Supplement 2: Manifolds

Mladen Victor Wickerhauser
PMF 2022: Dimensionality Reduction and Manifold Estimation

January 23, 2022

1 Tangent Vectors, Spaces, and Bundles.

1.1 $T_{x} \mathcal{M}$ is a vector space

Fix $x \in \mathcal{M}$. Check three properties.

1.1.1 $\quad T_{x} \mathcal{M}$ contains $\mathbf{0}$

The equivalence class of the constant curve $\gamma(t) \equiv x$, for which

$$
\left.\frac{d}{d t}[\phi \circ \gamma(t)]\right|_{t=0}=\mathbf{0} \in \mathbf{E}^{d},
$$

for any differentiable chart (G, ϕ) with $x \in G$, is the zero vector in $T_{x} \mathcal{M}$.

1.1.2 $v \in T_{x} \mathcal{M} \Longrightarrow c v \in T_{x} \mathcal{M}$

Let $c \in \mathbf{R}$ be given. If $v \in T_{x} \mathcal{M}$ is represented by γ, then $\eta(t)=\gamma(c t)$ represents $c v$ since, for any differentiable chart (G, ϕ) with $x \in G$,

$$
\left.\frac{d}{d t}[\phi \circ \eta(t)]\right|_{t=0}=\left.\frac{d}{d t}[\phi \circ \gamma(c t)]\right|_{t=0}=\left.c \frac{d}{d t}[\phi \circ \gamma(t)]\right|_{t=0},
$$

by the chain rule. Note that η is defined on the possibly smaller open interval $(-1 /|c|, 1 /|c|)$ rather than $(-1,1)$. This technical problem may be overcome by using

$$
\begin{equation*}
\eta(t)=\gamma\left(\tan ^{-1}(c t)\right) \tag{1}
\end{equation*}
$$

whose domain is $(-\infty, \infty)$ and which gives the same chain rule result since

$$
\left.\frac{d}{d t}\left[\tan ^{-1}(c t)\right]\right|_{t=0}=\left.c \frac{d}{d t}\left[\tan ^{-1}(t)\right]\right|_{t=0}=\left.c\left[\frac{1}{1+t^{2}}\right]\right|_{t=0}=c
$$

Alternatively, the chain rule may be avoided by representing $c v$ with the curve $\eta(t) \stackrel{\text { def }}{=} \phi^{-1}(c \phi \circ \gamma(t))$, which may be different for each coordinate map ϕ :

$$
\left.\frac{d}{d t}[\phi \circ \eta(t)]\right|_{t=0}=\left.\frac{d}{d t}\left[\phi \circ \phi^{-1}(c \phi \circ \gamma(t))\right]\right|_{t=0}=\left.c \frac{d}{d t}[\phi \circ \gamma(t)]\right|_{t=0} .
$$

1.1.3 $v, w \in T_{x} \mathcal{M} \Longrightarrow v+w \in T_{x} \mathcal{M}$

Suppose that $v, w \in T_{x} \mathcal{M}$ are equivalence classes of differentiable curves through x, represented respectively by γ, η. Let (G, ϕ) be any chart with $x \in G$. Then it is possible to define a "sum" of γ, η as

$$
\xi(t) \stackrel{\text { def }}{=} \phi^{-1}(\phi \circ \gamma(t)+\phi \circ \eta(t))
$$

since $\phi \circ \gamma$ and $\phi \circ \eta$ both belong to the linear space \mathbf{E}^{d}.
WOLOG $\phi(x)=\mathbf{0} \in \mathbf{E}^{d}$, else replace it with the compatible map

$$
\begin{equation*}
\phi_{x}(z) \stackrel{\text { def }}{=} \phi(z)-\phi(x), \quad z \in G, \tag{2}
\end{equation*}
$$

which has the same domain and differentiability but satisfies $\phi_{x}(x)=\mathbf{0}$.
Since homeomorphism ϕ is an open map, there exists $\epsilon>0$ such that $B(\mathbf{0}, 2 \epsilon) \subset \phi(G)$. Since γ, η are continuous, there exists $\delta>0$ such that the small open interval $I=(-\delta, \delta) \subset(-1,1)$ satisfies

$$
\gamma(I) \subset G, \phi(\gamma(I)) \subset B(\mathbf{0}, \epsilon) ; \quad \eta(I) \subset G, \phi(\eta(I)) \subset B(\mathbf{0}, \epsilon)
$$

