Compression

Mladen Victor WICKERHAUSER

Washington University in St. Louis, Missouri
victor@wustl.edu
http://www.math.wustl.edu/~victor

Dimensionality Reduction and Manifold Estimation
PMF - University of Zagreb
Winter, 2022

Matrix Operator Norm

Setup: $m \times n$ matrix A, C-valued coefficients $a_{i j}$.
Goal: for $A: \mathbf{E}^{n} \rightarrow \mathbf{E}^{m}$, estimate

$$
\|A\|_{\mathrm{op}} \stackrel{\text { def }}{=} \sup _{x \neq 0} \frac{\|A x\|}{\|x\|}=\left(\sup _{x \neq 0} \frac{\|A x\|^{2}}{\|x\|^{2}}\right)^{1 / 2}
$$

But $\|A x\|^{2}=\langle A x, A x\rangle=\left\langle x, A^{*} A x\right\rangle$, for adjoint $A^{*} \stackrel{\text { def }}{=} \bar{A}^{T}$.
$A^{*} A$ is $n \times n$ and

- (hermitean) symmetric: $\left(A^{*} A\right)^{*}=A^{*}\left(A^{*}\right)^{*}=A^{*} A$.
- positive semidefinite: $\left\langle x, A^{*} A x\right\rangle=\langle A x, A x\rangle=\|A x\|^{2} \geq 0$,
so by the spectral theorem for hermitean matrices, its eigenvalues are purely real and nonnegative.

Singular Values

Suppose $\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0$ are the eigenvalues of $A^{*} A$.
(It is traditional to list them in decreasing order, with multiplicity, possibly with multiple 0s at the lower end.)
Then $\sigma_{k} \stackrel{\text { def }}{=} \sqrt{\lambda_{k}}, k=1, \ldots, n$ are called the singular values of A. Lemma

- $\|A\|_{\mathrm{op}}=\sigma_{1}=\max \left\{\sigma_{k}: k=1, \ldots, n\right\}$.
- Rank of A is the number of nonzero singular values, counting multiplicity.
- Nonzero singular values of A are the same as for A^{*}, counting multiplicity.

Proof.

Apply the spectral theorem, use the n linearly independent eigenvectors of $A^{*} A$.

Singular Value Decomposition

Theorem
Matrix $A \in \mathbf{C}^{m \times n}$ can be factored as $A=U S V^{*}$, where

- U is $m \times m$ unitary (so $U^{*} U=1$),
- V is $n \times n$ unitary (so $V^{*} V=\mathrm{I}$),
- S is $m \times n$ diagonal with $S_{k k}=\sigma_{k}, k=1, \ldots, \min (m, n)$ being singular values σ_{k} of A, with multiplicity.

Proof.

Diagonalize $A^{*} A=V S^{*} S V^{*}$ by spectral theorem to find unitary V. Likewise, diagonalize hermitean symmetric $A A^{*}=U S S^{*} U^{*}$ with unitary U.

SVD Properties

Let the rank of A be denoted by $r \leq \min (m, n)$. The matrices U, S, V may be chosen so that

- $\sigma_{1} \geq \cdots \geq \sigma_{r}>0=\sigma_{r+1}=\cdots$ gives the diagonal of S, with $S_{i j}=0$ for all other $1 \leq i \leq m$ and $1 \leq j \leq n$.
- Columns U_{1}, \ldots, U_{r} of U are an o.n.b. for column space $C(A)$.
- Columns U_{r+1}, \ldots, U_{m} of U are an o.n.b. for cokernel $N\left(A^{*}\right)$.
- Rows $V_{1}^{*}, \ldots, V_{r}^{*}$ of V^{*} are an o.n.b. for the row space $R(A)$.
- Rows $V_{r+1}^{*}, \ldots, V_{n}^{*}$ of V^{*} are an o.n.b. for the kernel $N(A)$.

