Manifolds

Mladen Victor WICKERHAUSER

Washington University in St. Louis, Missouri victor@wustl.edu http://www.math.wustl.edu/~victor

Dimensionality Reduction and Manifold Estimation PMF — University of Zagreb *Winter, 2022*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Euclidean Vector Spaces

Euclidean d-space, \mathbf{E}^d , has these properties:

• Dimension: $d \in \mathbf{Z}^+$, finite but it could be large. ▶ Set $\mathbf{R}^d \stackrel{\text{def}}{=} \{ \mathbf{x} \stackrel{\text{def}}{=} (x_1, \dots, x_d) : x_i \in \mathbf{R}, i = 1, \dots, d \}.$ • Linearity: $(\forall \mathbf{x}, \mathbf{y} \in \mathbf{R}^d)(\forall c \in \mathbf{R})$, $\mathbf{x} + c\mathbf{y} \stackrel{\text{def}}{=} (x_1 + cy_1, \dots, x_d + cy_d) \in \mathbf{R}^d.$ • Norm: $\|\mathbf{x}\| \stackrel{\text{def}}{=} \sqrt{x_1^2 + \cdots + x_d^2} \ge 0.$ $\|\mathbf{x}\| = 0 \iff \mathbf{x} = \mathbf{0} \stackrel{\text{def}}{=} (0, \dots, 0).$ lnner product: $\langle \mathbf{x}, \mathbf{y} \rangle \stackrel{\text{def}}{=} x_1 v_1 + \cdots + x_d v_d$. Then $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}.$

Exercise: $|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| ||\mathbf{y}||$. When is there equality?

Topology

A topological space is a set X with a topology \mathcal{T} , a collection of subsets called *open*, satisfying:

- For any index set *I* and collection {*G_α* : *α* ∈ *I*} ⊂ *T*, the union is open: ∪_{*α*∈*I*}*G_α* ∈ *T*.
- For any *finite* collection {G₁,..., G_N} ⊂ T, the intersection is open: ∪^N_{i=1}G_i ∈ T.
- Also, $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$, so \mathcal{T} is nonempty.

Write (X, \mathcal{T}) to indicate the topology \mathcal{T} , since topological space X may have more than one.

If $Y \subset X$, then (Y, \mathcal{T}_Y) is a topological space with the convention $\mathcal{T}_Y \stackrel{\text{def}}{=} \{G \cap Y : G \in \mathcal{T}\}$. This \mathcal{T}_Y is called the *relative topology*.

Concepts from Topology

Let (X, \mathcal{T}) be a topological space.

- Dense subset: $Y \subset X$ is dense if $X \setminus Y$ contains no open sets.
- Separable space: X contains a countable dense subset.
- Hausdorff space: For any x, y ∈ X with x ≠ y, there exist disjoint G, H ∈ T with x ∈ G and y ∈ H.
- ▶ Neighborhood of $x \in X$: subset $V \subset X$ with $x \in V$ and $(\exists G \in T) x \in G \subset V$.
- First countable space: For each x ∈ X, there exist {G₁, G₂,...} ⊂ T, such that for every neighborhood V of x, there is some i such that x ∈ G_i ⊂ V.
- Second countable: There exists a countable base B ⊂ T that generates T, namely every G ∈ T is a union of elements of B.

Exercise: (a) Second countable implies first countable. (b) Second countable implies separable.

Metric Topology

Metric space: set X with *distance function* $d : X \times X \rightarrow \mathbf{R}$ satisfying:

d(x, y) ≥ 0;
d(x, y) = 0 \iff x = y;
d(x, y) = d(y, x);
d(x, z) ≤ d(x, y) + d(y, z).
Open balls: B(x, r) ^{def} {y ∈ X : d(x, y) < r}, x ∈ X and r > 0.
Metric topology T is all open balls and all unions of open balls.

Exercise: (a) A metric space is a first countable Hausdorff topological space. (b) A separable metric space is second countable.

Open Covers and Compactness

Let (X, \mathcal{T}) be a topological space.

- An open cover of X is a collection of open sets $\{G_{\alpha} : \alpha \in I\} \subset \mathcal{T}$ such that $X \subset \bigcup_{I} G_{\alpha}$.
- A subcover of $\{G_{\alpha} : \alpha \in I\}$ is given by $I' \subset I$ satisfying $X \subset \bigcup_{I'} G_{\alpha}$.
- A subcover {G_α : α ∈ I'} is called *countable* if I' is countable, and *finite* if I' is finite.

