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Euclidean Vector Spaces

Euclidean d-space, Ed , has these properties:
I Dimension: d ∈ Z+, finite but it could be large.
I Set Rd def= {x def= (x1, . . . , xd ) : xi ∈ R, i = 1, . . . , d}.
I Linearity: (∀x, y ∈ Rd )(∀c ∈ R) ,

x + cy def= (x1 + cy1, . . . , xd + cyd ) ∈ Rd .
I Norm: ‖x‖ def=

√
x2

1 + · · · x2
d ≥ 0.

‖x‖ = 0 ⇐⇒ x = 0 def= (0, . . . , 0).
I Inner product: 〈x, y〉 def= x1y1 + · · ·+ xd yd . Then
‖x‖ =

√
〈x, x〉.

Exercise: |〈x, y〉| ≤ ‖x‖‖y‖. When is there equality?



Topology

A topological space is a set X with a topology T , a collection of
subsets called open, satisfying:
I For any index set I and collection {Gα : α ∈ I} ⊂ T , the

union is open: ∪α∈IGα ∈ T .
I For any finite collection {G1, . . . ,GN} ⊂ T , the intersection is

open: ∪N
i=1Gi ∈ T .

Also, ∅ ∈ T and X ∈ T , so T is nonempty.

Write (X , T ) to indicate the topology T , since topological space X
may have more than one.

If Y ⊂ X , then (Y , TY ) is a topological space with the convention
TY

def= {G ∩ Y : G ∈ T }. This TY is called the relative topology.



Concepts from Topology
Let (X , T ) be a topological space.
I Dense subset: Y ⊂ X is dense if X \ Y contains no open sets.
I Separable space: X contains a countable dense subset.
I Hausdorff space: For any x , y ∈ X with x 6= y , there exist

disjoint G ,H ∈ T with x ∈ G and y ∈ H.
I Neighborhood of x ∈ X: subset V ⊂ X with x ∈ V and

(∃G ∈ T ) x ∈ G ⊂ V .
I First countable space: For each x ∈ X , there exist
{G1,G2, . . . } ⊂ T , such that for every neighborhood V of x ,
there is some i such that x ∈ Gi ⊂ V .

I Second countable: There exists a countable base B ⊂ T that
generates T , namely every G ∈ T is a union of elements of B.

Exercise: (a) Second countable implies first countable. (b) Second
countable implies separable.



Metric Topology

Metric space: set X with distance function d : X × X → R
satisfying:
I d(x , y) ≥ 0;
I d(x , y) = 0 ⇐⇒ x = y ;
I d(x , y) = d(y , x);
I d(x , z) ≤ d(x , y) + d(y , z).

Open balls: B(x , r) def= {y ∈ X : d(x , y) < r}, x ∈ X and r > 0.

Metric topology T is all open balls and all unions of open balls.

Exercise: (a) A metric space is a first countable Hausdorff
topological space. (b) A separable metric space is second
countable.



Open Covers and Compactness

Let (X , T ) be a topological space.
I An open cover of X is a collection of open sets
{Gα : α ∈ I} ⊂ T such that X ⊂

⋃
I Gα.

I A subcover of {Gα : α ∈ I} is given by I ′ ⊂ I satisfying
X ⊂

⋃
I′ Gα.

I A subcover {Gα : α ∈ I ′} is called countable if I ′ is countable,
and finite if I ′ is finite.

Definition
Topological space X is compact iff every open cover of X has a
finite subcover.

Exercise: (Lindelöf) If X is a separable metric space, then every
open cover of X has a countable subcover.



Finite Dimensional Euclidean Space

Ed is a metric space with d(x, y) def= ‖x− y‖.

Metric topology T for Ed contains all finite intersections of open
balls: Put G = B(x , r) and H = B(y , s). Then

G ∩ H = {z ∈ X : ‖z − x‖ < r , ‖z − y‖ < s}
=

⋃
z∈G∩H

B(z , tz),

where tz
def= min(r − ‖z − x‖, s − ‖z − y‖) for each z ∈ G ∩ H.