Put $\tilde{U}=\left[U_{1}, \ldots, U_{r}\right], \tilde{V}=\left[V_{1}, \ldots, V_{r}\right]$, and $\tilde{S}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ to get the partial SVD:

$$
A=\tilde{U} \tilde{S} \tilde{V}^{*}
$$

which omits the singular values $\sigma_{k}=0$ that contribute nothing.

SVD Applications 1

Let $A=U S V^{*}$ be factored with the properties above, $\left\{U_{k}\right\}$ the columns of U, and $\left\{V_{k}\right\}$ the columns of V. Then,

- Put $P=\left[U_{1}, \ldots, U_{r}\right]$. Then $P P^{*}: \mathbf{C}^{m} \rightarrow C(A)$ is the orthogonal projection, while $P^{*} P=\mathrm{I}: \mathbf{C}^{r} \rightarrow \mathbf{C}^{r}$.
- Put $Q=\left[V_{r+1}, \ldots, V_{n}\right]$. Then $Q Q^{*}: \mathbf{C}^{n} \rightarrow N(A)$ is the orthogonal projection, while $Q^{*} Q=\mathrm{I}: \mathbf{C}^{n-r} \rightarrow \mathbf{C}^{n-r}$.
- The pseudoinverse of $A=U S V^{*}$ is $A^{g} \stackrel{\text { def }}{=} V S^{g} U^{*}$, where

$$
S_{i j}^{g} \stackrel{\text { def }}{=} \begin{cases}1 / S_{i j}, & S_{i j} \neq 0 \\ 0, & S_{i j}=0\end{cases}
$$

It satisfies all the Penrose conditions: (1) $A A^{g} A=A$, (2) $A^{g} A A^{g}=A^{g}$, (3) $\left(A A^{g}\right)^{*}=A A^{g}$, and (4) $\left(A^{g} A\right)^{*}=A^{g} A$.

SVD Applications 2

If A is real, square, symmetric, and positive definite, then $U=V$ is real-valued orthogonal and $S=\Lambda$ is the diagonalised matrix of eigenvalues of A : $A=U \wedge U^{T}$.

Example: A is the covariance matrix of a d-variate normal random variable $X \in \mathbf{R}^{d}$, so

$$
A=\operatorname{cov}(X)=\mathrm{E}\left([X-\bar{X}][X-\bar{X}]^{T}\right) \in \mathbf{R}^{d \times d}
$$

if X is a column vector.
The screeplot of the singular values $\left\{\left(k, \sigma_{k}\right): k=1,2, \ldots, n\right\}$ (which are the eigenvalues of A) depicts the accumulation of variance by number of variates.

Karhunen-Loève

Setup: \boldsymbol{d}-variate normal random vector $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$ with mean $\mu=\mathrm{E}(\mathbf{x}) \in \mathbf{E}^{d}$ and covariance matrix $\Sigma \in \mathbf{R}^{d \times d}$:

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{d}
\end{array}\right) ; \quad \begin{aligned}
& \mu=\mathrm{E}(\mathbf{x}) \\
& \\
& \Sigma=\mathrm{E}\left((\mathbf{x}-\mu)(\mathbf{x}-\mu)^{T}\right) .
\end{aligned}
$$

(Here $\mathbf{v v}^{T}(i, j)=v_{i} v_{j}, 1 \leq i, j \leq d$, with column vectors \mathbf{v}.)
Σ is symmetric positive (semi-)definite. By the spectral theorem,

$$
\Sigma=U D U^{T}, \quad U, D \in \mathbf{R}^{d \times d}
$$

with orthogonal U and diagonal $D \geq 0$. Put $\sigma_{i}^{2} \stackrel{\text { def }}{=} D(i, i)$ to get:
Theorem
Coordinates of $U^{\top}(\mathbf{x}-\mu)$ are $\mathcal{N}\left(0, \sigma_{i}^{2}\right), i=1, \ldots, d$, and independent.