Definition

Topological space X is *compact* iff every open cover of X has a finite subcover.

Exercise: (Lindelöf) If X is a separable metric space, then every open cover of X has a countable subcover.

Finite Dimensional Euclidean Space

 \mathbf{E}^d is a metric space with $d(\mathbf{x}, \mathbf{y}) \stackrel{\text{def}}{=} \|\mathbf{x} - \mathbf{y}\|.$

Metric topology \mathcal{T} for \mathbf{E}^d contains all finite intersections of open balls: Put G = B(x, r) and H = B(y, s). Then

$$G \cap H = \{z \in X : ||z - x|| < r, ||z - y|| < s\}$$

= $\bigcup_{z \in G \cap H} B(z, t_z),$

where $t_z \stackrel{\text{def}}{=} \min(r - ||z - x||, s - ||z - y||)$ for each $z \in G \cap H$. \mathbf{E}^d is separable: \mathbf{Q}^d , the *d*-tuples of rational numbers, is a countable dense subset.

 \mathbf{E}^d is second countable: $\mathcal{B} \stackrel{\text{def}}{=} \{B(\mathbf{x}, r) : \mathbf{x} \in \mathbf{Q}^d, r \in \mathbf{Q}^+\}$ is a countable set of open balls that generates \mathcal{T} .

Homeomorphisms

Two topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are *homeomorphic* if there exists a map $\phi : X \to Y$ satisfying:

- bijectivity: ϕ is 1-1 and onto.
- ▶ continuity: if $\phi(x) = y$, then for every $G_Y \in \mathcal{T}_Y$ with $y \in G_Y$ there exists $G_X \in \mathcal{T}_X$ with $x \in G_X$ such that $\phi(G_X) \subset G_Y$.

• openness: if $G_X \in \mathcal{T}_X$, then $\phi(G_X) \in \mathcal{T}_Y$.

Equivalently, ϕ is a bijection between X and Y (as a point map) and a bijection between \mathcal{T}_X and \mathcal{T}_Y (as a set map). This uses:

Exercise: If $\phi : X \to Y$ is bijective and continuous, then for each $G_Y \in \mathcal{T}_Y$ there exists $G_X \in \mathcal{T}_X$ such that $\phi(G_X) = G_Y$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Abstract Manifolds

A manifold $(\mathcal{M}, \mathcal{T})$ is a separable metric space together with an open cover $\{G_{\alpha} : \alpha \in I\} \subset \mathcal{T}$ and a corresponding collection of homeomorphisms $\{\phi_{\alpha} : \alpha \in I\}$, satisfying:

- For each α ∈ I there is some d ∈ Z⁺ such that φ_α(G_α) is an open subset of d-dimensional Euclidean space E^d;
- if G = G_α ∩ G_β, then φ ^{def} = φ_α⁻¹ ∘ φ_β is a homeomorphism of metric subspace (G, T_G) to itself.

A manifold is said to be locally homeomorphic to \mathbf{E}^d , and d-dimensional if d is constant. Map ϕ_{α} gives *coordinates* for G_{α} while ϕ_{α}^{-1} is a *parametrization* of G_{α} .

Collection $\{(G_{\alpha}, \phi_{\alpha}) : \alpha \in I\}$ is an *atlas of charts* for $(\mathcal{M}, \mathcal{T})$. Every \mathcal{M} has a countable atlas; compact \mathcal{M} has a finite atlas.

Transition Functions

Suppose that $(\mathcal{M}, \mathcal{T})$ is a manifold with atlas $\{(G_{\alpha}, \phi_{\alpha}) : \alpha \in I\}$. For $\alpha, \beta \in I$ such that $G \stackrel{\text{def}}{=} G_{\alpha} \cap G_{\beta}$ is nonempty, define the transition function

$$\tau_{\alpha\beta} \stackrel{\text{def}}{=} \phi_{\alpha} \circ \phi_{\beta}^{-1} : U \to U.$$

Here $U \stackrel{\text{def}}{=} \phi_{\alpha}(G) = \phi_{\beta}(G)$ is an open subset of E^{d} . Compositions of homeomorphisms are homeomorphisms, so $\tau_{\alpha\beta}$ is a homeomorphism with inverse

$$\tau_{\beta\alpha} \stackrel{\text{def}}{=} \phi_{\beta} \circ \phi_{\alpha}^{-1} : U \to U.$$

Remark. $\phi_{\alpha}(G_{\alpha}) \subset \mathbf{E}^{d}$ is a parameter space for $G_{\alpha} \subset \mathcal{M}$. $\tau_{\alpha\beta}$ and $\tau_{\beta\alpha}$ are reparametrizations of G on parameter space U.

