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Matrix Operator Norm

Setup: m × n matrix A, C-valued coefficients aij .

Goal: for A : En → Em, estimate

‖A‖op
def= sup

x 6=0

‖Ax‖
‖x‖ =

(
sup
x 6=0

‖Ax‖2
‖x‖2

)1/2

.

But ‖Ax‖2 = 〈Ax ,Ax〉 = 〈x ,A∗Ax〉, for adjoint A∗ def= ĀT .

A∗A is n × n and
I (hermitean) symmetric: (A∗A)∗ = A∗(A∗)∗ = A∗A.
I positive semidefinite: 〈x ,A∗Ax〉 = 〈Ax ,Ax〉 = ‖Ax‖2 ≥ 0,

so by the spectral theorem for hermitean matrices, its eigenvalues
are purely real and nonnegative.



Singular Values

Suppose λ1 ≥ · · · ≥ λn ≥ 0 are the eigenvalues of A∗A.
(It is traditional to list them in decreasing order, with multiplicity,
possibly with multiple 0s at the lower end.)

Then σk
def=
√
λk , k = 1, . . . , n are called the singular values of A.

Lemma
I ‖A‖op = σ1 = max{σk : k = 1, . . . , n}.
I Rank of A is the number of nonzero singular values, counting

multiplicity.
I Nonzero singular values of A are the same as for A∗, counting

multiplicity.

Proof.
Apply the spectral theorem, use the n linearly independent
eigenvectors of A∗A.



Singular Value Decomposition

Theorem
Matrix A ∈ Cm×n can be factored as A = USV ∗, where
I U is m ×m unitary (so U∗U = I),
I V is n × n unitary (so V ∗V = I),
I S is m × n diagonal with Skk = σk , k = 1, . . . ,min(m, n)

being singular values σk of A, with multiplicity.

Proof.
Diagonalize A∗A = VS∗SV ∗ by spectral theorem to find unitary V .
Likewise, diagonalize hermitean symmetric AA∗ = USS∗U∗ with
unitary U.



SVD Properties

Let the rank of A be denoted by r ≤ min(m, n). The matrices
U, S,V may be chosen so that
I σ1 ≥ · · · ≥ σr > 0 = σr+1 = · · · gives the diagonal of S, with

Sij = 0 for all other 1 ≤ i ≤ m and 1 ≤ j ≤ n.
I Columns U1, . . . ,Ur of U are an o.n.b. for column space C(A).
I Columns Ur+1, . . . ,Um of U are an o.n.b. for cokernel N(A∗).
I Rows V ∗1 , . . . ,V ∗r of V ∗ are an o.n.b. for the row space R(A).
I Rows V ∗r+1, . . . ,V ∗n of V ∗ are an o.n.b. for the kernel N(A).

Put Ũ = [U1, . . . ,Ur ], Ṽ = [V1, . . . ,Vr ], and S̃ = diag (σ1, . . . , σr )
to get the partial SVD:

A = ŨS̃Ṽ ∗,

which omits the singular values σk = 0 that contribute nothing.



SVD Applications 1

Let A = USV ∗ be factored with the properties above, {Uk} the
columns of U, and {Vk} the columns of V . Then,
I Put P = [U1, . . . ,Ur ]. Then PP∗ : Cm → C(A) is the

orthogonal projection, while P∗P = I : Cr → Cr .
I Put Q = [Vr+1, . . . ,Vn]. Then QQ∗ : Cn → N(A) is the

orthogonal projection, while Q∗Q = I : Cn−r → Cn−r .
I The pseudoinverse of A = USV ∗ is Ag def= VSg U∗, where

Sg
ij

def=
{

1/Sij , Sij 6= 0,
0, Sij = 0.

It satisfies all the Penrose conditions: (1) AAg A = A, (2)
Ag AAg = Ag , (3) (AAg )∗ = AAg , and (4) (Ag A)∗ = Ag A.



SVD Applications 2

If A is real, square, symmetric, and positive definite, then U = V is
real-valued orthogonal and S = Λ is the diagonalised matrix of
eigenvalues of A: A = UΛUT .

Example: A is the covariance matrix of a d-variate normal random
variable X ∈ Rd , so

A = cov (X ) = E([X − X̄ ][X − X̄ ]T ) ∈ Rd×d ,

if X is a column vector.

The screeplot of the singular values {(k, σk) : k = 1, 2, . . . , n}
(which are the eigenvalues of A) depicts the accumulation of
variance by number of variates.



Karhunen-Loève
Setup: d-variate normal random vector x ∼ N (µ,Σ) with mean
µ = E(x) ∈ Ed and covariance matrix Σ ∈ Rd×d :

x =

x1
...

xd

 ;
µ = E(x);

Σ = E
(

(x− µ)(x− µ)T
)
.