Karhunen-Loève Basis

Columns $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{d}\right\}$ of unitary U are an orthonormal basis for \mathbf{E}^{d}, called the Karhunen-Loève basis for the random vector \mathbf{x}.

WOLOG, choose indices such that $\sigma_{1}^{2} \geq \sigma_{2}^{2} \geq \cdots \geq \sigma_{d}^{2} \geq 0$.
The \mathbf{u}_{1} component has the greatest variance (σ_{1}^{2}) and contains the most information about position in S.
If $\sigma_{k}^{2}=0$ for $k>p$, then S is contained in a p-dimensional submanifold of \mathbf{E}^{d}.

Generalize to small variances: If $\sigma_{k}^{2}<\sigma^{2}$ for $k>p$ and some threshold variance σ^{2}, say that S is essentially p-dimensional.

Hilbert Matrix

Generate examples of essentially p-dimensional data in \mathbf{E}^{d} with $p \ll d$ using the $d \times d$ Hilbert matrix:

$$
\operatorname{hilb}(d) \stackrel{\text { def }}{=}\left(\frac{1}{i+j-1}\right)_{1 \leq i, j \leq d}=\left(\begin{array}{cccc}
1 & \frac{1}{2} & \cdots & \frac{1}{d} \\
\frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{d+1} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1}{d} & \frac{1}{d+1} & \cdots & \frac{1}{2 d-1}
\end{array}\right)
$$

Symmetric and positive definite \Longrightarrow its singular values are its eigenvalues, with the estimate

$$
\sigma_{p}=\lambda_{p}=O\left(2^{-5 p}\right), \quad p \rightarrow \infty
$$

K-L Transform Compression

Setup:

- samples $\left\{\mathbf{x}_{n}\right\} \in \mathbf{E}^{d}$ from r.v. \mathbf{x} ("signals")
- K-L basis U for \mathbf{x}
- quality factor σ^{2}

Method:

- transform $\mathbf{y}=U^{T} \mathbf{x}$
- quantize $\mathbf{q}=\lfloor\mathbf{y} / \sigma\rfloor \subset \mathbf{Z}$
- remove redundancy in \mathbf{q}

JPEG

Joint Photographic Experts Group image compression algorithm:

- $\mathbf{x} \in \mathbf{E}^{8 \times 8}$ is an 8×8 subimage
- $\mathbf{x}(i, j) \in \mathbf{R}$ is the pixel at i, j
- model the covariance by

$$
\mathrm{E}\left(\mathbf{x}(i, j) \mathbf{x}\left(i^{\prime}, j^{\prime}\right)\right)=f\left(\left(i^{\prime}-i\right)^{2}+\left(j^{\prime}-j\right)^{2}\right)
$$

for some decreasing function f like $f(r)=e^{-r}$.
For all such models, Σ commutes with translation (in i, j), hence is a convolution, hence is diagonalized by the discrete Fourier or cosine transform. So, use DCT as the K-L transform.

Details:
https://www.iso.org/standard/18902.html
https://jpeg.org/jpeg/index.html

Empirical K-L from Samples

Idea: estimate Σ from samples $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \in \mathbf{E}^{d}$ without knowing the distribution of \mathbf{x}.

- Sample mean

$$
\overline{\mathbf{x}} \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}
$$

- Sample covariance

$$
\bar{\Sigma} \stackrel{\text { def }}{=} \frac{1}{n-1} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{T}
$$

- Approximate K-L basis: diagonalize $\bar{\Sigma}$ with orthogonal U

$$
\bar{\Sigma}=U D U^{T}, \quad D=\operatorname{diag}\left(s_{1}^{2}, \ldots, s_{d}^{2}\right) \in \mathbf{R}^{d \times d}
$$

Face Coding by Empirical K-L

Figure: Face, minus average face, contains the important information.

Remark. Data is from Lawrence Sirovich, 143 images, 128×128 pixels each (so $d \approx 16,000$) in 8 -bit grayscale, of male, Brown University students without facial hair, shifted and scaled to fixed eye points.