Differentiable Functions

Suppose $\mathbf{f} : \mathbf{E}^n \to \mathbf{E}^m$ is a function defined on an open set $U \subset \mathbf{E}^n$. It may be written in standard coordinates as

$$\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x})) \in \mathbf{E}^m, \qquad \mathbf{x} \in U \subset \mathbf{E}^n.$$

Call **f** differentiable if all partial derivatives are continuous on U. Its derivative at $\mathbf{x} \in U$ is the linear transformation

$$D\mathbf{f}(\mathbf{x}) \stackrel{\text{def}}{=} \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{x}) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathbf{x}) \end{pmatrix},$$

a matrix with respect to the standard bases of \mathbf{E}^n and \mathbf{E}^m .

Differentiable Atlases

Atlas $\mathcal{A} = \{(\mathcal{G}_{\alpha}, \phi_{\alpha}) : \alpha \in I\}$ for manifold $(\mathcal{M}, \mathcal{T})$ is differentiable if every transition function $\tau_{\alpha\beta}, \alpha, \beta \in I$, is differentiable on the overlap domain $U = \phi_{\alpha}(\mathcal{G}_{\alpha} \cap \mathcal{G}_{\beta}) = \phi_{\beta}(\mathcal{G}_{\alpha} \cap \mathcal{G}_{\beta}) \subset \mathbf{E}^{d}$.

Chart (G, ϕ) is differentially compatible with \mathcal{A} iff $\mathcal{A} \cup (G, \phi)$ is again a differentiable atlas for $(\mathcal{M}, \mathcal{T})$.

Differentiable atlas A is *differentially maximal* if any chart that is differentially compatible with A already belongs to A.

Remark. Coordinate maps from a differentially maximal atlas \mathcal{A} are used like test functions: $S \subset \mathcal{M}$ is nice iff $\phi(S \cap G) \subset \mathbf{E}^d$ is nice for every chart $(G, \phi) \in \mathcal{A}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Differentiable Manifolds

A differentiable manifold is a manifold with a maximal differentiable atlas \mathcal{A} . It may be denoted by $(\mathcal{M}, \mathcal{T}, \mathcal{A})$.

Note that the underlying topological space $(\mathcal{M}, \mathcal{T})$ is separable, second countable, and Hausdorff.

Say that $f : \mathcal{M} \to \mathbf{E}^m$ is *differentiable at* x iff, for every chart $(G, \phi) \in \mathcal{A}$ with $x \in G$, the composition

 $f \circ \phi^{-1} : \mathbf{E}^d \to \mathbf{E}^m$

is a differentiable function on $U = \phi(G) \subset \mathbf{E}^d$.

Say that f is differentiable on G if it is differentiable at every $x \in G$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

An example differentiable manifold to keep in mind:

- ► $\mathcal{M} = \mathbf{E}^d$,
- \mathcal{T} is the metric topology,
- A is all charts with coordinate functions φ differentially compatible with the identity I : E^d → E^d.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Exercise: (G, ϕ) is differentially compatible with (G, I) iff $\phi : \mathbf{E}^d \to \mathbf{E}^d$ is differentiable on G.

Diffeomorphisms

Differentiable manifolds $(\mathcal{M}, \mathcal{T}, \mathcal{A})$ and $(\mathcal{M}', \mathcal{T}', \mathcal{A}')$ are *diffeomorphic* iff there exists a bijection $\Delta : \mathcal{M} \to \mathcal{M}'$ such that

- $\Delta : \mathcal{T} \to \mathcal{T}'$ is a bijection, so Δ is a homeomorphism of topological spaces $(\mathcal{M}, \mathcal{T})$ and $(\mathcal{M}', \mathcal{T}')$;
- ► $f : \mathcal{M}' \to \mathbf{E}^m$ is differentiable on $G' \in \mathcal{T}'$ iff $f \circ \Delta : \mathcal{M} \to \mathbf{E}^m$ is differentiable on $G = \Delta^{-1}(G') \in \mathcal{T}$.

