M with eigenvalue λ. Then

$$
\lambda\|\mathbf{v}\|^{2}=\mathbf{v}^{T}(\lambda \mathbf{v})=\mathbf{v}^{T} M \mathbf{v}>0
$$

Since $\|\mathbf{v}\|^{2}>0$, conclude that $\lambda>0$
Now consider principal submatrices, which are obtained from M by deleting rows and columns simultaneously.

Theorem 2. Any principal submatrix of a positive definite symmetric matrix is positive definite symmetric.

Proof. The principal submatrix inherits symmetry since rows and columns are removed simultaneously.

Now let M be a $d \times d$ matrix and let N be a principal $k \times k$ submatrix of M. Suppose that nonzero $\mathbf{y} \in \mathbf{R}^{d}$ satisfies

$$
\mathbf{y}^{T} N \mathbf{y} \leq 0
$$

Then the vector $\mathbf{x} \in \mathbf{R}^{d}$ obtained by injecting \mathbf{y} into \mathbf{R}^{d} at the retained row and column coordinates, with zeros at the deleted coordinates, will also be nonzero and will satisfy

$$
\mathbf{x}^{T} M \mathbf{x} \leq 0
$$

Conclude that if any principal submatrix is not positive definite, then M is not positive definite.

Some immediate consequences for a positive definite M are:

- All diagonal elements are positive: $(\forall i) M(i, i)>0$.
- The eigenvalues of any principal submatrix are all positve.
- Any principal submatrix will be invertible.

Remark. In Octave notation, the principal submatrix with kept rows and columns $\left(i_{1}, \ldots, i_{k}\right)$ is obtained from matrix M as follows:
kept $=[i 1, \ldots, i k] ; N=M($ kept,kept $)$;
The kept rows and columns are, of course, the complement in $(1, \ldots, d)$ of the deleted rows and columns.

1.3 Parametrization by Orthogonals

Let M be a $d \times d$ positive definite symmetric matrix, so that $M=U D U^{T}$ with diagonal matrix D of its positive eigenvalues $D(k, k)=\lambda_{k}$ and its diagonalizing orthogonal matrix U.

The main diagonal elements of M are convex combinations of the eigenvalues:

$$
M(i, i)=\sum_{j, k} U(i, j) D(j, k) U^{T}(k, i)=\sum_{k=1}^{d} U(i, k)^{2} \lambda_{k}
$$

Since U is orthogonal, its rows have unit norm, so for each i the sequence $U(i, 1)^{2}, \ldots, U(i, d)^{2}$ sums to 1 . More is actually true: the columns of U also have unit norm, so for each j the sequence $U(1, j)^{2}, \ldots, U(d, j)^{2}$ also sums to 1 . The matrix of squared elements of U is therefore doubly stochastic.

Recall that a function $f: \mathbf{R} \rightarrow \mathbf{R}$ is concave iff, for any $x, y \in \mathbf{R}$ and any $t \in[0,1]$,

$$
\begin{equation*}
f(t x+[1-t] y) \geq t f(x)+[1-t] f(y) . \tag{1}
\end{equation*}
$$

Remark. This definition applies more generally to a function with a convex domain $K \subset \mathbf{R}^{d}$, namely a set K for which $\mathbf{x}, \mathbf{y} \in K \Longrightarrow t \mathbf{x}+[1-t] \mathbf{y} \in K$ for all $0 \leq t \leq 1$.
Theorem 3. Suppose that $f: \mathbf{R} \rightarrow \mathbf{R}$ is a concave function, x_{1}, \ldots, x_{d} are real numbers, and A is a doubly stochastic $d \times d$ matrix. Then

$$
\sum_{k=1}^{d} f\left(y_{k}\right) \geq \sum_{k=1}^{d} f\left(x_{k}\right), \quad \text { where }\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{d}
\end{array}\right)=A\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{d}
\end{array}\right)
$$

Proof. For each k, write

$$
y_{k}=\sum_{j=1}^{d} A(k, j) x_{j}
$$

By Eq. 1 , since f is concave,

$$
f\left(y_{k}\right) \geq \sum_{j=1}^{d} A(k, j) f\left(x_{j}\right)
$$

Now sum over $k=1, \ldots, d$ to get

$$
\begin{aligned}
\sum_{k=1}^{d} f\left(y_{k}\right) & \geq \sum_{k=1}^{d} \sum_{j=1}^{d} A(k, j) f\left(x_{j}\right) \\
& =\sum_{j=1}^{d}\left(\sum_{k=1}^{d} A(k, j)\right) f\left(x_{j}\right)=\sum_{j=1}^{d} f\left(x_{j}\right)
\end{aligned}
$$

since A is doubly stochastic, so $\sum_{k=1}^{d} A(k, j)=1$ for all j.

