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1 Tangent Vectors, Spaces, and Bundles.
1.1 TxM is a vector space
Fix x ∈M. Check three properties.

1.1.1 TxM contains 0

The equivalence class of the constant curve γ(t) ≡ x, for which

d

dt
[φ ◦ γ(t)]

∣∣∣
t=0

= 0 ∈ Ed,

for any differentiable chart (G,φ) with x ∈ G, is the zero vector in TxM.

1.1.2 v ∈ TxM =⇒ cv ∈ TxM

Let c ∈ R be given. If v ∈ TxM is represented by γ, then η(t) = γ(ct) represents
cv since, for any differentiable chart (G,φ) with x ∈ G,

d

dt
[φ ◦ η(t)]

∣∣∣
t=0

= d

dt
[φ ◦ γ(ct)]

∣∣∣
t=0

= c
d

dt
[φ ◦ γ(t)]

∣∣∣
t=0

,

by the chain rule. Note that η is defined on the possibly smaller open interval
(−1/|c|, 1/|c|) rather than (−1, 1). This technical problem may be overcome by
using

η(t) = γ(tan−1(ct)) (1)
whose domain is (−∞,∞) and which gives the same chain rule result since

d

dt
[tan−1(ct)]

∣∣∣
t=0

= c
d

dt
[tan−1(t)]

∣∣∣
t=0

= c

[
1

1 + t2

] ∣∣∣
t=0

= c

Alternatively, the chain rule may be avoided by representing cv with the curve
η(t) def= φ−1(cφ ◦ γ(t)), which may be different for each coordinate map φ:

d

dt
[φ ◦ η(t)]

∣∣∣
t=0

= d

dt

[
φ ◦ φ−1(cφ ◦ γ(t))

] ∣∣∣
t=0

= c
d

dt
[φ ◦ γ(t)]

∣∣∣
t=0

.
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1.1.3 v, w ∈ TxM =⇒ v + w ∈ TxM

Suppose that v, w ∈ TxM are equivalence classes of differentiable curves through
x, represented respectively by γ, η. Let (G,φ) be any chart with x ∈ G. Then
it is possible to define a “sum” of γ, η as

ξ(t) def= φ−1(φ ◦ γ(t) + φ ◦ η(t)),

since φ ◦ γ and φ ◦ η both belong to the linear space Ed.
WOLOG φ(x) = 0 ∈ Ed, else replace it with the compatible map

φx(z) def= φ(z)− φ(x), z ∈ G, (2)

which has the same domain and differentiability but satisfies φx(x) = 0.
Since homeomorphism φ is an open map, there exists ε > 0 such that

B(0, 2ε) ⊂ φ(G). Since γ, η are continuous, there exists δ > 0 such that the
small open interval I = (−δ, δ) ⊂ (−1, 1) satisfies

γ(I) ⊂ G, φ(γ(I)) ⊂ B(0, ε); η(I) ⊂ G, φ(η(I)) ⊂ B(0, ε);

Then the domain of ξ includes I, since

t ∈ (−δ, δ) =⇒ φ ◦ γ(t) + φ ◦ η(t) ∈ B(0, 2ε) ⊂ φ(G).

Finally, reparametrize ξ so that its domain includes (−1, 1), again using the
arctangent function:

ξ̃(t) def= ξ
(
δ tan−1(t/δ)

)
. (3)

Then by the chain rule,

d

dt
[φ ◦ ξ̃(t)]

∣∣∣
t=0

= d

dt
[φ ◦ ξ(t)]

∣∣∣
t=0

,

and thus

d

dt

[
φ ◦ ξ̃(t)

] ∣∣∣
t=0

= d

dt

[
φ ◦ φ−1(φ ◦ γ(t) + φ ◦ η(t))

] ∣∣∣
t=0

= d

dt
[φ ◦ γ(t) + φ ◦ η(t)]

∣∣∣
t=0

= d

dt
[φ ◦ γ(t)]

∣∣∣
t=0

+ d

dt
[φ ◦ η(t)]

∣∣∣
t=0

.

Conclude that ξ represents the equivalence class of v + w.

1.2 dφ(x) is a linear homeomorphism from TxM onto Ed.
1.2.1 dφ(x) is linear.