Special case: $\mathcal{M} = \mathcal{M}'$, same \mathcal{T} and \mathcal{A} . Then the identity $x \mapsto x$ is a diffeomorphism, but there may be many others, and they form the group of diffeomorphisms.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Differentiable Varieties

Goal: Construct an *n*-dimensional differentiable manifold as a subset of \mathbf{E}^{n+m} .

Method: For differentiable $\mathbf{F} : \mathbf{E}^{n+m} \to \mathbf{E}^m$ with $\mathbf{F} = (F_1, \dots, F_m)$, define the *differentiable variety*

$$\mathcal{M} \stackrel{\text{def}}{=} \{ \mathbf{z} \in \mathbf{E}^{n+m} : \mathbf{F}(\mathbf{z}) = \mathbf{0} \} = \bigcap_{i=1}^{m} \{ \mathbf{z} \in \mathbf{E}^{n+m} : F_i(\mathbf{z}) = \mathbf{0} \}.$$

Define \mathcal{T} to be the *relative (metric) topology*, the restrictions of open \mathbf{E}^{n+m} subsets to \mathcal{M} .

Apply the Implicit Function Theorem (see below) to find charts.

Inverse Function Theorem

Warm-up exercise:

Theorem

Suppose that $\mathbf{f} : \mathbf{E}^d \to \mathbf{E}^d$ is differentiable near $\mathbf{x} \in \mathbf{E}^d$ with nonsingular $D\mathbf{f}(\mathbf{x})$ (iff det $D\mathbf{f}(\mathbf{x}) \neq 0$, iff matrix $D\mathbf{f}(\mathbf{x})$ is invertible). Then there exists a function $\mathbf{g} : \mathbf{E}^d \to \mathbf{E}^d$, differentiable near $\mathbf{y} \stackrel{\mathrm{def}}{=} \mathbf{f}(\mathbf{x})$, such that:

- ▶ $\mathbf{g} \circ \mathbf{f}(\mathbf{x}') = \mathbf{x}'$ for all \mathbf{x}' sufficiently near \mathbf{x} , and
- $\mathbf{f} \circ \mathbf{g}(\mathbf{y}') = \mathbf{y}'$ for all \mathbf{y}' sufficiently near \mathbf{y} .

Furthermore, $D\mathbf{g}(\mathbf{y}) = D\mathbf{f}(\mathbf{x})^{-1}$ is nonsingular, and

$$D\mathbf{g}(\mathbf{y}') = D\mathbf{f}(\mathbf{g}(\mathbf{y}'))^{-1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for all \mathbf{y}' sufficiently near \mathbf{y} .

Inverse Function Theorem (proof sketch, part 1)

For each y' near y=f(x), define a sequence by $x_0 \stackrel{\rm def}{=} x$ and

$$\mathbf{x}_{n+1} = \mathbf{x}_n - D\mathbf{f}(\mathbf{x})^{-1}[\mathbf{f}(\mathbf{x}_n) - \mathbf{y}'] \stackrel{\text{def}}{=} \mathcal{K}(\mathbf{x}_n), \qquad n = 0, 1, 2, \dots$$

Use the differentiability of **f** near **x** to compare K at **u**, **v** near **x**:

$$\begin{aligned} \mathcal{K}(\mathbf{u}) - \mathcal{K}(\mathbf{v}) &= \mathbf{u} - \mathbf{v} - D\mathbf{f}(\mathbf{x})^{-1} \left[\mathbf{f}(\mathbf{u}) - \mathbf{f}(\mathbf{v}) \right] \\ &= \left[\mathbf{I} - D\mathbf{f}(\mathbf{x})^{-1} D\mathbf{f}(\mathbf{v}) \right] (\mathbf{u} - \mathbf{v}) + o(\|\mathbf{u} - \mathbf{v}\|). \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Since $D\mathbf{f}(\mathbf{v}) \to D\mathbf{f}(\mathbf{x})$ as $\mathbf{v} \to \mathbf{x}$, so $I - D\mathbf{f}(\mathbf{x})^{-1}D\mathbf{f}(\mathbf{v}) \to 0$. Thus K is a contraction near \mathbf{x} . By a similar estimate: if \mathbf{y}' is near \mathbf{y} , then $\{\mathbf{x}_n\}$ stays near \mathbf{x} .