Then the domain of ξ includes I, since

$$
t \in(-\delta, \delta) \Longrightarrow \phi \circ \gamma(t)+\phi \circ \eta(t) \in B(\mathbf{0}, 2 \epsilon) \subset \phi(G)
$$

Finally, reparametrize ξ so that its domain includes $(-1,1)$, again using the arctangent function:

$$
\begin{equation*}
\tilde{\xi}(t) \stackrel{\text { def }}{=} \xi\left(\delta \tan ^{-1}(t / \delta)\right) . \tag{3}
\end{equation*}
$$

Then by the chain rule,

$$
\left.\frac{d}{d t}[\phi \circ \tilde{\xi}(t)]\right|_{t=0}=\left.\frac{d}{d t}[\phi \circ \xi(t)]\right|_{t=0},
$$

and thus

$$
\begin{aligned}
\left.\frac{d}{d t}[\phi \circ \tilde{\xi}(t)]\right|_{t=0} & =\left.\frac{d}{d t}\left[\phi \circ \phi^{-1}(\phi \circ \gamma(t)+\phi \circ \eta(t))\right]\right|_{t=0} \\
& =\left.\frac{d}{d t}[\phi \circ \gamma(t)+\phi \circ \eta(t)]\right|_{t=0} \\
& =\left.\frac{d}{d t}[\phi \circ \gamma(t)]\right|_{t=0}+\left.\frac{d}{d t}[\phi \circ \eta(t)]\right|_{t=0}
\end{aligned}
$$

Conclude that ξ represents the equivalence class of $v+w$.

1.2 $d \phi(x)$ is a linear homeomorphism from $T_{x} \mathcal{M}$ onto \mathbf{E}^{d}.

1.2.1 $d \phi(x)$ is linear.

Let $u, v \in T_{x} \mathcal{M}$ be given, represented by curves γ, η through x, and suppose $c \in \mathbf{R}$ is also given.
$T_{x} \mathcal{M}$ is a vector space, so $u+c v \in T_{x} \mathcal{M}$ has a representative curve ξ through x which, except for domain adjustments, may be written as

$$
\xi(t)=\phi^{-1}(\phi \circ \gamma(t)+c \phi \circ \eta(t))
$$

(Adjustments like $\phi \leftarrow \phi-\phi(x)$ and $t \leftarrow \delta \tan ^{-1}(t / \delta)$ from Equations 2 and 3 would result in $\phi(x)=\mathbf{0}$ and domain $-1<t<1$ for all curves, without loss.) Then by definition,

$$
\begin{aligned}
d \phi(x)(u+c v) & =d_{\xi} \phi(x)=\left.\frac{d}{d t}[\phi \circ \xi(t)]\right|_{t=0} \\
& =\left.\frac{d}{d t}\left[\phi \circ \phi^{-1}(\phi \circ \gamma(t)+c \phi \circ \eta(t))\right]\right|_{t=0} \\
& =\left.\frac{d}{d t}[\phi \circ \gamma(t)]\right|_{t=0}+\left.c \frac{d}{d t}[\phi \circ \eta(t)]\right|_{t=0} \\
& =d_{\gamma} \phi(x)+c d_{\eta} \phi(x)=d \phi(x)(u)+c d \phi(x)(v)
\end{aligned}
$$

Conclude that $d \phi(x)$ is linear.

1.2.2 $d \phi(x)$ is surjective.