(Here vvT (i , j) = vi vj , 1 ≤ i , j ≤ d , with column vectors v.)

Σ is symmetric positive (semi-)definite. By the spectral theorem,

Σ = UDUT , U,D ∈ Rd×d ,

with orthogonal U and diagonal D ≥ 0. Put σ2
i

def= D(i , i) to get:

Theorem
Coordinates of UT (x− µ) are N (0, σ2

i ), i = 1, . . . , d, and
independent.



Karhunen-Loève Basis

Columns {u1, . . . ,ud} of unitary U are an orthonormal basis for
Ed , called the Karhunen-Loève basis for the random vector x.

WOLOG, choose indices such that σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
d ≥ 0.

The u1 component has the greatest variance (σ2
1) and contains the

most information about position in S.

If σ2
k = 0 for k > p, then S is contained in a p-dimensional

submanifold of Ed .

Generalize to small variances: If σ2
k < σ2 for k > p and some

threshold variance σ2, say that S is essentially p-dimensional.



Hilbert Matrix

Generate examples of essentially p-dimensional data in Ed with
p � d using the d × d Hilbert matrix:

hilb(d) def=
( 1

i + j − 1

)
1≤i ,j≤d

=



1 1
2 · · · 1

d

1
2

1
3 · · · 1

d+1

...
... . . . ...

1
d

1
d+1 · · · 1

2d−1


Symmetric and positive definite =⇒ its singular values are its
eigenvalues, with the estimate

σp = λp = O
(

2−5p
)
, p →∞.



K-L Transform Compression

Setup:
I samples {xn} ∈ Ed from r.v. x (“signals”)
I K-L basis U for x
I quality factor σ2

Method:
I transform y = UT x
I quantize q = by/σc ⊂ Z
I remove redundancy in q



JPEG

Joint Photographic Experts Group image compression algorithm:
I x ∈ E8×8 is an 8× 8 subimage
I x(i , j) ∈ R is the pixel at i , j
I model the covariance by

E(x(i , j)x(i ′, j ′)) = f ((i ′ − i)2 + (j ′ − j)2)

for some decreasing function f like f (r) = e−r .
For all such models, Σ commutes with translation (in i , j), hence is
a convolution, hence is diagonalized by the discrete Fourier or
cosine transform. So, use DCT as the K-L transform.

Details:
https://www.iso.org/standard/18902.html
https://jpeg.org/jpeg/index.html



Empirical K-L from Samples

Idea: estimate Σ from samples {x1, . . . , xn} ∈ Ed without knowing
the distribution of x.
I Sample mean

x̄ def= 1
n

n∑
i=1

xi

I Sample covariance

Σ̄ def= 1
n − 1

n∑
i=1

(xi − x̄)(xi − x̄)T

I Approximate K-L basis: diagonalize Σ̄ with orthogonal U

Σ̄ = UDUT , D = diag(s2
1 , . . . , s2

d ) ∈ Rd×d .



Face Coding by Empirical K-L

_
=

Figure: Face, minus average face, contains the important information.

Remark. Data is from Lawrence Sirovich, 143 images, 128× 128
pixels each (so d ≈ 16, 000) in 8-bit grayscale, of male, Brown
University students without facial hair, shifted and scaled to fixed
eye points.



Tangent Space Estimation by Empirical K-L

Tx

Range T

Tx+Range J

µ1z1

µ2z2

Range Ar
r

x

Br(x)

T

Range J

0

Figure: Principal components of a scatterplot are good candidates for an
o.n.b. for the tangent space.



Complexity of Empirical K-L

For data {x1, . . . , xn} ∈ Ed :
I Sample mean x̄ costs O(nd)
I Mean-subtracted samples {x′i} cost O(nd)
I Sample covariance Σ̄ costs O(nd2)
I Diagonalizing Σ̄ with orthogonal U costs O(d3).
I Transform one vector x 7→ UT x costs O(d2).
I Transform n data vectors costs O(nd2).

Remark. U is sensitive to the data and may not be nice.

Empirical K-L variables are uncorrelated (over the samples), not
independent.



Orthogonal Transform Coding

Given data x = {x1, . . . , xn} ⊂ Ed and an orthogonal transform
U : Ed → Ed , the empirical covariance of transformed data UT x is:

Σ̄U
def= 1

n − 1

n∑
i=1

(UT [xi − x̄])(UT [xi − x̄])T = UT Σ̄U,

where Σ̄ is the empirical covariance of untransformed x.
Trace is invariant under this similarity transform:

n∑
i=1

Σ̄U(i , i) = tr Σ̄U = tr UT Σ̄U = tr Σ̄ =
n∑

i=1
Σ̄(i , i).

Exercise: tr Σ̄ = 1
n−1

∑n
i=1 ‖xi − x̄‖2, the mean squared deviation.