Ed is separable: Qd , the d-tuples of rational numbers, is a
countable dense subset.

Ed is second countable: B def= {B(x, r) : x ∈ Qd , r ∈ Q+} is a
countable set of open balls that generates T .



Homeomorphisms

Two topological spaces (X , TX ) and (Y , TY ) are homeomorphic if
there exists a map φ : X → Y satisfying:
I bijectivity: φ is 1-1 and onto.
I continuity: if φ(x) = y , then for every GY ∈ TY with y ∈ GY

there exists GX ∈ TX with x ∈ GX such that φ(GX ) ⊂ GY .
I openness: if GX ∈ TX , then φ(GX ) ∈ TY .

Equivalently, φ is a bijection between X and Y (as a point map)
and a bijection between TX and TY (as a set map). This uses:

Exercise: If φ : X → Y is bijective and continuous, then for each
GY ∈ TY there exists GX ∈ TX such that φ(GX ) = GY .



Abstract Manifolds

A manifold (M, T ) is a separable metric space together with an
open cover {Gα : α ∈ I} ⊂ T and a corresponding collection of
homeomorphisms {φα : α ∈ I}, satisfying:
I for each α ∈ I there is some d ∈ Z+ such that φα(Gα) is an

open subset of d-dimensional Euclidean space Ed ;
I if G = Gα ∩ Gβ, then φ def= φ−1

α ◦ φβ is a homeomorphism of
metric subspace (G , TG) to itself.

A manifold is said to be locally homeomorphic to Ed , and
d-dimensional if d is constant. Map φα gives coordinates for Gα
while φ−1

α is a parametrization of Gα.

Collection {(Gα, φα) : α ∈ I} is an atlas of charts for (M, T ).
Every M has a countable atlas; compact M has a finite atlas.



Transition Functions

Suppose that (M, T ) is a manifold with atlas {(Gα, φα) : α ∈ I}.
For α, β ∈ I such that G def= Gα ∩ Gβ is nonempty, define the
transition function

ταβ
def= φα ◦ φ−1

β : U → U.

Here U def= φα(G) = φβ(G) is an open subset of E d .
Compositions of homeomorphisms are homeomorphisms, so ταβ is
a homeomorphism with inverse

τβα
def= φβ ◦ φ−1

α : U → U.

Remark. φα(Gα) ⊂ Ed is a parameter space for Gα ⊂M.
ταβ and τβα are reparametrizations of G on parameter space U.



Differentiable Functions

Suppose f : En → Em is a function defined on an open set U ⊂ En.
It may be written in standard coordinates as

f(x) = (f1(x), . . . , fm(x)) ∈ Em, x ∈ U ⊂ En.

Call f differentiable if all partial derivatives are continuous on U.
Its derivative at x ∈ U is the linear transformation

Df(x) def=


∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)
... . . . ...

∂fm
∂x1

(x) · · · ∂fm
∂xn

(x)

 ,
a matrix with respect to the standard bases of En and Em.



Differentiable Atlases

Atlas A = {(Gα, φα) : α ∈ I} for manifold (M, T ) is differentiable
if every transition function ταβ, α, β ∈ I, is differentiable on the
overlap domain U = φα(Gα ∩ Gβ) = φβ(Gα ∩ Gβ) ⊂ Ed .

Chart (G , φ) is differentially compatible with A iff A ∪ (G , φ) is
again a differentiable atlas for (M, T ).

Differentiable atlas A is differentially maximal if any chart that is
differentially compatible with A already belongs to A.

Remark. Coordinate maps from a differentially maximal atlas A
are used like test functions: S ⊂M is nice iff φ(S ∩ G) ⊂ Ed is
nice for every chart (G , φ) ∈ A.



Differentiable Manifolds

A differentiable manifold is a manifold with a maximal
differentiable atlas A. It may be denoted by (M, T ,A).

Note that the underlying topological space (M, T ) is separable,
second countable, and Hausdorff.

