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Matrix Operator Norm

Setup: m x n matrix A, C-valued coefficients aj;.

Goal: for A: E" = E™, estimate

1/2
def IIAXH | Ax]|?
HAHOP - H H sup

<20 [Ix|1?

But ||Ax||? = (Ax, Ax) = (x, A*Ax), for adjoint A* At 4T
A*Ais n x n and

» (hermitean) symmetric: (A*A)* = A*(A*)" = A*A.

> positive semidefinite: (x, A*Ax) = (Ax, Ax) = ||Ax|?> >0,

so by the spectral theorem for hermitean matrices, its eigenvalues
are purely real and nonnegative.



Singular Values

Suppose A1 > --- > A\, > 0 are the eigenvalues of A*A.
(It is traditional to list them in decreasing order, with multiplicity,
possibly with multiple Os at the lower end.)

Then oy def VA, k=1,...,n are called the singular values of A.
Lemma
» ||Allop =01 =max{ox: k=1,...,n}.
» Rank of A is the number of nonzero singular values, counting
multiplicity.
» Nonzero singular values of A are the same as for A*, counting
multiplicity.
Proof.

Apply the spectral theorem, use the n linearly independent
eigenvectors of A*A. O



Singular Value Decomposition

Theorem
Matrix A € C™*" can be factored as A = USV*, where

» U is m x m unitary (so U*U =1),
» Vs nx n unitary (so V*V =1),

» S is m x n diagonal with Sy = o, k =1,...,min(m, n)
being singular values o of A, with multiplicity.

Proof.

Diagonalize A*A = V5*SV* by spectral theorem to find unitary V.
Likewise, diagonalize hermitean symmetric AA* = USS* U* with
unitary U. O



SVD Properties

Let the rank of A be denoted by r < min(m, n). The matrices
U, S, V may be chosen so that

> 01>--->0,>0=0,41="--- gives the diagonal of S, with
Sj=0forallother1 <ji<mand1<j<n.

» Columns Us,..., U, of U are an o.n.b. for column space C(A).

» Columns U,41,...,Un of U are an o.n.b. for cokernel N(A*).

» Rows Vj',..., V) of V* are an o.n.b. for the row space R(A).

» Rows V¥ i,...,V; of V*arean o.n.b. for the kernel N(A).

Put U=[U,...,U], V=[W,..., V], and § = diag (o1,...,0,)
to get the partial SVD:

= USV~,

which omits the singular values o, = 0 that contribute nothing.



SVD Applications 1

Let A = USV* be factored with the properties above, { U} the
columns of U, and {Vi} the columns of V. Then,
» Put P=[Ui,...,U]. Then PP*:C™ — C(A) is the
orthogonal projection, while P*P =1:C" — C".
» Put Q@ =[Vi+1,..., Vh]. Then QQ*: C" — N(A) is the

orthogonal projection, while @*Q =1:C"™" — C"™".

» The pseudoinverse of A= USV* is A8 def VS8 U*, where

g def 1/S;, Sij #0,
Y 0, Sij=0.

It satisfies all the Penrose conditions: (1) AASA = A, (2)
ASAAE = AE, (3) (AAB)* = AAS, and (4) (ASA)* = ASA.



SVD Applications 2

If Ais real, square, symmetric, and positive definite, then U = V is
real-valued orthogonal and S = A is the diagonalised matrix of
eigenvalues of A: A= UAUT.

Example: A is the covariance matrix of a d-variate normal random
variable X € R?, so

A = cov (X) = E([X — X][X — X]T) € R¥*“,

if X is a column vector.

The screeplot of the singular values {(k,ox) : k =1,2,...,n}
(which are the eigenvalues of A) depicts the accumulation of
variance by number of variates.



Karhunen-Loeéeve

Setup: d-variate normal random vector x ~ N (i, £) with mean
1 = E(x) € E? and covariance matrix ¥ € R¥*9:

X1 uw = E(x);

x
Il

X:d | X = E((X—M)(X—H)T>~

(Here w' (i, j) = vivj, 1 <i,j < d, with column vectors v.)