Best Orthogonal Basis

Σ̄ and Σ̄U are symmetric positive definite matrices.

Idea: find good U by comparing diagonals of Σ̄U and Σ̄.

Start by normalizing the covariances:

pi (U) def= 1
tr Σ̄U

Σ̄U(i , i), i = 1, . . . , d .

Observe that p(U) def= {pi (U) : i = 1, . . . , d} is a pdf for every U:

(∀i) pi (U) ≥ 0;
d∑

i=1
pi (U) = 1.

Given: fixed library of orthogonal transforms U = {U1, . . . ,UN}.

Define the best (orthogonal) basis from U to be the optimum of
some concentration function on the pdf p(U).



Transform Coding Gain

Transform coding gain from U measures concentration on the
diagonal:

G(U) def=
d∑

i=1
log 1

pi (U) = log
d∏

i=1

1
pi (U) ,

with p(U) defined as before. This requires pi (U) > 0, all i .
Note: If Σ̄U is diagonal, then

G(U) = log (tr Σ̄)d

det Σ̄

Exercise: Transform coding gain G(U) is maximized by the
empirical K-L basis U for x. (Hint: use Cholesky factorization.)



Entropy

An alternative measure of (inverse) concentration is the
Shannon-Weaver entropy of the normalized diagonal elements:

H(U) def=
d∑

i=1
pi (u) log 1

pi (U) = log
d∏

i=1

( 1
pi (U)

)pi (U)
,

with p(U) as before and the convention that 0 log(1/0) = 0.

The theoretical dimension, an estimate of the number of
coordinates that contain most of the variance of x in the U basis,
is exp H(U).

Lemma
Entropy H(U) is minimized by the empirical K-L basis U for x.



Improvements from Constraints
Requiring that the underlying orthogonal functions be smooth has
advantagse.

Figure: Eigenfaces versus principal components with imposed smoothness



Haar Basis
Problem: find a basis for L2(R) that is countable, orthonormal,
and simple (piecewise constant and compactly supported).

Theorem (Haar, 1910)
Let

w(t) =


1, 0 ≤ t < 1

2
−1, 1

2 ≤ t < 1
0, otherwise.

Then W def= {2−j/2w(2−jt − k) : j , k ∈ Z} is an o.n.b. for L2(R).

Proof.
Decompose L2(R) = ⊕

∑
j∈Z Wj “by scales,” where

Wj
def= span {2−j/2w(2−jt − k) : k ∈ Z}.

Show orthogonality directly, and density by construction.



Fast Haar Transform 1

Idea: find Wj coefficients by successive approximation. Let

1(t) def=
{

1, 0 ≤ t < 1
0, otherwise.

, B0
def= {1(t − k) : k ∈ Z},

denote the closed span by V0
def= span B0 ⊂ L2(R), and put:

P0 : L2(R)→ V0, P0f (t) def=
∑

b∈B0

〈f , b〉b(t).

(B0 is an orthonormal basis for V0, the piecewise constant square
integrable functions with jumps at integers.)

Exercise: P0 is an orthogonal projection.



Fast Haar Transform 2

Note that 〈w , 1〉 = 0 and w(t) = 1(2t)− 1(2t − 1). This suggests:

Vj
def= span Bj , with o.n.b. Bj

def= {2−j/21(2−jt − k) : k ∈ Z},

just like Wj has o.n.b. {2−j/2w(2−jt − k) : k ∈ Z}. Then

w ∈ V⊥0 ∩ V−1 =⇒ W0 ⊂ V⊥0 ∩ V−1 =⇒ W0 ⊂ V⊥0 ∩ V−1.

Get the Haar expansion from successive approximation:

Lemma
I {0} ⊂ · · · ⊂ V+1 ⊂ V0 ⊂ V−1 ⊂ · · · ⊂ L2(R),
I for all j ∈ Z, Vj = Vj+1 ⊕Wj+1.



Fast Haar Transform 3

Denote by Pj and Qj the orthogonal projections onto Vj and Wj ,
respectively

Use the o.n.b.s for Vj and Wj to factor these orthogonal
projections into transforms H,G acting on coefficient sequences:

Pj
def= HH∗, Qj

def= GG∗,

where H and G are linear transformations on `2(Z) composed with
decimation by 2, keeping only half the output.

Remark. For simplicity of analysis, H and G are assumed to be
the same for all j . This suffices for the fast Haar decomposition. It
may be generalized with a family of operators {(Hj ,Gj) : j ∈ Z} to
control size properties, something done by Morten Nielsen.



