Supplement 3: Manifolds

Mladen Victor Wickerhauser

PMF 2022: Dimensionality Reduction and Manifold Estimation

January 24, 2022

1 Partitions of Unity.

Recall that a topological space (X, \mathcal{T}) is *compact* if every open cover of X contains a finite subcover. This is a strong condition, but there are several related weaker conditions of interest.

1.1 Closures

Set $F \subset X$ is called *closed* iff its complement $F^c \stackrel{\text{def}}{=} X \setminus F$ is open. The following are de Morgan's formulas. Index set I is arbitrary:

$$(\bigcap_{\alpha \in I} S_{\alpha})^{c} = \bigcup_{\alpha \in I} S_{\alpha}^{c}, \qquad (\bigcup_{\alpha \in I} S_{\alpha})^{c} = \bigcap_{\alpha \in I} S_{\alpha}^{c}.$$

Use these to deduce that

- Arbitrary intersections of closed sets are closed.
- Finite unions of closed sets are closed.

Define the closure \bar{S} of a subset $S \subset X$ to be the smallest closed set that contains S, namely

$$\bar{S} = \bigcap_{\{F: F^c \in \mathcal{T}, \ S \subset F\}} F$$

which is the intersection of all the closed sets F (whose complements are open sets $F^c \in \mathcal{T}$) that contain S.

Any closed subset F of a compact set K is compact: if $F \subset \bigcup_{\alpha \in I} G_{\alpha}$ is any open cover, then $K \subset F^c \cup [\bigcup_{\alpha \in I} G_{\alpha}]$ is an open cover of K, hence it has a finite subcover $F^c \cup G_1 \cup \cdots \cup G_N$, hence $F \subset G_1 \cup \cdots \cup G_N$ is a finite subcover of F.

Consequently, if K is compact and $S\subset K$ also has $\bar{S}\subset K$, then \bar{S} is compact.

A compact subset K need not be closed. For example, let $X = \{a, b\}$ and $\mathcal{T} = \{\emptyset, \{a\}, \{a, b\}\}$. Then $\{a\}$ is compact but not closed, since its complement $\{a\}^c = \{b\} \notin \mathcal{T}$. (There are many other similarly contrived examples.)

However, any compact subset K of a Hausdorff space must be closed. Prove this by showing that its complement K^c is open, for which it suffices to show that each $x \in K^c$ belongs to some open set $G \subset K^c$. Find that G as follows:

- For each $y \in K$, find disjoint open G_y , H_y with $x \in G_y$ and $y \in H_y$. These exist by the Hausdorff property.
- Note that $K \subset \bigcup_{y \in K} H_y$ is an open cover.
- Since K is compact, there exists a finite subcover which may be denoted $K \subset H_1 \cup \cdots \cup H_N$.
- Let G_i be the open set around x corresponding to H_i , i = 1, ..., N.
- Put $G \stackrel{\text{def}}{=} G_1 \cap \cdots \cap G_N$. This finite intersection of open sets is open.
- Note that $x \in G$.
- $G \subset K^c$, since $(\forall i)G \cap H_i = \emptyset$ and $K \subset \cup H_i$.

Conclude that K^c is open, so K is closed.

1.2 Local Compactness

A topological space (X, \mathcal{T}) is *locally compact* if every point $x \in X$ has a compact neighborhood,

A d-dimensional manifold \mathcal{M} is locally compact since it is a metric space that is locally homeomorphic to \mathbf{E}^d . Every $x \in \mathcal{M}$ belongs to some chart (G, ϕ) with open G, so there exists $\epsilon > 0$ such that $x \in B(x, 2\epsilon) \subset G$. But then

$$\bar{B}(x,\epsilon) \stackrel{\text{def}}{=} \{ y \in \mathcal{M} : d(x,y) \le \epsilon \} \subset G,$$

and $\phi(\bar{B}(x,\epsilon)) \subset \phi(G) \subset \mathbf{E}^d$ is closed and bounded. Such sets are compact by the Heine-Borel theorem. Conclude that

$$\bar{B}(x,\epsilon)) = \phi^{-1}\left(\phi(\bar{B}(x,\epsilon))\right) \subset \mathcal{M}$$

is a compact neighborhood of x.

1.3 Paracompactness

Start with the notion of refinement of open covers: collection $\mathcal{G}'\subset\mathcal{T}$ is a refinement of $\mathcal{G}\subset\mathcal{T}$ iff

$$(\forall G \in \mathcal{G})(\exists G' \in \mathcal{G}')G' \subset G.$$

For example, in a metric space X, $\mathcal{G}' = \{B(x, \epsilon/2) : x \in X\}$ is a refinement of $\mathcal{G} = \{B(x, \epsilon) : x \in X\}$.