Say that f :M→ Em is differentiable at x iff, for every chart
(G , φ) ∈ A with x ∈ G , the composition

f ◦ φ−1 : Ed → Em

is a differentiable function on U = φ(G) ⊂ Ed .

Say that f is differentiable on G if it is differentiable at every
x ∈ G .



Linear Manifolds

An example differentiable manifold to keep in mind:
I M = Ed ,
I T is the metric topology,
I A is all charts with coordinate functions φ differentially

compatible with the identity I : Ed → Ed .

Exercise: (G , φ) is differentially compatible with (G , I) iff
φ : Ed → Ed is differentiable on G .



Diffeomorphisms

Differentiable manifolds (M, T ,A) and (M′, T ′,A′) are
diffeomorphic iff there exists a bijection ∆ :M→M′ such that
I ∆ : T → T ′ is a bijection, so ∆ is a homeomorphism of

topological spaces (M, T ) and (M′, T ′);
I f :M′ → Em is differentiable on G ′ ∈ T ′ iff f ◦∆ :M→ Em

is differentiable on G = ∆−1(G ′) ∈ T .
Special case: M =M′, same T and A. Then the identity x 7→ x
is a diffeomorphism, but there may be many others, and they form
the group of diffeomorphisms.



Differentiable Varieties

Goal: Construct an n-dimensional differentiable manifold as a
subset of En+m.

Method: For differentiable F : En+m → Em with F = (F1, . . . ,Fm),
define the differentiable variety

M def= {z ∈ En+m : F(z) = 0} =
m⋂

i=1
{z ∈ En+m : Fi (z) = 0}.

Define T to be the relative (metric) topology, the restrictions of
open En+m subsets to M.

Apply the Implicit Function Theorem (see below) to find charts.



Inverse Function Theorem

Warm-up exercise:

Theorem
Suppose that f : Ed → Ed is differentiable near x ∈ Ed with
nonsingular Df(x) (iff det Df(x) 6= 0, iff matrix Df(x) is invertible).
Then there exists a function g : Ed → Ed , differentiable near
y def= f(x), such that:
I g ◦ f(x′) = x′ for all x′ sufficiently near x, and
I f ◦ g(y′) = y′ for all y′ sufficiently near y.

Furthermore, Dg(y) = Df(x)−1 is nonsingular, and

Dg(y′) = Df(g(y′))−1

for all y′ sufficiently near y.



Inverse Function Theorem (proof sketch, part 1)

For each y′ near y = f(x), define a sequence by x0
def= x and

xn+1 = xn − Df(x)−1[f(xn)− y′] def= K (xn), n = 0, 1, 2, . . . .

Use the differentiability of f near x to compare K at u, v near x:

K (u)− K (v) = u− v− Df(x)−1 [f(u)− f(v)]
=

[
I− Df(x)−1Df(v)

]
(u− v) + o(‖u− v‖).

Since Df(v)→ Df(x) as v→ x, so I− Df(x)−1Df(v)→ 0.
Thus K is a contraction near x.
By a similar estimate: if y′ is near y, then {xn} stays near x.



Inverse Function Theorem (proof sketch, part 2)

By the contraction mapping theorem, xn = K n(x)→ x′, the
unique fixed point x′ = K (x′). Then by the definition of K ,

0 = x′ − K (x′) = Df(x)−1[f(x′)− y′], =⇒ f(x′) = y′.

This defines the inverse function g(y′) def= x′ at all y′ near y.

Since y′ = f ◦ g(y′), apply the chain rule to compute

I = D[f ◦ g](y′) = Df(g(y′))Dg(y′) = Df(x′)Dg(y′).

Conclude that Df(x′) is nonsingular, so Dg(y′) = Df(x′)−1.

Details may be found in the supplement 01extra.pdf.



Newton-Raphson Iteration
For y′ near y, it is faster to find x′ = g(y′) by solving f(x′) = y′ for
x′ using Newton-Raphson iteration from x0

def= x:

xn+1 = xn − Df(xn)−1[f(xn)− y′] def= K ′(xn), n = 0, 1, 2, . . . .