Tangent Space Estimation by Empirical K-L

Figure: Principal components of a scatterplot are good candidates for an o.n.b. for the tangent space.

Complexity of Empirical K-L

For data $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \in \mathbf{E}^{d}$:

- Sample mean $\overline{\mathrm{x}}$ costs $O(n d)$
- Mean-subtracted samples $\left\{\mathbf{x}_{i}^{\prime}\right\}$ cost $O(n d)$
- Sample covariance $\bar{\Sigma}$ costs $O\left(n d^{2}\right)$
- Diagonalizing $\bar{\Sigma}$ with orthogonal U costs $O\left(d^{3}\right)$.
- Transform one vector $\mathbf{x} \mapsto U^{T} \mathbf{x}$ costs $O\left(d^{2}\right)$.
- Transform n data vectors costs $O\left(n d^{2}\right)$.

Remark. U is sensitive to the data and may not be nice.
Empirical K-L variables are uncorrelated (over the samples), not independent.

Orthogonal Transform Coding

Given data $\mathbf{x}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \subset \mathbf{E}^{d}$ and an orthogonal transform $U: \mathbf{E}^{d} \rightarrow \mathbf{E}^{d}$, the empirical covariance of transformed data $U^{T} \mathbf{x}$ is:

$$
\bar{\Sigma}_{U} \stackrel{\text { def }}{=} \frac{1}{n-1} \sum_{i=1}^{n}\left(U^{T}\left[\mathbf{x}_{i}-\overline{\mathbf{x}}\right]\right)\left(U^{T}\left[\mathbf{x}_{i}-\overline{\mathbf{x}}\right]\right)^{T}=U^{T} \bar{\Sigma} U
$$

where $\bar{\Sigma}$ is the empirical covariance of untransformed \mathbf{x}.
Trace is invariant under this similarity transform:

$$
\sum_{i=1}^{n} \bar{\Sigma}_{U}(i, i)=\operatorname{tr} \bar{\Sigma}_{U}=\operatorname{tr} U^{T} \bar{\Sigma} U=\operatorname{tr} \bar{\Sigma}=\sum_{i=1}^{n} \bar{\Sigma}(i, i)
$$

Exercise: $\operatorname{tr} \bar{\Sigma}=\frac{1}{n-1} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\overline{\mathbf{x}}\right\|^{2}$, the mean squared deviation.

Best Orthogonal Basis

$\bar{\Sigma}$ and $\bar{\Sigma}_{U}$ are symmetric positive definite matrices.
Idea: find good U by comparing diagonals of $\bar{\Sigma}_{U}$ and $\bar{\Sigma}$.
Start by normalizing the covariances:

$$
p_{i}(U) \stackrel{\text { def }}{=} \frac{1}{\operatorname{tr} \bar{\Sigma}_{U}} \bar{\Sigma}_{U}(i, i), \quad i=1, \ldots, d
$$

Observe that $p(U) \stackrel{\text { def }}{=}\left\{p_{i}(U): i=1, \ldots, d\right\}$ is a pdf for every U :

$$
(\forall i) p_{i}(U) \geq 0 ; \quad \sum_{i=1}^{d} p_{i}(U)=1
$$

Given: fixed library of orthogonal transforms $\mathbf{U}=\left\{U_{1}, \ldots, U_{N}\right\}$.
Define the best (orthogonal) basis from \mathbf{U} to be the optimum of some concentration function on the pdf $p(U)$.

Transform Coding Gain

Transform coding gain from U measures concentration on the diagonal:

$$
G(U) \stackrel{\text { def }}{=} \sum_{i=1}^{d} \log \frac{1}{p_{i}(U)}=\log \prod_{i=1}^{d} \frac{1}{p_{i}(U)},
$$

with $p(U)$ defined as before. This requires $p_{i}(U)>0$, all i.
Note: If $\bar{\Sigma}_{U}$ is diagonal, then

$$
G(U)=\log \frac{(\operatorname{tr} \bar{\Sigma})^{d}}{\operatorname{det} \bar{\Sigma}}
$$

Exercise: Transform coding gain $G(U)$ is maximized by the empirical K-L basis U for \mathbf{x}. (Hint: use Cholesky factorization.)