Y is symmetric positive (semi-)definite. By the spectral theorem,
Y = UDUT, U,D e R¥*9,

with orthogonal U and diagonal D > 0. Put ¢? def D(i, i) to get:

Theorem
Coordinates of UT (x — ) are N(0,02), i=1,...,d, and
independent.



Karhunen-Loeve Basis

Columns {uy,...,ug} of unitary U are an orthonormal basis for
EY, called the Karhunen-Loéve basis for the random vector x.

WOLOG, choose indices such that a% > a% > > 03 > 0.

The u; component has the greatest variance (0%) and contains the
most information about position in S.

If ai = 0 for k > p, then S is contained in a p-dimensional
submanifold of E9.

Generalize to small variances: If oi < o2 for k > p and some
threshold variance o2, say that S is essentially p-dimensional.



Hilbert Matrix

Generate examples of essentially p-dimensional data in E? with
p < d using the d x d Hilbert matrix:

13 F
101 1
1 2 3 d+1
hilb(d) <> =
i+j—1/1<ij<d
11 1
d d+1 2d—1

Symmetric and positive definite = its singular values are its
eigenvalues, with the estimate

Up:)\p:O(2_5p), p — 0.



K-L Transform Compression

Setup:
» samples {x,} € EY from r.v. x (“signals”)
» K-L basis U for x
» quality factor o2
Method:
> transform y = U7 x
» quantize q = |y/o| C Z

» remove redundancy in q



JPEG

Joint Photographic Experts Group image compression algorithm:
» x € E®*® js an 8 x 8 subimage
» x(i,j) € R is the pixel at i,

» model the covariance by

E(x(i,j)x(",J")) = (I = i)* + (' = ))

for some decreasing function f like f(r) = e™".

For all such models, ¥ commutes with translation (in 7, ), hence is
a convolution, hence is diagonalized by the discrete Fourier or
cosine transform. So, use DCT as the K-L transform.

Details:
https://www.iso.org/standard/18902.html
https://jpeg.org/jpeg/index.html



Empirical K-L from Samples

Idea: estimate ¥ from samples {x,...,x,} € E¢ without knowing
the distribution of x.

» Sample mean
n
_ def 1
X =

n i=1

i

» Sample covariance

- de 1 n
y 4 n_lg(x;—f()(x;—i)T

» Approximate K-L basis: diagonalize & with orthogonal U

Y =UDUT, D =diag(s?,...,s3) € R¥¢.



Face Coding by Empirical K-L

Figure: Face, minus average face, contains the important information.

Remark. Data is from Lawrence Sirovich, 143 images, 128 x 128
pixels each (so d ~ 16,000) in 8-bit grayscale, of male, Brown

University students without facial hair, shifted and scaled to fixed
eye points.




Tangent Space Estimation by Empirical K-L

Kpzp Range J

Tx+Range J 19523

/0 Range 4,

By(x)

Range T

Figure: Principal components of a scatterplot are good candidates for an
o.n.b. for the tangent space.



Complexity of Empirical K-L

For data {xi,...,x,} € E%
» Sample mean X costs O(nd)
» Mean-subtracted samples {x;} cost O(nd)
> Sample covariance ¥ costs O(nd?)
» Diagonalizing ¥ with orthogonal U costs O(d?).
» Transform one vector x —+ UTx costs O(d?).
>

Transform n data vectors costs O(nd?).

Remark. U is sensitive to the data and may not be nice.

Empirical K-L variables are uncorrelated (over the samples), not
independent.



Orthogonal Transform Coding

Given data x = {x1,...,X,} C E? and an orthogonal transform
U:E9 — EY, the empirical covariance of transformed data UTx is:
1 n _ _ -
71 W )T )T = TR,
=

= def
Yy =

where X is the empirical covariance of untransformed x.

Trace is invariant under this similarity transform:

YoSy(i,i)=triy=trUTZU=trL=> 5(i,i).
i=1 i=1

1
n—1

Exercise: tr Y = S lIxi — X||?, the mean squared deviation.



Best Orthogonal Basis

Y and ¥ are symmetric positive definite matrices.
Idea: find good U by comparing diagonals of ¥ and X.