Note the similarity with K used in the existence proof: Df(x)−1 is
simply replaced with Df(xn)−1.
But f(x′) = y′ and f is also differentiable at x′, so

f(x′ + h) = y′ + Df(x′)h + o(‖h‖), as h→ 0,
=⇒ K ′(x′ + h) = x′ + h− Df(x′ + h)−1[Df(x′)h + o(‖h‖)]

= x′ + [I− Df(x′ + h)−1Df(x′)]h + o(‖h‖).

Now I− Df(x′ + h)−1Df(x′)→ 0 as h→ 0, so K ′ is a contraction
map near x′.

Exercise: K ′ iteration converges to the same unique root x′ as K .



Defining Functions Implicitly

Goal: given F(x, y) = 0, find f(x) = y such that F(x, f(x)) = 0.

Method: iteration, contraction, and implicit differentiation.

Notation: fix n,m ∈ Z+ and define

(x, y) def= (x1, . . . , xn, y1, . . . , ym) ∈ En × Em = En+m,

Write F : En+m → Em in this notation as

F(x, y) =

F1(x, y)
...

Fm(x, y)

 =

F1(x1, . . . , xn, y1, . . . , ym)
...

Fm(x1, . . . , xn, y1, . . . , ym)

 .



Partial Derivative Matrices

Suppose F : En+m → Em is differentiable at (x, y). Then

DxF(x, y) def=


∂F1
∂x1

(x, y) · · · ∂F1
∂xn

(x, y)
... . . . ...

∂Fm
∂x1

(x, y) · · · ∂Fm
∂xn

(x, y)

 ∈ Rm×n

for the first n coordinates, and

DyF(x, y) def=


∂F1
∂y1

(x, y) · · · ∂F1
∂ym

(x, y)
... . . . ...

∂Fm
∂y1

(x, y) · · · ∂Fm
∂ym

(x, y)

 ∈ Rm×m

for the last m. The second matrix is square so it can be invertible.

Exercise: Linear F implies DxF(x, y) and DyF(x, y) are constant.



Implicit Function Theorem

Theorem
Let F : En+m → Em be differentiable on an open set U ⊂ En+m.
Suppose that there is some point (a,b) ∈ U such that
I F(a,b) = 0, and
I DyF(a,b) is invertible (as an m ×m matrix).

Then there exists f : En → Em, with f(a) = b, such that

F(x, f(x)) = 0

for all x sufficiently near a. In addition, f is differentiable at a with
Df(a) = −DyF(a,b)−1DxF(a,b), and

Df(x) = −DyF(x, f(x))−1DxF(x, f(x))

for all x sufficiently near a.



Linear Implicit Function Theorem

Special case: F : En+m → Em is a linear function. Then

F(x, y) = Lxx + Ly y, x ∈ En, y ∈ Em,

where Lx ∈ Rm×n and Ly ∈ Rm×m are matrices. Thus
I Lx = DxF(x, y) = DxF(a,b), all (x, y) ∈ En+m.
I Ly = DyF(x, y) = DyF(a,b), all (x, y) ∈ En+m.
I DyF(a,b) is invertible iff Ly is invertible.
I F(x, f(x)) = Lxx + Ly f(x) = 0 ⇐⇒ f(x) = −L−1

y Lxx.
I Df(x) = −L−1

y Lx = −DyF(x, f(x))−1DxF(x, f(x)).
The proof is simple: all derivatives are constant matrices.



Implicit Function Theorem (proof sketch 1)

General case: F : En+m → Em is differentiable.

DyF(a,b) is invertible and continuous, so DyF(x,b) is invertible for
all x ∈ En sufficiently near a. Given such x, define {yk} ⊂ Em by

y0 = b; yk+1 = yk − DyF(x,b)−1F(x, yk) def= H(yk), k ≥ 0.

But H is a contraction in a neighborhood of b:

H(u)−H(v) = u−v− DyF(x,b)−1[F(x,u)−F(x, v)]

=
[
I−DyF(x,b)−1DyF (x, v)

]
︸ ︷︷ ︸

→ 0 as v→ b

(u−v) + o(‖u−v‖).