Inverse Function Theorem (proof sketch, part 2)

By the contraction mapping theorem, $\mathbf{x}_n = K^n(\mathbf{x}) \rightarrow \mathbf{x}'$, the unique fixed point $\mathbf{x}' = K(\mathbf{x}')$. Then by the definition of K,

$$\mathbf{0} = \mathbf{x}' - \mathcal{K}(\mathbf{x}') = D\mathbf{f}(\mathbf{x})^{-1}[\mathbf{f}(\mathbf{x}') - \mathbf{y}'], \qquad \Longrightarrow \ \mathbf{f}(\mathbf{x}') = \mathbf{y}'.$$

This defines the inverse function $\mathbf{g}(\mathbf{y}') \stackrel{\mathrm{def}}{=} \mathbf{x}'$ at all \mathbf{y}' near \mathbf{y} . Since $\mathbf{y}' = \mathbf{f} \circ \mathbf{g}(\mathbf{y}')$, apply the chain rule to compute

$$I = D[\mathbf{f} \circ \mathbf{g}](\mathbf{y}') = D\mathbf{f}(\mathbf{g}(\mathbf{y}'))D\mathbf{g}(\mathbf{y}') = D\mathbf{f}(\mathbf{x}')D\mathbf{g}(\mathbf{y}').$$

Conclude that $D\mathbf{f}(\mathbf{x}')$ is nonsingular, so $D\mathbf{g}(\mathbf{y}') = D\mathbf{f}(\mathbf{x}')^{-1}$. Details may be found in the supplement <code>01extra.pdf</code>.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Newton-Raphson Iteration

For y' near y, it is faster to find $\mathbf{x}' = \mathbf{g}(\mathbf{y}')$ by solving $\mathbf{f}(\mathbf{x}') = \mathbf{y}'$ for \mathbf{x}' using Newton-Raphson iteration from $\mathbf{x}_0 \stackrel{\text{def}}{=} \mathbf{x}$:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - D\mathbf{f}(\mathbf{x}_n)^{-1}[\mathbf{f}(\mathbf{x}_n) - \mathbf{y}'] \stackrel{\text{def}}{=} \mathcal{K}'(\mathbf{x}_n), \qquad n = 0, 1, 2, \dots$$

Note the similarity with K used in the existence proof: $D\mathbf{f}(\mathbf{x})^{-1}$ is simply replaced with $D\mathbf{f}(\mathbf{x}_n)^{-1}$. But $\mathbf{f}(\mathbf{x}') = \mathbf{y}'$ and \mathbf{f} is also differentiable at \mathbf{x}' , so

$$\begin{split} \mathbf{f}(\mathbf{x}' + \mathbf{h}) &= \mathbf{y}' + D\mathbf{f}(\mathbf{x}')\mathbf{h} + o(\|\mathbf{h}\|), \quad \text{as } \mathbf{h} \to \mathbf{0}, \\ \implies & \mathcal{K}'(\mathbf{x}' + \mathbf{h}) &= \mathbf{x}' + \mathbf{h} - D\mathbf{f}(\mathbf{x}' + \mathbf{h})^{-1}[D\mathbf{f}(\mathbf{x}')\mathbf{h} + o(\|\mathbf{h}\|)] \\ &= \mathbf{x}' + [\mathbf{I} - D\mathbf{f}(\mathbf{x}' + \mathbf{h})^{-1}D\mathbf{f}(\mathbf{x}')]\mathbf{h} + o(\|\mathbf{h}\|). \end{split}$$

Now $I - Df(\mathbf{x}' + \mathbf{h})^{-1}Df(\mathbf{x}') \rightarrow 0$ as $\mathbf{h} \rightarrow \mathbf{0}$, so K' is a contraction map near \mathbf{x}' .

Exercise: K' iteration converges to the same unique root \mathbf{x}' as K.

Defining Functions Implicitly

Goal: given F(x, y) = 0, find f(x) = y such that F(x, f(x)) = 0. Method: iteration, contraction, and implicit differentiation.

