Supplement 2: Manifolds

Mladen Victor Wickerhauser PMF 2022: Dimensionality Reduction and Manifold Estimation

January 23, 2022

1 Tangent Vectors, Spaces, and Bundles.

1.1 $T_x \mathcal{M}$ is a vector space

Fix $x \in \mathcal{M}$. Check three properties.

1.1.1 $T_x \mathcal{M}$ contains 0

The equivalence class of the constant curve $\gamma(t) \equiv x$, for which

$$\frac{d}{dt}[\phi \circ \gamma(t)]\Big|_{t=0} = \mathbf{0} \in \mathbf{E}^d,$$

for any differentiable chart (G, ϕ) with $x \in G$, is the zero vector in $T_x \mathcal{M}$.

1.1.2 $v \in T_x \mathcal{M} \implies cv \in T_x \mathcal{M}$

Let $c \in \mathbf{R}$ be given. If $v \in T_x \mathcal{M}$ is represented by γ , then $\eta(t) = \gamma(ct)$ represents cv since, for any differentiable chart (G, ϕ) with $x \in G$,

$$\frac{d}{dt}[\phi\circ\eta(t)]\Big|_{t=0} = \frac{d}{dt}[\phi\circ\gamma(ct)]\Big|_{t=0} = c\frac{d}{dt}[\phi\circ\gamma(t)]\Big|_{t=0},$$

by the chain rule. Note that η is defined on the possibly smaller open interval (-1/|c|, 1/|c|) rather than (-1, 1). This technical problem may be overcome by using

$$\eta(t) = \gamma(\tan^{-1}(ct)) \tag{1}$$

whose domain is $(-\infty, \infty)$ and which gives the same chain rule result since

$$\frac{d}{dt}[\tan^{-1}(ct)]\Big|_{t=0} = c\frac{d}{dt}[\tan^{-1}(t)]\Big|_{t=0} = c\left[\frac{1}{1+t^2}\right]\Big|_{t=0} = c$$

Alternatively, the chain rule may be avoided by representing cv with the curve $\eta(t) \stackrel{\text{def}}{=} \phi^{-1}(c\phi \circ \gamma(t))$, which may be different for each coordinate map ϕ :

$$\frac{d}{dt}[\phi \circ \eta(t)]\Big|_{t=0} = \frac{d}{dt} \left[\phi \circ \phi^{-1}(c\phi \circ \gamma(t))\right]\Big|_{t=0} = c\frac{d}{dt}[\phi \circ \gamma(t)]\Big|_{t=0}.$$

1.1.3 $v, w \in T_x \mathcal{M} \implies v + w \in T_x \mathcal{M}$

Suppose that $v, w \in T_x \mathcal{M}$ are equivalence classes of differentiable curves through x, represented respectively by γ, η . Let (G, ϕ) be any chart with $x \in G$. Then it is possible to define a "sum" of γ, η as

$$\xi(t) \stackrel{\text{def}}{=} \phi^{-1}(\phi \circ \gamma(t) + \phi \circ \eta(t)),$$

since $\phi \circ \gamma$ and $\phi \circ \eta$ both belong to the linear space \mathbf{E}^d .

WOLOG $\phi(x) = \mathbf{0} \in \mathbf{E}^d$, else replace it with the compatible map

$$\phi_x(z) \stackrel{\text{def}}{=} \phi(z) - \phi(x), \qquad z \in G, \tag{2}$$

which has the same domain and differentiability but satisfies $\phi_x(x) = 0$.