Hence yk → y = H(y), the unique fixed point, so F(x, y) = 0.
Put f(x) def= y to get F(x, f(x)) = 0 for all x sufficiently near a.



Implicit Function Theorem (proof sketch 2)

Apply the chain rule to x 7→ F(x, f(x)) = 0 to get

0 = DxF(x, f(x)) + DyF(x, f(x))Df(x)
=⇒ Df(x) = −DyF(x, f(x))−1DxF(x, f(x)),

for all x sufficiently near a.

Remark. Faster convergence yk → y = f(x) is obtained with
Newton-Raphson iteration:

yk+1 = yk − DyF(x, yk)−1F(x, yk) def= H ′(yk),

which differs from H by using DyF(x, yk)−1 instead of DyF(x,b)−1.



Local Parametrizations

Suppose F : En+m → Em is differentiable and let M be the
differentiable variety

M = {(x, y) ∈ En+m : F(x, y) = 0},

with the relative metric topology T inherited from En+m.
For (a,b) ∈M where DyF(a,b) is nonsingular, there exists
differentiable f : En → Em such that

F(x, f(x)) = 0

for all x sufficiently near a. Hence for some r > 0,

G def= {(x, f(x)) : x ∈ B(a, r) ⊂ En} ⊂ M

is a neighborhood of (a,b) in M given by a graph.



Local Coordinate Charts

The graph G = {(x, f(x)) : x ∈ B(a, r) ⊂ En} ⊂ M has a
coordinate chart

φ : G → B(a, r) ⊂ En; φ(x, f(x)) def= x.

This is obviously continuous. The inverse is local parametrization

φ−1(x) = (x, f(x)).

If ψ : En+m → En is differentiable, then by the chain rule:

D
[
ψ ◦ φ−1

]
(x) = Dxψ(x, f(x)) + Dyψ(x, f(x))Df(x),

so ψ restricted to G is differentially compatible with φ.



Parametrizations Elsewhere

Suppose F : En+m → Em is differentiable and let M be the
differentiable variety

M = {z ∈ En+m : F(z) = 0},

Fix z0 ∈M and suppose DF(z0) has maximal rank m.

Lemma
There exists a coordinate system z = U(x, y), x ∈ En, y ∈ Em,
with z0 = U(x0, y0), such that DyF(U(x0, y0)) has rank m.
Proof sketch: Find m pivot columns by reducing matrix DF(z0)
to row echelon form. Let y be coordinates with respect to a basis
for the pivot column space, and let x be the coordinates for a basis
of the orthogonal complement.



Graph Parametrizations for Nonsingular Varieties

Say that F : En+m → Em gives a nonsingular differentiable variety
M = {z : F(z) = 0} if DF(z) has maximal rank m for all z ∈M.

For each w ∈M, let z = Uw(x, y) be change of variables such that

DyF(Uw(x, y)) is nonsingular (has rank m).

By Implicit Function Theorem, there exists fw : En → Em,
differentiable on some neighborhood Gw ⊂ En, such that

F ◦ Uw(x, fw(x)) = 0, x ∈ Gw.

This fw gives a graph parametrization of M near w.



Manifold Estimation Application

Write F = (F1, . . . ,Fm), for F : En+m → Em, where Fi (z) ∈ R
measures some undesirable property of z.

Then the variety

M def= {z ∈ En+m : F(z) = 0}

is a set of points without those undesirable properties.

If F is differentiable and DF(z) has rank m near some z ∈M, then
the graph parametrization generates nearby samples of desirable
points.



Curves on a Manifold

Suppose (M, T ) is a manifold with x ∈M. A curve through x is
a continuous function γ : (−1, 1)→M with γ(0) = x .

For every chart (G , φ) with x ∈ G and φ : G → Ed , the
composition

φ ◦ γ : (−1, 1)→ Ed

is a parametrized curve in Ed in the ordinary sense, with φ ◦ γ(t)
defined in some open interval near t = 0.