1.4 Maximizing Coding Gain

Suppose that M is a positive definite symmetric $d \times d$ matrix. Let U be any $d \times d$ orthogonal matrix and define

$$
M_{U} \stackrel{\text { def }}{=} U^{T} M U
$$

Such a similarity transformation preserves symmetry:

$$
M_{U}^{T}=\left(U^{T} M U\right)^{T}=U^{T} M^{T}\left(U^{T}\right)^{T}=U^{T} M U=M_{U} .
$$

It also preserves eigenvalues. Suppose that λ is an eigenvalue of M. Let \mathbf{x} be a nonzero vector with $M \mathbf{x}=\lambda \mathbf{x}$, let $\mathbf{y}=U^{T} \mathbf{x} \neq \mathbf{0}$, and compute

$$
M_{U} \mathbf{y}=U^{T} M U U^{T} \mathbf{x}=U^{T} M \mathbf{x}=\lambda U^{T} \mathbf{x}=\lambda \mathbf{y}
$$

Thus λ is an eigenvalue of M_{U}. A similar argument shows that every eigenvalue of M_{U} is also an eigenvalue of M. Hence M_{U} has all positive eigenvalues just like M and is likewise positive definite.

Transform coding gain from U measures the concentration of variance onto the main diagonal elements of M_{U} :

$$
G(U) \stackrel{\text { def }}{=} \sum_{k=1}^{d} \log \frac{1}{M_{U}(k, k)}=\log \prod_{k=1}^{d} \frac{1}{M_{U}(k, k)},
$$

This requires $M_{U}(k, k)>0$, all k, which is assured by Theorem 2 and its consequences.

Theorem 4. For any orthogonal U,

$$
G(U) \leq-\log \operatorname{det} M
$$

Equality holds if and only if U diagonalizes M.
Proof. Observe that \log is a concave function, and that

$$
-G(U)=\sum_{k=1}^{d} \log M_{U}(k, k)
$$

But the diagonal elements of $M_{U}(k, k)$ are the output of a doubly stochastic matrix applied to the vector of eigenvalues $\lambda_{1}, \ldots, \lambda_{d}$ of M. By Theorem 3,

$$
-G(U) \geq \sum_{k=1}^{d} \log \lambda_{k}=\log \operatorname{det} M
$$

from which the inequality follows.
Equality holds if and only if U diagonalizes M, in which case M_{U} is a diagonal matrix with some permutation of the eigenvalues on its main diagonal.

1.5 Minimizing Entropy

Recall that the trace of a matrix M, denoted $\operatorname{tr} M$, is the sum of it main diagonal elements, and also the sum of its eigenvalues:

$$
\operatorname{tr} M \stackrel{\text { def }}{=} \sum_{k=1}^{d} M(k, k)=\sum_{k=1}^{d} \lambda_{k} .
$$

Thus trace is invariant under similarity transformations:

$$
(\forall U) \operatorname{tr} M_{U}=\operatorname{tr} M
$$

Dividing M_{U} by $\operatorname{tr} M$ normalizes the main diagonal to be nonnegative with sum 1. It may then be considered a discrete pdf, and its concentration measured by entropy:

$$
\sum_{k=1}^{d} p_{U}(k) \log \frac{1}{p_{U}(k)}
$$

where $p_{U}(k) \stackrel{\text { def }}{=} M_{U}(k, k) / \operatorname{tr} M_{U}=M_{U}(k, k) / \operatorname{tr} M$.
However, the normalization is unnecessary since the function $x \rightarrow x \log (1 / x=$ $-x \log x$ is concave on all of \mathbf{R}^{+}, as may be easily checked by differentiation. It may be also extended to $x=0$ by continuity as $0 \log 0=0 \log (1 / 0)=0$. Instead, consider the unnormalized entropy

$$
H(U) \stackrel{\text { def }}{=} \sum_{k=1}^{d} M_{U}(k, k) \log \frac{1}{M_{U}(k, k)}
$$

This function has a feature in common with H, proved by a similar application of Theorem 3:

Theorem 5. The minimum value of $H(U)$, which is

$$
\sum_{k=1}^{d} \lambda_{k} \log \frac{1}{\lambda_{k}}
$$

is attained at any orthogonal matrix U that diagonalizes M.

1.6 Information Cost Functions

Any concave function $f: \mathbf{R} \rightarrow \mathbf{R}$ defines an information cost function:

$$
I(U) \stackrel{\text { def }}{=} \sum_{k=1}^{d} f\left(M_{U}(k, k)\right)
$$

Again, Theorem 3 implies that I behaves like transform coding gain:
Theorem 6. The minimum value of $I(U)$ is attained at any orthogonal matrix U that diagonalizes M.

Since the Karhonen-Loève transform is the diagonalizing orthogonal matrix for the empirical covariance matrix, these results may be summarized as follows:

Theorem 7. Suppose that M is the empirical covariance matrix for a set of samples $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\} \subset \mathbf{R}^{d}$. Let $I(U)$ be any information cost function on the main diagonal of M_{U}. Then the Karhonen-Loève transform U, which makes M_{U} diagonal, attains the minimum value for $I(U)$.