Since homeomorphism ϕ is an open map, there exists $\epsilon > 0$ such that $B(\mathbf{0}, 2\epsilon) \subset \phi(G)$. Since γ, η are continuous, there exists $\delta > 0$ such that the small open interval $I = (-\delta, \delta) \subset (-1, 1)$ satisfies

$$\gamma(I) \subset G, \ \phi(\gamma(I)) \subset B(\mathbf{0},\epsilon); \ \eta(I) \subset G, \ \phi(\eta(I)) \subset B(\mathbf{0},\epsilon);$$

Then the domain of ξ includes I, since

$$t \in (-\delta, \delta) \implies \phi \circ \gamma(t) + \phi \circ \eta(t) \in B(\mathbf{0}, 2\epsilon) \subset \phi(G).$$

Finally, reparametrize ξ so that its domain includes (-1, 1), again using the arctangent function:

$$\tilde{\xi}(t) \stackrel{\text{def}}{=} \xi \left(\delta \tan^{-1}(t/\delta) \right). \tag{3}$$

Then by the chain rule,

$$\frac{d}{dt}[\phi\circ\tilde{\xi}(t)]\Big|_{t=0} = \frac{d}{dt}[\phi\circ\xi(t)]\Big|_{t=0},$$

and thus

$$\frac{d}{dt} \left[\phi \circ \tilde{\xi}(t) \right] \Big|_{t=0} = \frac{d}{dt} \left[\phi \circ \phi^{-1} (\phi \circ \gamma(t) + \phi \circ \eta(t)) \right] \Big|_{t=0}$$
$$= \frac{d}{dt} \left[\phi \circ \gamma(t) + \phi \circ \eta(t) \right] \Big|_{t=0}$$
$$= \frac{d}{dt} \left[\phi \circ \gamma(t) \right] \Big|_{t=0} + \frac{d}{dt} \left[\phi \circ \eta(t) \right] \Big|_{t=0}.$$

Conclude that ξ represents the equivalence class of v + w.

1.2 $d\phi(x)$ is a linear homeomorphism from $T_x\mathcal{M}$ onto \mathbf{E}^d .

1.2.1 $d\phi(x)$ is linear.

Let $u, v \in T_x \mathcal{M}$ be given, represented by curves γ, η through x, and suppose $c \in \mathbf{R}$ is also given.

 $T_x \mathcal{M}$ is a vector space, so $u + cv \in T_x \mathcal{M}$ has a representative curve ξ through x which, except for domain adjustments, may be written as

$$\xi(t) = \phi^{-1}(\phi \circ \gamma(t) + c\phi \circ \eta(t))$$

(Adjustments like $\phi \leftarrow \phi - \phi(x)$ and $t \leftarrow \delta \tan^{-1}(t/\delta)$ from Equations 2 and 3 would result in $\phi(x) = \mathbf{0}$ and domain -1 < t < 1 for all curves, without loss.) Then by definition,

$$\begin{aligned} d\phi(x)(u+cv) &= d_{\xi}\phi(x) = \left. \frac{d}{dt} \left[\phi \circ \xi(t) \right] \right|_{t=0} \\ &= \left. \frac{d}{dt} \left[\phi \circ \phi^{-1}(\phi \circ \gamma(t) + c\phi \circ \eta(t)) \right] \right|_{t=0} \\ &= \left. \frac{d}{dt} \left[\phi \circ \gamma(t) \right] \right|_{t=0} + c \frac{d}{dt} \left[\phi \circ \eta(t) \right] \right|_{t=0} \\ &= \left. d_{\gamma}\phi(x) + cd_{\eta}\phi(x) = d\phi(x)(u) + cd\phi(x)(v). \end{aligned}$$

Conclude that $d\phi(x)$ is linear.

1.2.2 $d\phi(x)$ is surjective.