Start by normalizing the covariances:

def

1 -
p,-(U) = 7.2(1(1', i), i = 1,...,d.

try

Observe that p(U) o {pi(U) :i=1,...,d} is a pdf for every U:

(V) p(U) =0 > pi(U) =1

Given: fixed library of orthogonal transforms U = {Us, ..., Un}.

Define the best (orthogonal) basis from U to be the optimum of
some concentration function on the pdf p(U).



Transform Coding Gain

Transform coding gain from U measures concentration on the
diagonal:

with p(U) defined as before. This requires p;(U) > 0, all i.
Note: If iU is diagonal, then

(tr )

det™

G(U) = log

Exercise: Transform coding gain G(U) is maximized by the
empirical K-L basis U for x. (Hint: use Cholesky factorization.)



Entropy

An alternative measure of (inverse) concentration is the
Shannon-Weaver entropy of the normalized diagonal elements:

d

def ' 1 d 1 \PiV)
H(U) = ;"'(”)"’gp,-(w"°g,.:Hl<p,~(U)) ’

with p(U) as before and the convention that 0log(1/0) = 0.

The theoretical dimension, an estimate of the number of
coordinates that contain most of the variance of x in the U basis,
is exp H(U).

Lemma

Entropy H(U) is minimized by the empirical K-L basis U for x.



Improvements from Constraints

Requiring that the underlying orthogonal functions be smooth has
advantagse.

Figure: Eigenfaces versus principal components with imposed smoothness

m]

=




Haar Basis

Problem: find a basis for LQ(R) that is countable, orthonormal,
and simple (piecewise constant and compactly supported).

Theorem (Haar, 1910)

Let
1, 0<t<}
w(t)=4¢-1, 3<t<1
0, otherwise.

Then W & {2792w (27t — k) : j,k € Z} is an o.n.b. for L%(R).

Proof.
Decompose L?(R) = @ > jez W, “by scales,” where

W, < span {292w(27t — k) : k € Z}.

Show orthogonality directly, and density by construction. O



Fast Haar Transform 1

Idea: find W, coefficients by successive approximation. Let

i [1, 0<t<1 )
“{ Bo ¥ {1(t—k): k ez},

0, otherwise.’

denote the closed span by Vj 4 span By L?(R), and put:
Po: L2(R) = Vo,  Pof(t) © 37 (F,b)b(t).
beBy

(Bp is an orthonormal basis for V, the piecewise constant square
integrable functions with jumps at integers.)

Exercise: Pj is an orthogonal projection.



Fast Haar Transform 2

Note that (w,1) = 0 and w(t) = 1(2t) — 1(2t —1). This suggests:

V, & spanB;, withonb. B; & {27212t — k) : k € Z},

just like W; has o.n.b. {279/2w(27/t — k) : k € Z}. Then
weVinV, = WocVinV, = WocC VgnV.

Get the Haar expansion from successive approximation:
Lemma

» {0} c---CcVyyCcVyCVoyC---CL3R),

> forallje Z, Vi = Vi1 ® Wji1.



Fast Haar Transform 3

Denote by P; and Q; the orthogonal projections onto V; and W,
respectively

Use the o.n.b.s for V; and W; to factor these orthogonal
projections into transforms H, G acting on coefficient sequences:

P < HHY, Q¥ GG,

where H and G are linear transformations on #2(Z) composed with
decimation by 2, keeping only half the output.

Remark. For simplicity of analysis, H and G are assumed to be
the same for all j. This suffices for the fast Haar decomposition. It
may be generalized with a family of operators {(H;, G;) : j € Z} to
control size properties, something done by Morten Nielsen.



Fast Haar Transform 4

Generate coefficient sequences with H and G:

H
[ I\—’
G

Figure: Low-pass (H) and high-pass (G) filtering

Perfect reconstruction using adjoints H* and G*:

H*
€
\

¢

Figure: Reconstruct from low (V) and high (W) frequency components




Fast Haar Transform 5

Apply filtering to coefficient sequences recursively:

/\
A £
F PN

b

b

Figure: Recursive splitting algorithm




Low-Pass H and High-Pass G

General Conditions on H, G:
» HH* =1 and GG* =/, so H*H and G*G are orthogonal
projections;
» HG* = GH* =0, so H and G project onto orthogonal
subspaces;
» H*H+ G*G =1, so H and G together allow perfect
reconstruction.