Entropy

An alternative measure of (inverse) concentration is the Shannon-Weaver entropy of the normalized diagonal elements:

$$
H(U) \stackrel{\text { def }}{=} \sum_{i=1}^{d} p_{i}(u) \log \frac{1}{p_{i}(U)}=\log \prod_{i=1}^{d}\left(\frac{1}{p_{i}(U)}\right)^{p_{i}(U)}
$$

with $p(U)$ as before and the convention that $0 \log (1 / 0)=0$.
The theoretical dimension, an estimate of the number of coordinates that contain most of the variance of \mathbf{x} in the U basis, is $\exp H(U)$.
Lemma
Entropy $H(U)$ is minimized by the empirical $K-L$ basis U for \mathbf{x}.

Improvements from Constraints

Requiring that the underlying orthogonal functions be smooth has advantagse.

Figure: Eigenfaces versus principal components with imposed smoothness

Haar Basis

Problem: find a basis for $L^{2}(\mathbf{R})$ that is countable, orthonormal, and simple (piecewise constant and compactly supported).
Theorem (Haar, 1910)
Let

$$
w(t)= \begin{cases}1, & 0 \leq t<\frac{1}{2} \\ -1, & \frac{1}{2} \leq t<1 \\ 0, & \text { otherwise }\end{cases}
$$

Then $W \stackrel{\text { def }}{=}\left\{2^{-j / 2} w\left(2^{-j} t-k\right): j, k \in \mathbf{Z}\right\}$ is an o.n.b. for $L^{2}(\mathbf{R})$.
Proof.
Decompose $L^{2}(\mathbf{R})=\oplus \sum_{j \in \mathbf{Z}} W_{j}$ "by scales," where

$$
W_{j} \stackrel{\text { def }}{=} \overline{\operatorname{span}}\left\{2^{-j / 2} w\left(2^{-j} t-k\right): k \in \mathbf{Z}\right\} .
$$

Show orthogonality directly, and density by construction.

Fast Haar Transform 1

Idea: find W_{j} coefficients by successive approximation. Let

$$
\mathbf{1}(t) \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
1, & 0 \leq t<1 \\
0, & \text { otherwise. }
\end{array}, \quad B_{0} \stackrel{\text { def }}{=}\{\mathbf{1}(t-k): k \in \mathbf{Z}\}\right.
$$

denote the closed span by $V_{0} \stackrel{\text { def }}{=} \overline{\operatorname{span}} B_{0} \subset L^{2}(\mathbf{R})$, and put:

$$
P_{0}: L^{2}(\mathbf{R}) \rightarrow V_{0}, \quad P_{0} f(t) \stackrel{\text { def }}{=} \sum_{b \in B_{0}}\langle f, b\rangle b(t)
$$

(B_{0} is an orthonormal basis for V_{0}, the piecewise constant square integrable functions with jumps at integers.)

Exercise: P_{0} is an orthogonal projection.

Fast Haar Transform 2

Note that $\langle w, \mathbf{1}\rangle=0$ and $w(t)=\mathbf{1}(2 t)-\mathbf{1}(2 t-1)$. This suggests:
$V_{j} \stackrel{\text { def }}{=} \overline{\operatorname{span}} B_{j}, \quad$ with o.n.b. $B_{j} \stackrel{\text { def }}{=}\left\{2^{-j / 2} \mathbf{1}\left(2^{-j} t-k\right): k \in \mathbf{Z}\right\}$,
just like W_{j} has o.n.b. $\left\{2^{-j / 2} w\left(2^{-j} t-k\right): k \in \mathbf{Z}\right\}$. Then

$$
w \in V_{0}^{\perp} \cap V_{-1} \Longrightarrow W_{0} \subset V_{0}^{\perp} \cap V_{-1} \Longrightarrow W_{0} \subset V_{0}^{\perp} \cap V_{-1}
$$

Get the Haar expansion from successive approximation:
Lemma

- $\{0\} \subset \cdots \subset V_{+1} \subset V_{0} \subset V_{-1} \subset \cdots \subset L^{2}(\mathbf{R})$,
- for all $j \in \mathbf{Z}, V_{j}=V_{j+1} \oplus W_{j+1}$.