Notation: fix $n, m \in \mathbf{Z}^+$ and define

$$(\mathbf{x},\mathbf{y}) \stackrel{\text{def}}{=} (x_1,\ldots,x_n,y_1,\ldots,y_m) \in \mathbf{E}^n \times \mathbf{E}^m = \mathbf{E}^{n+m},$$

Write $\mathbf{F}: \mathbf{E}^{n+m} \to \mathbf{E}^m$ in this notation as

$$\mathbf{F}(\mathbf{x},\mathbf{y}) = \begin{pmatrix} F_1(\mathbf{x},\mathbf{y}) \\ \vdots \\ F_m(\mathbf{x},\mathbf{y}) \end{pmatrix} = \begin{pmatrix} F_1(x_1,\ldots,x_n,y_1,\ldots,y_m) \\ \vdots \\ F_m(x_1,\ldots,x_n,y_1,\ldots,y_m) \end{pmatrix}$$

٠

Partial Derivative Matrices

Suppose $\mathbf{F} : \mathbf{E}^{n+m} \to \mathbf{E}^m$ is differentiable at (\mathbf{x}, \mathbf{y}) . Then

$$D_{\mathbf{x}}\mathbf{F}(\mathbf{x},\mathbf{y}) \stackrel{\text{def}}{=} \begin{pmatrix} \frac{\partial F_{1}}{\partial x_{1}}(\mathbf{x},\mathbf{y}) & \cdots & \frac{\partial F_{1}}{\partial x_{n}}(\mathbf{x},\mathbf{y}) \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{m}}{\partial x_{1}}(\mathbf{x},\mathbf{y}) & \cdots & \frac{\partial F_{m}}{\partial x_{n}}(\mathbf{x},\mathbf{y}) \end{pmatrix} \in \mathbf{R}^{m \times n}$$

for the first n coordinates, and

$$\mathcal{D}_{\mathbf{y}}\mathbf{F}(\mathbf{x},\mathbf{y}) \stackrel{\text{def}}{=} \begin{pmatrix} \frac{\partial F_1}{\partial y_1}(\mathbf{x},\mathbf{y}) & \cdots & \frac{\partial F_1}{\partial y_m}(\mathbf{x},\mathbf{y}) \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial y_1}(\mathbf{x},\mathbf{y}) & \cdots & \frac{\partial F_m}{\partial y_m}(\mathbf{x},\mathbf{y}) \end{pmatrix} \in \mathbf{R}^{m \times m}$$

for the last *m*. The second matrix is square so it can be invertible. **Exercise:** Linear **F** implies $D_{\mathbf{x}}\mathbf{F}(\mathbf{x},\mathbf{y})$ and $D_{\mathbf{y}}\mathbf{F}(\mathbf{x},\mathbf{y})$ are constant.

Implicit Function Theorem

Theorem Let $\mathbf{F} : \mathbf{E}^{n+m} \to \mathbf{E}^m$ be differentiable on an open set $U \subset \mathbf{E}^{n+m}$. Suppose that there is some point $(\mathbf{a}, \mathbf{b}) \in U$ such that

 $\blacktriangleright \ \mathbf{F}(\mathbf{a},\mathbf{b}) = \mathbf{0}, \text{ and }$

 \blacktriangleright $D_y \mathbf{F}(\mathbf{a}, \mathbf{b})$ is invertible (as an $m \times m$ matrix).

Then there exists $\mathbf{f} : \mathbf{E}^n \to \mathbf{E}^m$, with $\mathbf{f}(\mathbf{a}) = \mathbf{b}$, such that

F(x, f(x)) = 0

for all **x** sufficiently near **a**. In addition, **f** is differentiable at **a** with $D\mathbf{f}(\mathbf{a}) = -D_{\mathbf{y}}\mathbf{F}(\mathbf{a}, \mathbf{b})^{-1}D_{\mathbf{x}}\mathbf{F}(\mathbf{a}, \mathbf{b})$, and

$$D\mathbf{f}(\mathbf{x}) = -D_{\mathbf{y}}\mathbf{F}(\mathbf{x},\mathbf{f}(\mathbf{x}))^{-1}D_{\mathbf{x}}\mathbf{F}(\mathbf{x},\mathbf{f}(\mathbf{x}))$$

for all **x** sufficiently near **a**.