Fast Haar Transform 4
Generate coefficient sequences with H and G :

Vk
Vk+1

Wk+1

H

G

Figure: Low-pass (H) and high-pass (G) filtering

Perfect reconstruction using adjoints H∗ and G∗:

Vk−1
Vk

Wk

H*

G*

Figure: Reconstruct from low (V ) and high (W ) frequency components



Fast Haar Transform 5

Apply filtering to coefficient sequences recursively:

H G

Figure: Recursive splitting algorithm



Low-Pass H and High-Pass G

General Conditions on H,G :
I HH∗ = I and GG∗ = I, so H∗H and G∗G are orthogonal

projections;
I HG∗ = GH∗ = 0, so H and G project onto orthogonal

subspaces;
I H∗H + G∗G = I, so H and G together allow perfect

reconstruction.
Additional conditions:
I φ(x) = Hφ(x) def=

∑
k hkφ(2x − k) has a fixed point in

L2(R) ∩ L1(R) with ‖φ‖ = 1.
I φ is nice, for example smooth and compactly supported.



Example: Haar-Walsh Splitting

For x ∈ `2(Z), define

Hx(n) = [x(2n) + x(2n + 1)]/2;
Gx(n) = x(2n + 1)− x(2n).

H∗x(n) =
{

x(n
2 ), if n is even;

x(n−1
2 ), if n is odd;

G∗x(n) =
{
−1

2x(n
2 ), if n is even;

1
2x(n−1

2 ), if n is odd.

Exercise: HH∗x = x , GG∗x = x , and x = H∗Hx + G∗Gx .



Fast Wavelet and Wavelet Packet Transforms
x

hx g

hh gh

hhh ghh

ghhh
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Figure: Fast Haar wavelet tranform (Mallat)

x

Figure: Complete wavelet packet decomposition



Fast Transforms Into Other Bases

x

Figure: Fast Fourier-like subband transform

x

Figure: Some other adapted wavelet packet transform



How Many Such Bases?

Original signal in ‘‘root’’ node -- 1 basis

Left or H subtree:

AL bases

Right or G subtree:

AL bases

OR

Figure: Counting bases obtainable by Mallat’s algorithm

Let AL be the number of distinct orthonormal bases with L levels
of decomposition. Then A0 = 1 and A1 = 2, while

AL+1 = 1 + A2
L =⇒ AL+1 > 22L

, L > 0.



Approximate K-L Basis
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O

Figure: Best basis (xx) among the fast bases (x) among all the
orthonormal bases including empirical K-L basis (o).



Concentration of Variance

Compute the transform coding gain by comparing cumulative
variance:
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Figure: Example cumulative variance in: original basis (L), best fast basis
(M), and empirical K-L basis (R).

Remark. Data is from Lawrence Sirovich, mentioned above.



Haar Wavelet Packets

Figure: Haar wavelet packets from three levels



Wavelet and Best-Basis Image Compression
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Figure: Wavelet compression using fast Haar tranform
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Figure: Best-basis compression using wavelet packets



Phase Plane
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Figure: Idealized depiction of the phase plane with orthogonal atoms



Dirac and Fourier Atoms in the Phase Plane

Fourier Basis
Standard Basis

Figure: Samples (Dirac atoms) versus pure frequencies (Fourier atoms)



Gabor Atoms in the Phase Plane

Narrow windows Wide windows

Figure: Windowed or Short-Time Fourier bases (Gabor atoms)



Wavelets Decomposition of the Phase Plane

Wavelet basis

Figure: Wavelet orthonormal basis (Littlewood-Paley atoms)



Best Basis Analysis of Chirps in the Phase Plane
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Figure: Atomic decomposition of linear and quadratic chirps



CUR Approximation

Given: Samples X1, . . . ,Xm ∈ Rn from r mixed n-variate normals.

Goal: Identify the r principal axes of the component distributions
from the mixture matrix A ∈ Rm×n,

A =

X1(1) · · · X1(n)
... . . . ...

Xm(1) · · · Xm(n)

 ,
using columns and rows selected from A.

Example: cur-talk.pdf, (Mark Embree, p.7)

Idea: Choose r columns C ∈ Rm×r and r rows R ∈ Rr×n and an
r × r unitary U so as to minimize

‖A− CUR‖op.



CUR Algorithm

Method: factor A = VSW T by SVD. Either fix r or fix a threshold
σ > 0 from which the effective rank r will be computed by σk < σ
if k > r .
I Choose top r rows of V by norm; use those rows of A in R.
I Choose top r columns of W T by norm; use those columns of

A in C .
I Compute U = Cg ARg , where X g is the Moore-Penrose

pseudoinverse of X .
Claim: ‖A− CUR‖op is minimal over all such choices.
Proof: CS6220-Lecture14-CUR.pdf (Anil Damle, p.4)

Remark. Complexity is moderate, requiring three SVDs.



References

I Gilbert Strang. “Chapter 7: The Singular Value
Decomposition.” Introduction to Linear Algebra, 4th Ed.,
Wellesley-Cambridge, 2009.
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