For differentiable manifold (M, T ,A), the curve γ is differentiable
iff

d
dt [φ ◦ γ(t)] exists and is continuous at t = 0

for every chart (G , φ) ∈ A with x ∈ G .



Directional Derivatives

Given:
I differentiable function f :M→ R;
I differentiable curve γ : (−1, 1)→M through x = γ(0).

Define the directional derivative at x of f along γ to be

dγf (x) def= d
dt [f ◦ γ(t)]

∣∣∣
t=0
∈ R.

For coordinate function φ :M→ Ed with φ = (φ1, . . . , φd ), the
directional derivative is Ed -valued:

dγφ(x) def= d
dt [φ ◦ γ(t)]

∣∣∣
t=0

= (dγφ1(x), . . . , dγφd (x)) ∈ Ed

In general, differentiable F :M→ Em has dγF(x) ∈ Em.



Tangent Vectors

Define direction vectors at x ∈M uniquely using equivalence
classes of curves through x :

Definition
γ and η are equivalent curves through x iff

dγφ(x) = d
dt [φ ◦ γ(t)]

∣∣∣
t=0

= d
dt [φ ◦ η(t)]

∣∣∣
t=0

= dηφ(x)

for every x -containing chart in the maximal differentiable atlas.
Each equivalence class of such curves defines a unique tangent
vector to M at x .

Call the set of such tangent vectors the tangent space to M at x
and denote it by TxM.



Tangent Space Homeomorphisms

Coordinate chart (G , φ), with homeomorphism φ : G → Ed ,
“pushes forward” to a map dφ(x) : TxM→ Ed at each x ∈ G :

dφ(x)(v) def= dγφ(x) = d
dt [φ ◦ γ(t)]

∣∣∣
t=0

,

where γ is any curve through x in the equivalence class v ∈ TxM.
This is well-defined precisely because of the equivalence relation.

Theorem
(a) TxM is a vector space.
(b) dφ(x) is a linear homeomorphism of TxM onto Ed .

Proof.
Represent u + cv ↔ φ−1 (φ ◦ γ(t) + φ ◦ η(ct)) to push forward
from curves γ, η on M to tangent vectors u, v in TxM.
See the notes at 01tange.pdf for details.



Tangent Space of a Linear Manifold

Special case: linear manifold M = Ed , tangent vector v ∈ TxM
represented by curve γ through γ(0) = x ∈M, and differentiable
function f :M→ R. Then by the chain rule, df (x)(v) is

dγf (x) = d
dt [f ◦ γ(t)]

∣∣∣
t=0

=
d∑

k=1
γ′k(0)∂k f (x) = 〈γ′(0),Df (x)〉

the inner product of gradient Df (x) = (∂1f (x), . . . , ∂d f (x)) with
direction vector γ′(0) = (γ′1(0), . . . , γ′d (0)).

Alternative viewpoint: v ∈ TxM is a first-order differential
operator, evaluated at x :

v def=
d∑

k=1
γ′k(0)∂k

∣∣∣
x

=⇒ v(f ) = df (x)(v)



Tangent Vectors as Derivations

Formally, for linear manifold M = Ed ,

TxEd = span {∂1, . . . , ∂d}, with “basis” {∂k}.

First-order differential operators ∂ are derivations, linear but also
obeying the product rule for functions f , g and c ∈ R:

∂(f + cg) = ∂f + c∂g ; ∂(fg) = f ∂g + g∂f .

This generalizes to abstract differentiable manifold M:

v(f + cg) = v(f ) + cv(g); v(fg) = g(x)v(f ) + f (x)v(g),

for v ∈ TxM, differentiable f , g :M→ R, and c ∈ R.



Tangent Bundles

If x 6= y are distinct points in M, then TxM and TyM have no
points in common.

The tangent bundle of a differentiable manifold M is

TM def=
⋃

x∈M
{x} × TxM,

For each chart (G , φ) in the maximal atlas for M, the map
Φ : TM→ Ed × Ed defined by

Φ(x , v) def=
(
φ(x), dφ(x)(v)

)
is a homeomorphism on the open set {{x} × TxM : x ∈ G}, so
TM is itself a manifold (of dimension 2d).