Linear Implicit Function Theorem

Special case: $\mathbf{F}: \mathbf{E}^{n+m} \to \mathbf{E}^m$ is a linear function. Then

$$\mathbf{F}(\mathbf{x},\mathbf{y}) = L_x \mathbf{x} + L_y \mathbf{y}, \qquad \mathbf{x} \in \mathbf{E}^n, \mathbf{y} \in \mathbf{E}^m,$$

where $L_x \in \mathbf{R}^{m \times n}$ and $L_y \in \mathbf{R}^{m \times m}$ are matrices. Thus

The proof is simple: all derivatives are constant matrices.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Implicit Function Theorem (proof sketch 1)

General case: $\mathbf{F} : \mathbf{E}^{n+m} \to \mathbf{E}^m$ is differentiable.

 $D_{\mathbf{y}}\mathbf{F}(\mathbf{a},\mathbf{b})$ is invertible and continuous, so $D_{\mathbf{y}}\mathbf{F}(\mathbf{x},\mathbf{b})$ is invertible for all $\mathbf{x} \in \mathbf{E}^n$ sufficiently near \mathbf{a} . Given such \mathbf{x} , define $\{\mathbf{y}_k\} \subset \mathbf{E}^m$ by

$$\mathbf{y}_0 = \mathbf{b}; \quad \mathbf{y}_{k+1} = \mathbf{y}_k - D_{\mathbf{y}} \mathbf{F}(\mathbf{x}, \mathbf{b})^{-1} \mathbf{F}(\mathbf{x}, \mathbf{y}_k) \stackrel{\text{def}}{=} H(\mathbf{y}_k), \ k \ge 0.$$

But H is a contraction in a neighborhood of **b**:

$$H(\mathbf{u})-H(\mathbf{v}) = \mathbf{u}-\mathbf{v}-D_{\mathbf{y}}\mathbf{F}(\mathbf{x},\mathbf{b})^{-1}[\mathbf{F}(\mathbf{x},\mathbf{u})-\mathbf{F}(\mathbf{x},\mathbf{v})]$$

=
$$\underbrace{\left[I-D_{\mathbf{y}}\mathbf{F}(\mathbf{x},\mathbf{b})^{-1}D_{\mathbf{y}}F(\mathbf{x},\mathbf{v})\right]}_{\rightarrow 0 \text{ as } \mathbf{v} \rightarrow \mathbf{b}}(\mathbf{u}-\mathbf{v})+o(\|\mathbf{u}-\mathbf{v}\|).$$

Hence $\mathbf{y}_k \to \mathbf{y} = H(\mathbf{y})$, the unique fixed point, so $\mathbf{F}(\mathbf{x}, \mathbf{y}) = \mathbf{0}$. Put $\mathbf{f}(\mathbf{x}) \stackrel{\text{def}}{=} \mathbf{y}$ to get $\mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x})) = \mathbf{0}$ for all \mathbf{x} sufficiently near \mathbf{a} .

Implicit Function Theorem (proof sketch 2)

Apply the chain rule to $x\mapsto F(x,f(x))=0$ to get

$$\mathbf{0} = D_{\mathbf{x}}\mathbf{F}(\mathbf{x},\mathbf{f}(\mathbf{x})) + D_{\mathbf{y}}\mathbf{F}(\mathbf{x},\mathbf{f}(\mathbf{x}))D\mathbf{f}(\mathbf{x})$$

$$\implies D\mathbf{f}(\mathbf{x}) = -D_{\mathbf{y}}\mathbf{F}(\mathbf{x},\mathbf{f}(\mathbf{x}))^{-1}D_{\mathbf{x}}\mathbf{F}(\mathbf{x},\mathbf{f}(\mathbf{x})),$$

for all **x** sufficiently near **a**.

Remark. Faster convergence $\mathbf{y}_k \rightarrow \mathbf{y} = \mathbf{f}(\mathbf{x})$ is obtained with Newton-Raphson iteration:

$$\mathbf{y}_{k+1} = \mathbf{y}_k - D_{\mathbf{y}}\mathbf{F}(\mathbf{x},\mathbf{y}_k)^{-1}\mathbf{F}(\mathbf{x},\mathbf{y}_k) \stackrel{\text{def}}{=} H'(\mathbf{y}_k),$$

which differs from *H* by using $D_{\mathbf{y}}\mathbf{F}(\mathbf{x},\mathbf{y}_k)^{-1}$ instead of $D_{\mathbf{y}}\mathbf{F}(\mathbf{x},\mathbf{b})^{-1}$.