Additional conditions:

> d(x) = Ho(x) & 52, hedp(2x — k) has a fixed point in

L2(R) N L1(R) with ||¢|| = 1.

> ¢ is nice, for example smooth and compactly supported.



Example: Haar-Walsh Splitting

For x € (?(Z), define
Hx(n) = [x(2n)+ x(2n+1)]/2;
Gx(n) = x(2n+1)—x(2n).

x(5), if n is even;
x(251), if nis odd;

H*x(n) = {

—3x(8), if nis even;
Ix(%51), if nis odd.

G*x(n) = {

Exercise: HH*x = x, GG*x = x, and x = H*Hx + G*Gx.



Fast Wavelet and Wavelet Packet Transforms
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Figure: Fast Haar wavelet tranform (Mallat)
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Figure: Complete wavelet packet decomposition




Fast Transforms Into Other Bases

X

|
S

Figure: Some other adapted wavelet packet transform



How Many Such Bases?

Original signal in “‘root’’ node -- 1 basis | |

OR Left or H subtree: Right or G subtree:
Aj bases Aj bases

Figure: Counting bases obtainable by Mallat’s algorithm

Let A; be the number of distinct orthonormal bases with L levels
of decomposition. Then Ag =1 and A; = 2, while

Al =1+A2 — A1 >2, L>o0.



Approximate K-L Basis

Figure: Best basis (xx) among the fast bases (x) among all the
orthonormal bases including empirical K-L basis (o).



Concentration of Variance

Compute the transform coding gain by comparing cumulative
variance:

——

1
0.8

0.6 0.6
4

2

260 400 400 00 1000 20 40 60 80 100 120 140

Figure: Example cumulative variance in: original basis (L), best fast basis
(M), and empirical K-L basis (R).

Remark. Data is from Lawrence Sirovich, mentioned above.



Haar Wavelet Packets
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Figure: Haar wavelet packets from three levels



Wavelet and Best-Basis Image Compression

Averages

Storage

Filter
Convolution

Scanned
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Figure: Best-basis compression using wavelet packets



Phase Plane
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Figure: Idealized depiction of the phase plane with orthogonal atoms



Dirac and Fourier Atoms in the Phase Plane

Standard Basis Fourier Basis

Figure: Samples (Dirac atoms) versus pure frequencies (Fourier atoms)



Gabor Atoms in the Phase Plane

Narrow windows Wide windows

Figure: Windowed or Short-Time Fourier bases (Gabor atoms)



Wavelets Decomposition of the Phase Plane

Wavelet basis

Figure: Wavelet orthonormal basis (Littlewood-Paley atoms)



Best Basis Analysis of Chirps in the Phase Plane

Linear chirp, best level

Quadratic chirp, best basis

Figure: Atomic decomposition of linear and quadratic chirps



CUR Approximation

Given: Samples X1,..., X € R"” from r mixed n-variate normals.

Goal: ldentify the r principal axes of the component distributions
from the mixture matrix A € R™*",

Xi(1) - Xu(n)

Xm(1) -+ Xm(n)
using columns and rows selected from A.
Example: cur-talk.pdf, (Mark Embree, p.7)

Idea: Choose r columns C € R™*" and r rows R € R™*" and an
r X r unitary U so as to minimize

|IA = CUR|op-



CUR Algorithm

Method: factor A= VSWT by SVD. Either fix r or fix a threshold

o > 0 from which the effective rank r will be computed by o < o
if k>r.

» Choose top r rows of V by norm; use those rows of A in R.

» Choose top r columns of W T by norm; use those columns of
Ain C.

» Compute U = C8ARE, where X8 is the Moore-Penrose
pseudoinverse of X.

Claim: ||A — CUR||op is minimal over all such choices.
Proof: (CS6220-Lecturel4-CUR.pdf (Anil Damle, p.4)

Remark. Complexity is moderate, requiring three SVDs.
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