Differentials
Differentiable f :M→ R has a differential df : TM→ R, defined
using directional derivatives:

df (x , v) def= d
dt [f ◦ γ(t)]

∣∣∣
t=0

,

{
γ : (−1, 1)→M
γ(0) = x , γ ↔ v .

Any other curve η ↔ v (representing v) gives the same result:

d
dt [f ◦ η(t)]

∣∣∣
t=0

= d
dt [(f ◦ φ−1) ◦ φ ◦ η(t)]

∣∣∣
t=0

= D[f ◦ φ−1](φ(x)) d
dt [φ ◦ η(t)]

∣∣∣
t=0

= D[f ◦ φ−1](φ(x)) d
dt [φ ◦ γ(t)]

∣∣∣
t=0

= d
dt [f ◦ γ(t)]

∣∣∣
t=0

.

using the chain rule with f ◦ φ−1 : Ed → R.



Differentials Between Manifolds

For f :M→N , define df : TM→ TN by:

df (x , v) def= (y ,w);


y = f (x) ∈ N ;
γ ↔ v ∈ TxM;

f ◦ γ ↔ w ∈ TyN .

This df is well-defined, since for any charts (G , φ), (H, ψ) on
M,N with x ∈ G , y ∈ H, respectively.

d
dt [ψ ◦ f ◦ γ(t)]

∣∣∣
t=0

= d
dt [ψ ◦ f ◦ φ−1 ◦ φ ◦ γ(t)]

∣∣∣
t=0

= D[ψ ◦ f ◦ φ−1](y) d
dt [φ ◦ γ(t)]

∣∣∣
t=0

,

which is the same for all curves in the same equivalence class as γ.



Vector Fields on Ed

Special case: Linear manifold M = Ed , TxM = Ed , TM = E2d .
Generalize vector v =

∑
k ck∂k

∣∣∣
x
∈ TxEd to a vector field

ξ(x) def=
d∑

k=1
ck(x)∂k

∣∣∣
x
,

using coefficient functions c1(x), . . . , cd (x) instead of constants.

For each x ∈M, this sends a differentiable function f : Ed → R to
its directional derivative at x in the ξ(x) direction:

ξ(x)(f ) =
d∑

k=1
ck(x)∂k f (x).

It generalizes to vector valued f in the obvious componentwise way.



Vector Fields in General

For differentiable manifold M, define a vector field ξ :M→ TM
by

ξ(x) def= (x , v), v ∈ TxM,

where v is a tangent vector whose action on differentiable
functions f :M→ R is

v(f )(x) = df (x)(v) = dγf (x),

the directional derivative of f at x along any curve γ through x in
the equivalence class of v at x .

Exercise: ξ is well-defined. Namely, explain why the directional
derivatives of f agree for all of v ′s equivalent curves through x .



Germs

Fix x ∈M for differentiable manifold (M, T ,A).

Say that two differentiable functions f1, f2 :M→ Em are in the
same germ at x iff

(∃G ∈ T )
(

x ∈ G and (∀z ∈ G) f1(z) = f2(z)
)
.

(Without loss, G is part of a chart in A.) Each germ at x is an
equivalence class. Germs allow generalization to smooth manifolds.

Exercise: : G(x) def= {all germs at x} is an algebra under
pointwise addition and multiplication.

Remark. G(x) is infinite-dimensional: for (G , φ) ∈ A with
x ∈ G , the functions gk(z) def= φ1(z)k , k = 0, 1, 2, . . . are linearly
independent polynomials in the first coordinate φ1.



Partitions of Unity

A partition of unity subordinate to a countable locally finite open
cover {Gk} for a manifold (M, T ,A) is a countable set of
functions {ρk :M→ R} such that, for all k = 1, 2, . . . ,
I ρk is differentiable on M,
I 0 ≤ ρk(x) ≤ 1 for all x ∈M,
I ρk(x) = 0 for all x /∈ Gk ,

and ∞∑
k=1

ρk(x) = 1, for all x ∈M.