Fast Haar Transform 3

Denote by P_{j} and Q_{j} the orthogonal projections onto V_{j} and W_{j}, respectively

Use the o.n.b.s for V_{j} and W_{j} to factor these orthogonal projections into transforms H, G acting on coefficient sequences:

$$
P_{j} \stackrel{\text { def }}{=} H H^{*}, \quad Q_{j} \stackrel{\text { def }}{=} G G^{*},
$$

where H and G are linear transformations on $\ell^{2}(\mathbf{Z})$ composed with decimation by 2 , keeping only half the output.

Remark. For simplicity of analysis, H and G are assumed to be the same for all j. This suffices for the fast Haar decomposition. It may be generalized with a family of operators $\left\{\left(H_{j}, G_{j}\right): j \in \mathbf{Z}\right\}$ to control size properties, something done by Morten Nielsen.

Fast Haar Transform 4

Generate coefficient sequences with H and G :

Figure: Low-pass (H) and high-pass (G) filtering

Perfect reconstruction using adjoints H^{*} and G^{*} :

Figure: Reconstruct from low (V) and high (W) frequency components

Fast Haar Transform 5

Apply filtering to coefficient sequences recursively:

Figure: Recursive splitting algorithm

Low-Pass H and High-Pass G

General Conditions on H, G :

- $H H^{*}=I$ and $G G^{*}=I$, so $H^{*} H$ and $G^{*} G$ are orthogonal projections;
- $H G^{*}=G H^{*}=0$, so H and G project onto orthogonal subspaces;
- $H^{*} H+G^{*} G=I$, so H and G together allow perfect reconstruction.

Additional conditions:

- $\phi(x)=H \phi(x) \stackrel{\text { def }}{=} \sum_{k} h_{k} \phi(2 x-k)$ has a fixed point in $L^{2}(\mathbf{R}) \cap L^{1}(\mathbf{R})$ with $\|\phi\|=1$.
- ϕ is nice, for example smooth and compactly supported.

Example: Haar-Walsh Splitting

For $x \in \ell^{2}(\mathbf{Z})$, define

$$
\left.\begin{array}{rl}
H x(n) & =[x(2 n)+x(2 n+1)] / 2 ; \\
G x(n) & =x(2 n+1)-x(2 n)
\end{array}\right\} \begin{array}{ll}
H^{*} x(n) & = \begin{cases}x\left(\frac{n}{2}\right), & \text { if } n \text { is even; } \\
x\left(\frac{n-1}{2}\right), & \text { if } n \text { is odd; }\end{cases} \\
G^{*} x(n) & = \begin{cases}-\frac{1}{2} x\left(\frac{n}{2}\right), & \text { if } n \text { is even; } \\
\frac{1}{2} x\left(\frac{n-1}{2}\right), & \text { if } n \text { is odd. }\end{cases}
\end{array}
$$

Exercise: $H H^{*} x=x, G G^{*} x=x$, and $x=H^{*} H x+G^{*} G x$.

Fast Wavelet and Wavelet Packet Transforms

Figure: Fast Haar wavelet tranform (Mallat)

Figure: Complete wavelet packet decomposition

Fast Transforms Into Other Bases

Figure: Fast Fourier-like subband transform

Figure: Some other adapted wavelet packet transform

How Many Such Bases?

