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1 Tangent Vectors, Spaces, and Bundles.

1.1 T,M is a vector space

Fix x € M. Check three properties.

1.1.1 7T, M contains 0

The equivalence class of the constant curve v(t) = z, for which

d _ d
o] =0cE

for any differentiable chart (G, ¢) with = € G, is the zero vector in T, M.

1.1.2 veIT M = cweTl, M

Let ¢ € R be given. If v € T, M is represented by -, then n(t) = v(ct) represents
cv since, for any differentiable chart (G, ¢) with x € G,

ponl|_ = Sioor(e)

d
T o = Ca[éﬁ oy(®)]|

t=0 t=0

by the chain rule. Note that 7 is defined on the possibly smaller open interval
(=1/|el,1/|c]) rather than (—1,1). This technical problem may be overcome by
using

n(t) = y(tan™"(ct)) (1)
whose domain is (—00, 00) and which gives the same chain rule result since
d 3 d = 1
dt [tan <Ct)]‘t:0 cdt[ an = ()] =0 C [1 + tQ} =0 C

Alternatively, the chain rule may be avoided by representing cv with the curve

n(t) def ¢~ 1(co o ¥(t)), which may be different for each coordinate map ¢:

= % [¢o ¢71(C¢O’y(t))] = C%M’O’Y(t)]

d
dt [#on(®)] ’t:O =0 =0



1.1.3 vs2wel M — v+we T, M

Suppose that v, w € T, M are equivalence classes of differentiable curves through
x, represented respectively by v,n. Let (G, ¢) be any chart with © € G. Then
it is possible to define a “sum” of v, 7 as

def

Et) = ¢ (pov(t) +don(t)),

since ¢ o and ¢ o 1 both belong to the linear space E<.
WOLOG ¢(x) = 0 € E, else replace it with the compatible map

def

0. (2) = &(z) — o(x), z €@, (2)

which has the same domain and differentiability but satisfies ¢, (x) = 0.

Since homeomorphism ¢ is an open map, there exists ¢ > 0 such that
B(0,2¢) C ¢(G). Since 7,n are continuous, there exists ¢ > 0 such that the
small open interval I = (—4,9) C (—1,1) satisfies

(1) C G, ¢(v(1)) C B(0,e); n(I) C G, ¢(n(I)) C B(0,e);
Then the domain of £ includes I, since
t € (=0,0) = ¢o(t)+¢on(t) € B(0,2) C ¢(G).

Finally, reparametrize £ so that its domain includes (—1,1), again using the
arctangent function:

E(t) = € (Stan~1(1/)). (3)
Then by the chain rule,
d ~ d
Zloolw| = Zlpoc®)
and thus
Lisoé®]] = Lipos o) +on)]
dt t=0 dt v N t=0
= SLlpor+oon]|_
= Slorl|_ + Sloonl]

Conclude that £ represents the equivalence class of v + w.

1.2 d¢(z) is a linear homeomorphism from T, M onto E<.
1.2.1 d¢(z) is linear.

Let u,v € T, M be given, represented by curves «,n through x, and suppose
c € R is also given.



T, M is a vector space, so u+cv € T, M has a representative curve £ through
x which, except for domain adjustments, may be written as

§(t) = ¢~ (P oy(t) + chpon(t)).

(Adjustments like ¢ < ¢ — ¢(z) and ¢ < dtan~'(¢/d) from Equations 2 and 3
would result in ¢(x) = 0 and domain —1 < ¢ < 1 for all curves, without loss.)
Then by definition,

d
do(z)(u+cv) = dep(z) = %Wof(t)])
— % [pod™ (por(t)+chon(t)]

t=0

t=0
= Lior]_, e lbonl]
= dyd(e) +edyd(x) = do(x)(u) + cdo(x)(v).

Conclude that d¢(x) is linear.

1.2.2 d¢(z) is surjective.

Let e = {ey,...,eq} be the standard basis of E¢. Fix k and parametrize a curve
~ through x € M with

OB

(If necessary to stay within ¢(G) for all —1 < t < 1, replace t < §tan~1(t/6)
using small enough ¢ > 0.) Then the directional derivative of ¢ along  is

¢ H(p(x) +tey), —1<t<l. (4)

Do) ter]| = e

¢ o(t)] o @t o

do(e) = |

Thus 7 represents a tangent vector vy for which do(x)(vi) = dyo(z) = ey.
Repeating the Eq.4 construction for all k& € {1,...,d} gives distinct tangent
vectors {vy,...,v4} C T, M with

do(z)(vg) = e, k=1,...,d.

Now suppose that p € E¢ is given. Write p = >k Gke€r, using the basis for E<.

Since T, M is a vector space, it contains the linear combination w def >k Ok Uk
Applying the linearity of d¢(z), compute

do(x)(w) = dp(x) (Z akvk> = Zakdq’)(m)(vk) = Zakek =p.
k k k

Hence w € T, M is a preimage of p. Conclude that d¢(z) is surjective.



1.2.3 d¢(z) is injective.

Since d¢(z) is linear, it suffices to show that its nullspace is just {0}.
So suppose that u € T, M satisfies d¢(x)(u) = 0. Let v be a curve through
x that represent u. Then by definition,

d
0 = do() ) = dy(a) = 160 (0)]_
Now let (H,1) be any chart in the maximal differentiable atlas for M such
that © € GN H. Let 7 = 1 o0 ¢! be the differentiable transition function on
é(GN H), where 7 : E? — E4. Then D7(p) : E? — E is a d x d matrix for
any p € ¢(G N H), and the chain rule may be used to evaluate:

= o gon )

t=0 dt t=0

Yod~togpor(t)

ol = oI

d
= Dr(e((0)[6ov®)]| = Dr(e)o = o,
since ¥(0) = z and ¢(x) € ¢(G N H). Hence u is the equivalence class of curves
through x that give the zero vector as the directional derivative for every chart,
namely the zero tangent vector.

1.2.4 Remarks on higher derivatives

Finding d¢(z) consumes one derivative, which is all that is assumed to exist
for a differentiable manifold. To define higher order derivatives, the atlas of
charts on M must contain coordinate functions with K > 1 derivatives (for C¥
manifolds) or even infinitely many derivatives (for C*°, or smooth manifolds).