Next, say that an open cover $\{G_{\alpha} : \alpha \in I\}$ is *locally finite* iff every $x \in X$ is contained in some neighborhood U_x that intersects only finitely many sets in the cover. Namely,

$$(\forall x \in X)(\exists U_x \in \mathcal{T}) (x \in U_x \text{ and } \{\alpha \in I : U_x \cap G_\alpha \neq \emptyset\} \text{ is finite}).$$

Finally, say that (X, \mathcal{T}) is paracompact iff every open cover has a locally finite refinement.

Remark. If there is a locally finite refinement $\mathcal{G}' = \{G'_{\beta} : \beta \in J\}$ of $\mathcal{G} = \{G_{\alpha} : \alpha \in I\}$, then there is an identically-indexed locally finite refinement $\mathcal{H} = \{H_{\alpha} : \alpha \in I\}$ of \mathcal{G} such that $H_{\alpha} \subset G_{\alpha}$ for each $\alpha \in I$. It may be constructed by choosing a single $\alpha = i(\beta) \in I$ for each $\beta \in J$ such that $G'_{\beta} \subset G_{\alpha}$, and then putting

$$H_{\alpha} = \bigcup_{\{\beta \in J: \ i(\beta) = \alpha\}} G'_{\beta}.$$

It is clear that $H_{\alpha} \subset G_{\alpha}$. But also, any neighborhood that intersects only finitely many G'_{β} can intersect at most finitely many H_{α} . (Since i is single-valued, there will be more intersecting β indices than α indices.) Thus \mathcal{H} is a locally finite refinement of \mathcal{G} .

Theorem. A locally compact second countable Hausdorff space is paracompact.

Proof. See Proposition A1.6 in PartOfUnity_LocFiniteRefinements.pdf on the class website. $\hfill\Box$

Remark. A differentiable manifold is locally compact (because it is finite dimensional), second countable (by definition), and Hausdorff (because it is a metric space). Hence any differentiable manifold is paracompact.

Remark. Any compact differentiable manifold is obviously paracompact since any finite cover is locally finite.

1.4 Bump functions

Start by constructing a continuously differentiable nonnegative function $b: \mathbf{E}^d \to \mathbf{R}$ satisfying

- $|x| \ge 2 \implies b(x) = 0$. Namely, b is supported in $\bar{B}(\mathbf{0}, 2)$, the closed ball of radius 2 centered at $\mathbf{0}$.
- $|x| \le 1 \implies b(x) > 0$. Thus b is strictly positive in $B(\mathbf{0}, 1)$.

Examples among elementary functions include

$$b(x) = \begin{cases} \frac{1}{2}[1 + \cos(\pi|x|/2)], & |x| \le 2, \\ 0, & |x| > 2 \end{cases}$$

which has one continuous derivative, and

$$b(x) = \begin{cases} \exp[-1/(4 - |x|^2)], & |x| < 2, \\ 0, & |x| \ge 2 \end{cases}$$

which has infinitely many continuous derivatives, as may be shown by induction and l'Hôpital's rule.

1.5 Bump Functions on a Manifold

Suppose that $(\mathcal{M}, \mathcal{T}, \mathcal{A})$ is a d-dimensional differentiable manifold. This is a paracompact topological space, so every open cover has a locally finite refinement.

Given a chart (G, ϕ) and fixed $x \in G$, it may be assumed WOLOG that

- $\phi(x) = \mathbf{0} \in \mathbf{E}^d$, else use $\phi_x(z) \stackrel{\text{def}}{=} \phi(z) \phi(x)$.
- $\phi(G) \subset B(\mathbf{0}, 2)$, else use $\phi_{\epsilon}(z) \stackrel{\text{def}}{=} \epsilon \phi(z)$ with sufficiently small $\epsilon > 0$.

Then, using a bump function $b: \mathbf{E}^d \to \mathbf{R}$ from the previous section, define $b_G: \mathcal{M} \to \mathbf{R}$ by

$$b_G(x) \stackrel{\text{def}}{=} \begin{cases} b \circ \phi(x), & x \in G \\ 0, & x \in \mathcal{M} \setminus G. \end{cases}$$

Each such function is differentiable on \mathcal{M} .

Now let $\mathcal{M} \subset \{G_{\alpha} : \alpha \in I\}$ be a locally finite cover. Define $g : \mathcal{M} \to \mathbf{R}$ by

$$g(x) \stackrel{\text{def}}{=} \sum_{\alpha \in I} b_{G_{\alpha}}(x), \quad x \in \mathcal{M},$$

which is finite and differentiable since each term is differentiable and, at each x, there are only finitely many α with $b_{G_{\alpha}}(x) > 0$ in the sum.

In addition, g(x) > 0 since there is at least one strictly positive summand at each $x \in \mathcal{M}$.