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Smoothness Assumptions

Suppose that X and Y are metric spaces.

Desirable properties of a nice function f : X → Y are:
I x ′ near x implies that f (x ′) is near f (x).
I f (B(x , ε)) can be estimated (with error controlled by ε) from

a few values {f (x ′) : x ′ ∈ B(x , ε)}.
Examples:
I continuously differentiable f : R→ R.
I continuous piecewise linear f for linear spaces X ,Y .
I smooth vector field f on differentiable manifold X =M,

taking values in tangent bundle Y =M× Ed .



Interpolation Sets

One-dimensional special case: f : R→ R, exact fit.

Given:
I abscissas {x0, x1, . . . , xn} ⊂ R, all distinct.
I ordinates {y0, y1, . . . , yn} ⊂ R, arbitrary.

Find: continuous function f : R→ R such that f (xi ) = yi , all i .

Idea: fix functions {f0, f1, . . . }, solve for {a0, a1, . . . } such that

yi = f (xi )
def=

∑
j

aj fj(xi ), i = 0, 1, . . . , n.

Exercise: Unique solution {aj} exists for each {yi : 0 ≤ i ≤ n} iff
matrix {fj(xi ) : 0 ≤ i , j ≤ n} is nonsingular.



Polynomial Interpolation

Special case: fj(x) = x j , j = 0, 1, . . . , n.

Seek polynomial f (x) = pnxn + pn−1xn−1 + · · ·+ p1x + p0.
Coefficients {pn, pn−1, . . . , p1, p0} satisfy

V p = y;
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Exercise: Distinct xi ’s make Vandermonde matrix V invertible.

Remark. Using Octave/Matlab: Get V = vander(x) and solve
for p. Or, compute p=polyfit(x,y,n) directly and evaluate
f (z) = polyval(p, z) at any point z .



Spline Interpolation

Special case: x0 < x1 < · · · < xn, and f (x) is a piecewise
polynomial equal to cubic fj on [xj−1, xj ] for j = 1, . . . , n
Method: find coefficients ajk of

fj(x) = aj3x3 + aj2x2 + aj1x + aj0

to match y values, zeroth, first, and second derivatives at
x1, . . . , xn−1. Then put

f (x) = fj(x), if xj−1 ≤ x ≤ xj ,

Advantage: C2 smooth without undesirable high degree for large n.

Remark. Get {ajk} (in a returned data structure) with
pp=spline(x,y). Evaluate f (z) = ppval(pp, z) at any point
x0 ≤ z ≤ xn using Octave/Matlab.



General Linear Regression

Fix f1, . . . , fm linearly independent functions from M→ R.
Given {x1, . . . , xn} ⊂ M and {y1, . . . , yn} ⊂ Ed , find a vector
p = (p1, . . . , pm) of expansion coefficients so that

f (x) def= p1f1(x) + p2f2(x) + · · ·+ pmfm(x)

minimizes the squared error

E (p) def=
n∑

i=1
‖f (xi )− yi‖2 =

n∑
i=1

∥∥∥∥∥∥
m∑

j=1
pj fj(xi )− yi

∥∥∥∥∥∥
2



Normal Equations

Global minimum exists at the unique critical point ∇E (p) = 0.
This equation gives a system of m linear normal equations for p:

FT Fp = FT y, for F =

f1(x1) · · · fm(x1)
... . . . ...

f1(xn) · · · fm(xn)

 .
In terms of matrix coordinates 1 ≤ i , j ≤ m,

FT F(i , j) =
n∑

k=1
fi (xk)fj(xk) ∈ R, FT y(i) =

n∑
k=1

fi (xk)yk ∈ R.

Matrix FT F ∈ Rm×m is invertible whenever F has rank m, which
requires n ≥ m and at least m distinct values in {x1, . . . , xn}.



Geometric Interpretation

If FT F ∈ Rm×m is invertible, then

ŷ def= F
(
FT F

)−1
FT y

is the orthogonal projection of the vector y onto the column space
of F, which is an m-dimensional subspace of En. Column vectors

f1
def=

f1(x1)
...

f1(xn)

 , . . . , fm
def=

fm(x1)
...

fm(xn)


are a basis f for this subspace, and

p̂ def=
(
FT F

)−1
FT y

gives the expansion coefficients of ŷ with respect to f.