(Note that only finitely many summands are nonzero.)

Remark. A finite cover is obviously locally finite, but in fact
every (differentiable) manifold has a countable locally finite open
cover and a partition of unity subordinate to that cover.



Immersions and Embeddings

Suppose that X and Y are differentiable manifolds with tangent
bundles TX and TY , respectively.

Say that
I X is immersed in Y if there is a differentiable map

Φ : X → Y whose derivative dΦ : TX → TY is injective.
Note: Φ need not be injective.

I X is embedded in Y if the immersion Φ : X → Y is also
injective, so it is diffeomorphism between X and Φ(X ) ⊂ Y .

Lemma
If X is compact, then an injective immersion is an embedding.



Whitney Embedding Theorem

Roughly speaking, any abstract manifold can be realized as a
differentiable variety. There are various versions:

Theorem (Whitney 1)
A compact d-dimensional differentiable manifold can be embedded
into EN for all sufficiently large N.

Theorem (Whitney 2)
A compact d-dimensional differentiable manifold can be embedded
into E2d+1 and immersed into E2d .

Theorem (Whitney 3)
A d-dimensional smooth manifold can be embedded into E2d and
immersed into E2d−1.



Weaker Whitney Embedding Theorem, part 1

Theorem
A compact d-dimensional differentiable manifold has an
embedding into EN for all sufficiently large N.
Proof: Compact M has finite atlas A = {(G1, φ1), . . . , (Gn, φn)}.
Let {ρ1, . . . , ρn} be a differentiable partition of unity subordinate
to {G1, . . . ,Gn}.

Define Φ :M→ End+n by

Φ(x) def=
(
ρ1(x)φ1(x), . . . , ρn(x)φn(x), ρ1(x), . . . , ρn(x)

)
,

with the convention that ρk(x)φk(x) = ρk(x) = 0 for x /∈ Gk .

To prove that Φ is an embedding, it remains to show that Φ is
injective and differentiable with injective differential.



Weaker Embedding Theorem, part 2

Φ is injective: if Φ(x1) = Φ(x2), then (∃k)ρk(x1) = ρk(x2) 6= 0, so
x1, x2 ∈ Gk . But then also

ρk(x1)φk(x1) = ρk(x2)φk(x2) =⇒ φk(x1) = φk(x2) =⇒ x1 = x2,

since φk is injective.

Φ is differentiable: for any differentially compatible chart (G , φ),
and any k = 1, . . . , n,
I φk ◦ φ−1 : Ed → Ed is a differentiable transition function,
I ρk ◦ φ−1 : Ed → R is differentiable by construction.

Thus every component of Φ is differentiable on M.



Weaker Embedding Theorem, part 3

dΦ is injective: suffices to prove dΦ(x , v) = (Φ(y), 0) =⇒ v = 0.

Fix x and evaluate dΦ(x) on v ∈ TxM using the product rule:

dΦ(x)(v) =
(

v(ρ1)φ1(x) + ρ1(x)dφ1(x)(v), . . .

. . . , v(ρn)φn(x) + ρn(x)dφn(x)(v),

v(ρ1), . . . , v(ρn)
)

= 0

=⇒ v(ρ1) = · · · = v(ρn) = 0
=⇒ ρ1(x)dφ1(x)(v) = · · · = ρn(x)dφn(x)(v) = 0.

But (∃k)ρk(x) 6= 0, so dφk(x)(v) = 0, which implies that v = 0
since dφk(x) is linear and injective.



Piecewise Linear Manifolds

Idea: Replace “differentiable,” or locally close to linear, with
“piecewise linear.”

Method:
I Require transition functions to be piecewise linear.
I Use only piecewise linear functions and germs.

Tools:
I Convex sets in Ed

I Convex hull of a finite set
I Simplexes: convex hulls with nonempty relative interiors.
I Tesselations: unions of nonoverlapping simplexes.
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