Let $\mathbf{e}=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}\right\}$ be the standard basis of \mathbf{E}^{d}. Fix k and parametrize a curve γ through $x \in \mathcal{M}$ with

$$
\begin{equation*}
\gamma(t) \stackrel{\text { def }}{=} \phi^{-1}\left(\phi(x)+t \mathbf{e}_{k}\right), \quad-1<t<1 . \tag{4}
\end{equation*}
$$

(If necessary to stay within $\phi(G)$ for all $-1<t<1$, replace $t \leftarrow \delta \tan ^{-1}(t / \delta)$ using small enough $\delta>0$.) Then the directional derivative of ϕ along γ is

$$
d_{\gamma} \phi(x)=\left.\frac{d}{d t}[\phi \circ \gamma(t)]\right|_{t=0}=\left.\frac{d}{d t}\left[\phi(x)+t \mathbf{e}_{k}\right]\right|_{t=0}=\mathbf{e}_{k}
$$

Thus γ represents a tangent vector v_{k} for which $d \phi(x)\left(v_{k}\right)=d_{\gamma} \phi(x)=\mathbf{e}_{k}$. Repeating the Eq. 4 construction for all $k \in\{1, \ldots, d\}$ gives distinct tangent vectors $\left\{v_{1}, \ldots, v_{d}\right\} \subset T_{x} \mathcal{M}$ with

$$
d \phi(x)\left(v_{k}\right)=\mathbf{e}_{k}, \quad k=1, \ldots, d
$$

Now suppose that $\mathbf{p} \in \mathbf{E}^{d}$ is given. Write $\mathbf{p}=\sum_{k} a_{k} \mathbf{e}_{k}$, using the basis for \mathbf{E}^{d}. Since $T_{x} \mathcal{M}$ is a vector space, it contains the linear combination $w \stackrel{\text { def }}{=} \sum_{k} a_{k} v_{k}$. Applying the linearity of $d \phi(x)$, compute

$$
d \phi(x)(w)=d \phi(x)\left(\sum_{k} a_{k} v_{k}\right)=\sum_{k} a_{k} d \phi(x)\left(v_{k}\right)=\sum_{k} a_{k} \mathbf{e}_{k}=\mathbf{p}
$$

Hence $w \in T_{x} \mathcal{M}$ is a preimage of \mathbf{p}. Conclude that $d \phi(x)$ is surjective.

1.2.3 $d \phi(x)$ is injective.

Since $d \phi(x)$ is linear, it suffices to show that its nullspace is just $\{0\}$.
So suppose that $u \in T_{x} \mathcal{M}$ satisfies $d \phi(x)(u)=\mathbf{0}$. Let γ be a curve through x that represent u. Then by definition,

$$
\mathbf{0}=d \phi(x)(u)=d_{\gamma} \phi(x)=\left.\frac{d}{d t}[\phi \circ \gamma(t)]\right|_{t=0}
$$

Now let (H, ψ) be any chart in the maximal differentiable atlas for \mathcal{M} such that $x \in G \cap H$. Let $\tau=\psi \circ \phi^{-1}$ be the differentiable transition function on $\phi(G \cap H)$, where $\tau: \mathbf{E}^{d} \rightarrow \mathbf{E}^{d}$. Then $D \tau(\mathbf{p}): \mathbf{E}^{d} \rightarrow \mathbf{E}^{d}$ is a $d \times d$ matrix for any $\mathbf{p} \in \phi(G \cap H)$, and the chain rule may be used to evaluate:

$$
\begin{aligned}
\left.\frac{d}{d t}[\psi \circ \gamma(t)]\right|_{t=0} & =\left.\frac{d}{d t}\left[\psi \circ \phi^{-1} \circ \phi \circ \gamma(t)\right]\right|_{t=0}=\left.\frac{d}{d t}[\tau \circ \phi \circ \gamma(t)]\right|_{t=0} \\
& =\left.D \tau(\phi(\gamma(0))) \frac{d}{d t}[\phi \circ \gamma(t)]\right|_{t=0}=D \tau(\phi(x)) \mathbf{0}=\mathbf{0}
\end{aligned}
$$

since $\gamma(0)=x$ and $\phi(x) \in \phi(G \cap H)$. Hence u is the equivalence class of curves through x that give the zero vector as the directional derivative for every chart, namely the zero tangent vector.

1.2.4 Remarks on higher derivatives

Finding $d \phi(x)$ consumes one derivative, which is all that is assumed to exist for a differentiable manifold. To define higher order derivatives, the atlas of charts on \mathcal{M} must contain coordinate functions with $K>1$ derivatives (for C^{K} manifolds) or even infinitely many derivatives (for C^{∞}, or smooth manifolds).