Let u, v ∈ TxM be given, represented by curves γ, η through x, and suppose
c ∈ R is also given.
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TxM is a vector space, so u+cv ∈ TxM has a representative curve ξ through
x which, except for domain adjustments, may be written as

ξ(t) = φ−1(φ ◦ γ(t) + cφ ◦ η(t)).

(Adjustments like φ ← φ − φ(x) and t ← δ tan−1(t/δ) from Equations 2 and 3
would result in φ(x) = 0 and domain −1 < t < 1 for all curves, without loss.)
Then by definition,

dφ(x)(u+ cv) = dξφ(x) = d

dt
[φ ◦ ξ(t)]

∣∣∣
t=0

= d

dt

[
φ ◦ φ−1(φ ◦ γ(t) + cφ ◦ η(t))

] ∣∣∣
t=0

= d

dt
[φ ◦ γ(t)]

∣∣∣
t=0

+ c
d

dt
[φ ◦ η(t)]

∣∣∣
t=0

= dγφ(x) + cdηφ(x) = dφ(x)(u) + cdφ(x)(v).

Conclude that dφ(x) is linear.

1.2.2 dφ(x) is surjective.

Let e = {e1, . . . , ed} be the standard basis of Ed. Fix k and parametrize a curve
γ through x ∈M with

γ(t) def= φ−1(φ(x) + tek), −1 < t < 1. (4)

(If necessary to stay within φ(G) for all −1 < t < 1, replace t ← δ tan−1(t/δ)
using small enough δ > 0.) Then the directional derivative of φ along γ is

dγφ(x) = d

dt
[φ ◦ γ(t)]

∣∣∣
t=0

= d

dt
[φ(x) + tek]

∣∣∣
t=0

= ek.

Thus γ represents a tangent vector vk for which dφ(x)(vk) = dγφ(x) = ek.
Repeating the Eq.4 construction for all k ∈ {1, . . . , d} gives distinct tangent
vectors {v1, . . . , vd} ⊂ TxM with

dφ(x)(vk) = ek, k = 1, . . . , d.

Now suppose that p ∈ Ed is given. Write p =
∑
k akek, using the basis for Ed.

Since TxM is a vector space, it contains the linear combination w def=
∑
k akvk.

Applying the linearity of dφ(x), compute

dφ(x)(w) = dφ(x)
(∑

k

akvk

)
=
∑
k

akdφ(x)(vk) =
∑
k

akek = p.

Hence w ∈ TxM is a preimage of p. Conclude that dφ(x) is surjective.
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1.2.3 dφ(x) is injective.

Since dφ(x) is linear, it suffices to show that its nullspace is just {0}.
So suppose that u ∈ TxM satisfies dφ(x)(u) = 0. Let γ be a curve through

x that represent u. Then by definition,

0 = dφ(x)(u) = dγφ(x) = d

dt
[φ ◦ γ(t)]

∣∣∣
t=0

.

Now let (H,ψ) be any chart in the maximal differentiable atlas for M such
that x ∈ G ∩ H. Let τ = ψ ◦ φ−1 be the differentiable transition function on
φ(G ∩ H), where τ : Ed → Ed. Then Dτ(p) : Ed → Ed is a d × d matrix for
any p ∈ φ(G ∩H), and the chain rule may be used to evaluate:

d

dt
[ψ ◦ γ(t)]

∣∣∣
t=0

= d

dt
[ψ ◦ φ−1 ◦ φ ◦ γ(t)]

∣∣∣
t=0

= d

dt
[τ ◦ φ ◦ γ(t)]

∣∣∣
t=0

= Dτ(φ(γ(0))) d
dt

[φ ◦ γ(t)]
∣∣∣
t=0

= Dτ(φ(x))0 = 0,

since γ(0) = x and φ(x) ∈ φ(G ∩H). Hence u is the equivalence class of curves
through x that give the zero vector as the directional derivative for every chart,
namely the zero tangent vector.

1.2.4 Remarks on higher derivatives

Finding dφ(x) consumes one derivative, which is all that is assumed to exist
for a differentiable manifold. To define higher order derivatives, the atlas of
charts onM must contain coordinate functions with K > 1 derivatives (for CK
manifolds) or even infinitely many derivatives (for C∞, or smooth manifolds).
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