Figure: Counting bases obtainable by Mallat's algorithm

Let A_{L} be the number of distinct orthonormal bases with L levels of decomposition. Then $A_{0}=1$ and $A_{1}=2$, while

$$
A_{L+1}=1+A_{L}^{2} \quad \Longrightarrow A_{L+1}>2^{2^{L}}, \quad L>0
$$

Approximate K-L Basis

Figure: Best basis (xx) among the fast bases (x) among all the orthonormal bases including empirical K-L basis (o).

Concentration of Variance

Compute the transform coding gain by comparing cumulative variance:

Figure: Example cumulative variance in: original basis (L), best fast basis (M), and empirical K-L basis (R).

Remark. Data is from Lawrence Sirovich, mentioned above.

Haar Wavelet Packets

Figure: Haar wavelet packets from three levels

Wavelet and Best-Basis Image Compression

Figure: Wavelet compression using fast Haar tranform

Figure: Best-basis compression using wavelet packets

Phase Plane

Figure: Idealized depiction of the phase plane with orthogonal atoms

Dirac and Fourier Atoms in the Phase Plane

Standard Basis

Fourier Basis

Figure: Samples (Dirac atoms) versus pure frequencies (Fourier atoms)

Gabor Atoms in the Phase Plane

Narrow windows

Wide windows

Figure: Windowed or Short-Time Fourier bases (Gabor atoms)

Wavelets Decomposition of the Phase Plane

Figure: Wavelet orthonormal basis (Littlewood-Paley atoms)

Best Basis Analysis of Chirps in the Phase Plane

Linear chirp, best level

Quadratic chirp, best basis

Figure: Atomic decomposition of linear and quadratic chirps

CUR Approximation

Given: Samples $X_{1}, \ldots, X_{m} \in \mathbf{R}^{n}$ from r mixed n-variate normals.
Goal: Identify the r principal axes of the component distributions from the mixture matrix $A \in \mathbf{R}^{m \times n}$,

$$
A=\left(\begin{array}{ccc}
X_{1}(1) & \cdots & X_{1}(n) \\
\vdots & \ddots & \vdots \\
X_{m}(1) & \cdots & X_{m}(n)
\end{array}\right)
$$

using columns and rows selected from A.
Example: cur-talk.pdf, (Mark Embree, p.7)
Idea: Choose r columns $C \in \mathbf{R}^{m \times r}$ and r rows $R \in \mathbf{R}^{r \times n}$ and an $r \times r$ unitary U so as to minimize

$$
\|A-C U R\|_{\mathrm{op}}
$$

CUR Algorithm

Method: factor $A=V S W^{T}$ by SVD. Either fix r or fix a threshold $\sigma>0$ from which the effective rank r will be computed by $\sigma_{k}<\sigma$ if $k>r$.

- Choose top r rows of V by norm; use those rows of A in R.
- Choose top r columns of W^{T} by norm; use those columns of A in C.
- Compute $U=C^{g} A R^{g}$, where X^{g} is the Moore-Penrose pseudoinverse of X.
Claim: $\|A-C U R\|_{\text {op }}$ is minimal over all such choices.
Proof: CS6220-Lecture14-CUR.pdf (Anil Damle, p.4)
Remark. Complexity is moderate, requiring three SVDs.

References

- Gilbert Strang. "Chapter 7: The Singular Value Decomposition." Introduction to Linear Algebra, 4th Ed., Wellesley-Cambridge, 2009.
- Pavel Štovíćek. "Spectral Analysis of the Hilbert Matrix." Lecture, Department of Mathematics, Faculty of Nuclear Science, Czech Technical University in Prague.
- Michael W. Mahoney and Petros Drineas. "CUR matrix decompositions for improved data analysis." Proceedings of the National Academy of Sciences, $106: 3$ (2009), pp.697-702.
- Morten Nielsen. Size Properties of Wavelet Packets. Ph.D. thesis, Washington University in St. Louis, 2000.
- Mladen Victor Wickerhauser. Adapted Wavelet Analysis from Theory to Software. AK Peters/CRC Press, Boston, 1994.