Statistical Interpretation

Model: for k = 1, . . . , n, make measurements

yk = f (xk) =
m∑

i=1
pi fi (xk) + εk .

Assumptions:
I Functions f1, . . . , fm and abscissas x1, . . . , xn are given.
I Parameters p = (p1, . . . , pm) are fixed but unobservable.
I Each measurement has unobservable random error εk .
I Measurement vector y def= (y1, . . . , yn) is observable but

random (because of the errors in each component).
Estimator p̂ = p̂(y) ∈ Rm is some fixed function of y.

Idea: estimate p ≈ p̂ = p̂(y) from particular measurements y.



Estimator Properties

Assume that estimator p̂ = p̂(y) for p has finite expectation and
finite variance. Say that p̂:
I is linear if p̂(y) is a linear function of y,
I is unbiased if E(p̂) = p.
I has risk defined by E(‖p̂− E(p)‖2).

Note: for unbiased p̂, the risk is E(‖p̂− p‖2).

Say that random variables r , s with finite expectation and variance
are uncorrelated iff E(rs) = E(r)E(s).

Exercise: If p̂ is linear and y has finite expectation and variance,
then p̂(y) has finite variance and expectation.



Optimality of Least Squares

When F has rank m, then

p̂ def=
(
FT F

)−1
FT y

defines the ordinary least squares (OLS) estimator for the “true”
expansion coefficients p. It is evidently linear.

Suppose {ε1, . . . , εn} are uncorrelated samples of a random
variable ε with E(ε) = 0 and Var(ε) = σ2 <∞. Then p̂ will be
unbiased with finite variance. In addition:

Theorem (Gauss-Markov)
Estimator p̂ has minimal variance (or risk) among all linear
unbiased estimators for p.



Piecewise Linear Interpolation

Special case, like for splines: x0 < x1 < · · · < xn, but f (x) is a
piecewise linear polynomial.
Method: explicit formula

f (x) = fj(x) = (xj − x)yj−1 + (x − xj−1)yj
xj − xj−1

, xj−1 ≤ x ≤ xj .

Advantages:
I continuity: f (xj) = fj(xj) = fj+1(xj) = yj for all j .
I positivity: yj , yj−1 ≥ 0 =⇒ (∀x ∈ [xj−1, xj ]) f (x) ≥ 0
I piecewise constant derivative almost everywhere;

Remark. Using Octave/Matlab: Get {fj} (in a returned data
structure) with pl=interp1(x,y,"linear","pp"). Evaluate
f (z) = ppval(pl, z) at any point x0 ≤ z ≤ xn.



Higher Dimensional Piecewise Linear Interpolation

Goal: Find neighborhoods in Ed better suited to linear
approximation than open balls.

Idea: use fixed finite point sets, take linear combinations.

Choices:
I cube: [a1, b1]× · · · × [ad , bd ] ⊂ Ed , 2d coordinates.

I grid of d-cubes, m per axis, md in all.
I specify gridpoints in a d × (m + 1) matrix, using d increasing

sequences of length m + 1;
I plot md values, one for each cube.

I simplex: d + 1 vertices specifying a d-dimensional set.
I tesselation of d-simplexes formed from m ≥ d + 1 vertices;
I specify the vertices in a d ×m matrix;
I specify k ≤

( m
d+1
)

simplexes in a k × (d + 1) matrix;
I plot k values, one for each simplex.



Convex Hulls and Simplexes

I S ⊂ Ed is convex iff

x, y ∈ S =⇒ (∀t ∈ [0, 1]) tx + (1− t)y ∈ S.

I Convex hull of S ⊂ Ed is ∩{K ⊂ Ed : K convex, S ⊂ K};
I Convex hull is convex, hence minimal, hence unique.
I For finite S = {x1, . . . , xm} ⊂ Ed , use convex combinations:

ConvHull (S) =
{

p1x1+· · ·+pmxm : (∀i)pi ≥ 0;
m∑

i=1
pi = 1

}
.

I Simplexes in Ed :
I d-simplex: convex hull of d + 1 points with nonempty interior.
I n-simplex, 1 ≤ n < d : convex hull of n + 1 points that

contains a nonempty relatively open n-ball.