Let $\mathbf{e} = {\mathbf{e}_1, \dots, \mathbf{e}_d}$ be the standard basis of \mathbf{E}^d . Fix k and parametrize a curve γ through $x \in \mathcal{M}$ with

$$\gamma(t) \stackrel{\text{def}}{=} \phi^{-1}(\phi(x) + t\mathbf{e}_k), \quad -1 < t < 1.$$
(4)

(If necessary to stay within $\phi(G)$ for all -1 < t < 1, replace $t \leftarrow \delta \tan^{-1}(t/\delta)$ using small enough $\delta > 0$.) Then the directional derivative of ϕ along γ is

$$d_{\gamma}\phi(x) = \frac{d}{dt} \left[\phi \circ \gamma(t)\right] \Big|_{t=0} = \frac{d}{dt} \left[\phi(x) + t\mathbf{e}_k\right] \Big|_{t=0} = \mathbf{e}_k.$$

Thus γ represents a tangent vector v_k for which $d\phi(x)(v_k) = d_\gamma \phi(x) = \mathbf{e}_k$. Repeating the Eq.4 construction for all $k \in \{1, \ldots, d\}$ gives distinct tangent vectors $\{v_1, \ldots, v_d\} \subset T_x \mathcal{M}$ with

$$d\phi(x)(v_k) = \mathbf{e}_k, \quad k = 1, \dots, d.$$

Now suppose that $\mathbf{p} \in \mathbf{E}^d$ is given. Write $\mathbf{p} = \sum_k a_k \mathbf{e}_k$, using the basis for \mathbf{E}^d . Since $T_x \mathcal{M}$ is a vector space, it contains the linear combination $w \stackrel{\text{def}}{=} \sum_k a_k v_k$. Applying the linearity of $d\phi(x)$, compute

$$d\phi(x)(w) = d\phi(x)\left(\sum_{k} a_k v_k\right) = \sum_{k} a_k d\phi(x)(v_k) = \sum_{k} a_k \mathbf{e}_k = \mathbf{p}.$$

Hence $w \in T_x \mathcal{M}$ is a preimage of **p**. Conclude that $d\phi(x)$ is surjective.

1.2.3 $d\phi(x)$ is injective.

Since $d\phi(x)$ is linear, it suffices to show that its nullspace is just $\{0\}$.

So suppose that $u \in T_x \mathcal{M}$ satisfies $d\phi(x)(u) = 0$. Let γ be a curve through x that represent u. Then by definition,

$$\mathbf{0} = d\phi(x)(u) = d_{\gamma}\phi(x) = \frac{d}{dt}[\phi \circ \gamma(t)]\Big|_{t=0}.$$

Now let (H, ψ) be any chart in the maximal differentiable atlas for \mathcal{M} such that $x \in G \cap H$. Let $\tau = \psi \circ \phi^{-1}$ be the differentiable transition function on $\phi(G \cap H)$, where $\tau : \mathbf{E}^d \to \mathbf{E}^d$. Then $D\tau(\mathbf{p}) : \mathbf{E}^d \to \mathbf{E}^d$ is a $d \times d$ matrix for any $\mathbf{p} \in \phi(G \cap H)$, and the chain rule may be used to evaluate:

$$\begin{split} \frac{d}{dt}[\psi \circ \gamma(t)]\Big|_{t=0} &= \left. \frac{d}{dt}[\psi \circ \phi^{-1} \circ \phi \circ \gamma(t)] \Big|_{t=0} \\ &= \left. D\tau(\phi(\gamma(0))) \frac{d}{dt}[\phi \circ \gamma(t)] \right|_{t=0} \\ &= \left. D\tau(\phi(\gamma(0))) \frac{d}{dt}[\phi \circ \gamma(t)] \right|_{t=0} \\ &= \left. D\tau(\phi(x)) \mathbf{0} \right|_{t=0} \\ &= \left. D\tau(\phi$$

since $\gamma(0) = x$ and $\phi(x) \in \phi(G \cap H)$. Hence u is the equivalence class of curves through x that give the zero vector as the directional derivative for every chart, namely the zero tangent vector.

1.2.4 Remarks on higher derivatives

Finding $d\phi(x)$ consumes one derivative, which is all that is assumed to exist for a differentiable manifold. To define higher order derivatives, the atlas of charts on \mathcal{M} must contain coordinate functions with K > 1 derivatives (for C^K manifolds) or even infinitely many derivatives (for C^{∞} , or *smooth* manifolds).