Exercise: K ,K ′ convex implies K ∩ K ′ is convex.



QuickHull

Recursive subdivision algorithm to compute the convex hull of a
set S of N points in Ed :
I complexity: O(N log N) expected, O(N2) worst case.
I conditioning: poor, due to degenerate simplexes.
I rounding error: small diameter S very far from 0.

Links to articles on these practical issues:
I Original article: QuickHull.pdf
I Software and documentation: http://www.qhull.org/



Graph Interpolation

Special case: 2 dimensional domain.
I abscissas X = {x1, . . . , xn} ⊂ E2, distinct, noncollinear.
I ordinates Y = {y1, . . . , yn} ⊂ R, arbitrary.

Given x ∈ ConvHull (X ), find the piecewise linear graph
interpolation value y by:
I finding neighbors xa, xb, xc ∈ X that form a 2-simplex

(“triangle”) containing x;
I write x = paxa + pbxb + pcxc as a convex combination;
I define y = paya + pbyb + pcyc as the same convex

combination.

Exercise: If x is in the 2-simplex defined by xa, xb, xc , then the
convex combination x = paxa + pbxb + pcxc is unique.



Delaunay Triangulation

Given: S = {p1, . . . ,pm} ⊂ E2, ConvHull (S) has a nonempty
interior (iff there exist three noncollinear points in S).

Goal: find a triangulation of ConvHull (S).

Delaunay’s method: Any three noncollinear points in S determine
a 2-simplex and its circumcircle. Call it a Delaunay triangle iff the
circumcircle contains no other points of S in its interior.

Nonoverlapping U,V ∈ E2: U ∩ V has no interior.

S is in general position iff: no 3 points are collinear and, if 4 points
share a circumcircle, then there is a 5th point in its interior.

Theorem
If S is in general position, then ConvHull (S) has a unique
decomposition as a nonoverlapping union of Delaunay triangles.



Delaunay Tesselation
Tesselation of a finite set S = {p1, . . . ,pm} ⊂ Ed is a union of
nonoverlapping d-simplexes, each determined by d + 1 points of S,
that equals the convex hull of S.

Any d-simplex determines a unique circumsphere.

S is in general position in Ed iff:
I any d + 1 distinct points of S form a d-simplex.
I if d + 2 distinct points of S lie on the same circumsphere,

then there is another point of S inside that circumsphere.
Delaunay simplex: Convex hull of d + 1 points of S ⊂ Ed that (1)
is a d-simplex, and (2) contains no other points of S in the interior
of its circumsphere.

Theorem
Any finite S ⊂ Ed in general position has a unique tesselation of
Delaunay simplexes.



Delaunay Tesselation (proof sketch)

Given finite set S = {x1, . . . , xm} ⊂ Ed in general position:
I define injection i : Ed → Ed+1 by i(x) = (x, ‖x‖2), so i(S) is

a finite subset of a hyper-paraboloid (“lifted” S).
I let S ′ = ConvHull (i(S)) ⊂ Ed+1.
I let S ′′ ⊂ S ′ be the d-simplexes that:

I are on the boundary of S ′, and
I have no points of S ′ below them (“bottom facets” of S ′, with

smallest d + 1 coordinates).
I define projection p : Ed+1 → Ed so that p ◦ i(x) = x for all

x ∈ Ed : p(x1, . . . , xd , xd+1) = (x1, . . . , xd ).
Then p(S ′′) is the Delaunay tesselation of S.

Exercise: Complete the proof. Hint: see K.Q.Brown (1979).



Riemannian Metrics and Arc Length

Example metrics for a differentiable manifold M:
I original d() from the abstract definition of M,
I relative metric from Whitney embedding M→ EN ,
I Riemann metric defined by a local positive definite inner

product 〈u, v〉x for u, v ∈ TxM at every x ∈M.
(Embedding gives a natural 〈u, v〉x since TxM = Ed at each x .)

Each inner product defines an arc length, along each differentiable
γ : [a, b]→M, between p = γ(a) and q = γ(b):

gγ(p, q) def=
∫ b

a

√
〈γ′(t), γ′(t)〉γ(t) dt,

Note that gγ(p, q) ≥ 0.



Geodesic Distance

For each p, q ∈M, let Γ(p, q) be the set of differentiable curves
γ : [a, b]→M with γ(a) = p and γ(b) = q.

Fix {〈·, ·〉x : x ∈M}. Define the corresponding geodesic distance
to be

g(p, q) def= min{gγ(p, q) : γ ∈ Γ(p, q)}.

Then g(p, q) is a metric on M. It is called the Riemann metric,
though 〈·, ·〉x also has that name and symbol g .

A geodesic between p, q ∈M is any γ ∈ Γ with gγ(p, q) = g(p, q).

Examples: lines in Ed , great circles in S2.



Delaunay Triangulation of a 2-Manifold

Let M be a differentiable 2-manifold. Fix a Riemann metric g .
Substitute for plane geometric notions as follows:
I the geodesic between p and q replaces the line segment pq,
I the geodesic circle {x ∈M : g(x , c) = r}, of radius r

centered at c, replaces the plane circle,
I the open geodesic disk {x ∈M : g(x , c) < r}, uniquely

defined by its boundary geodesic circle, replaces B(c, r).
Say that a finite set of points in M is in general position iff
I no 3 lie on a single geodesic curve, and
I if 4 lie on a single geodesic circle, then a 5th lies inside it.

Theorem
A set in general position has a unique Delaunay triangulation
consisting of geodesics.



Voronoi Cells

For S = {x1, . . . , xm} ⊂ M, define the Voronoi cell of xi to be

Fi
def= {x ∈M : (∀j)g(x , xi ) ≤ g(x , xj)}.

I If x is closest to some unique xi , then x is inside Fi .
I If x is equidistant from exactly two centers xi 6= xj , then x lies

on a geodesic curve in Fi ∩ Fj .
I If x is equidistant from exactly three centers, then x lies on

the intersection of geodesics separating three Voronoi cells.

Exercise: If S is in general position, then no x ∈M can be
equidistant from 4 or more centers.



Voronoi Tesselations on 2-Manifolds

For 2-manifold M, suppose that S = {xi : i = 1, . . . ,m} ⊂ M is
in general position, and let {Fi : i = 1, . . . ,m} be the
corresponding Voronoi cells.

The Voronoi tesselation of M from S is a graph (V ,E ,F )
consisting of Voronoi cells (Faces), geodesic curve segments
(Edges) separating pairs of faces, and intersection points (Vertices)
equidistant from exactly 3 centers.

Compare with the Delaunay tesselation (triangulation) of M from
S, the graph (V ′,E ′,F ′) with vertices V ′ = S, faces F ′ that are
the Delaunay triangles, and edges E ′ that are the sides of the
Delaunay triangles.



Isomorphisms and Duals of Graphs

Definition
Two graphs (V ,E ,F ) and (Ṽ , Ẽ , F̃ ) are isomorphic, written
(Ṽ , Ẽ , F̃ )↔ (V ,E ,F ), iff V ↔ Ṽ , E ↔ Ẽ , and F ↔ F̃ .

Definition
(V ,E ,F ) and (V ′,E ′,F ′) are dual graphs iff
I each face in F corresponds to a unique vertex in V ′: F ↔ V ′,
I each vertex in V corresponds to a unique face in F ′: V ↔ F ′,
I each edge in E corresponds to a unique edge in E ′: E ↔ E ′,

namely, they are duals iff (V ,E ,F )↔ (F ′,E ′,V ′).

Exercise: The dual of the dual of (V ,E ,F ) is isomorphic to
(V ,E ,F ).



Voronoi and Delaunay are Duals

Theorem
For 2-manifold M and finite subset S ⊂M in general position,
the Voronoi tesselation of M from S is isomorphic to the dual
graph of the Delaunay triangulation.

Remark. Voronoi cells give nonoverlapping regions, with
piecewise geodesic boundaries, that are analogues of open balls.

Atlas of Voronoi cell charts needs no transition functions.

Delaunay triangulations have Delaunay refinements useful in
subdivision and approximation.

Duality allows choice and best-adaption to specific problems.



Voronoi Tesselation of Planet Earth

Figure: Hrvoje Lukatela, Hipparchus atlas, 1987



Delaunay Tesselation of a Human Head

Figure: Dyer, Zhang, and Möller, “3D Cutaway,” Survey. . . , 2009
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