Local Parametrizations

Suppose $F : E^{n+m} \to E^m$ is differentiable and let \mathcal{M} be the differentiable variety

$$\mathcal{M} = \{(\mathbf{x}, \mathbf{y}) \in \mathbf{E}^{n+m} : \mathbf{F}(\mathbf{x}, \mathbf{y}) = \mathbf{0}\},\$$

with the relative metric topology \mathcal{T} inherited from \mathbf{E}^{n+m} . For $(\mathbf{a}, \mathbf{b}) \in \mathcal{M}$ where $D_{\mathbf{y}}\mathbf{F}(\mathbf{a}, \mathbf{b})$ is nonsingular, there exists differentiable $\mathbf{f} : \mathbf{E}^n \to \mathbf{E}^m$ such that

$$F(x, f(x)) = 0$$

for all **x** sufficiently near **a**. Hence for some r > 0,

$$G \stackrel{\mathrm{def}}{=} \{(\mathbf{x}, \mathbf{f}(\mathbf{x})) : \mathbf{x} \in B(\mathbf{a}, r) \subset \mathbf{E}^n\} \subset \mathcal{M}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is a neighborhood of (\mathbf{a}, \mathbf{b}) in \mathcal{M} given by a graph.

Local Coordinate Charts

The graph $G = \{(\mathbf{x}, \mathbf{f}(\mathbf{x})) : \mathbf{x} \in B(\mathbf{a}, r) \subset \mathbf{E}^n\} \subset \mathcal{M}$ has a coordinate chart

$$\phi: G \to B(\mathbf{a}, r) \subset \mathbf{E}^n; \qquad \phi(\mathbf{x}, \mathbf{f}(\mathbf{x})) \stackrel{\text{def}}{=} \mathbf{x}.$$

This is obviously continuous. The inverse is local parametrization

$$\phi^{-1}(\mathsf{x}) = (\mathsf{x}, \mathsf{f}(\mathsf{x})).$$

If $\psi : \mathbf{E}^{n+m} \to \mathbf{E}^n$ is differentiable, then by the chain rule:

$$D\left[\psi \circ \phi^{-1}\right](\mathbf{x}) = D_{\mathbf{x}}\psi(\mathbf{x}, \mathbf{f}(\mathbf{x})) + D_{\mathbf{y}}\psi(\mathbf{x}, \mathbf{f}(\mathbf{x}))D\mathbf{f}(\mathbf{x}),$$

so ψ restricted to G is differentially compatible with ϕ .

Parametrizations Elsewhere

Suppose $F : E^{n+m} \to E^m$ is differentiable and let \mathcal{M} be the differentiable variety

$$\mathcal{M} = \{ \mathsf{z} \in \mathsf{E}^{n+m} : \mathsf{F}(\mathsf{z}) = \mathbf{0} \},\$$

Fix $\mathbf{z}_0 \in \mathcal{M}$ and suppose $D\mathbf{F}(\mathbf{z}_0)$ has maximal rank m.

Lemma

There exists a coordinate system $\mathbf{z} = U(\mathbf{x}, \mathbf{y})$, $\mathbf{x} \in \mathbf{E}^n$, $\mathbf{y} \in \mathbf{E}^m$, with $\mathbf{z}_0 = U(\mathbf{x}_0, \mathbf{y}_0)$, such that $D_{\mathbf{y}}\mathbf{F}(U(\mathbf{x}_0, \mathbf{y}_0))$ has rank m.

Proof sketch: Find *m* pivot columns by reducing matrix $D\mathbf{F}(\mathbf{z}_0)$ to row echelon form. Let \mathbf{y} be coordinates with respect to a basis for the pivot column space, and let \mathbf{x} be the coordinates for a basis of the orthogonal complement.

Graph Parametrizations for Nonsingular Varieties

Say that $\mathbf{F} : \mathbf{E}^{n+m} \to \mathbf{E}^m$ gives a *nonsingular* differentiable variety $\mathcal{M} = \{\mathbf{z} : \mathbf{F}(\mathbf{z}) = \mathbf{0}\}$ if $D\mathbf{F}(\mathbf{z})$ has maximal rank m for all $\mathbf{z} \in \mathcal{M}$. For each $\mathbf{w} \in \mathcal{M}$, let $\mathbf{z} = U_{\mathbf{w}}(\mathbf{x}, \mathbf{y})$ be change of variables such that

 $D_{\mathbf{y}}\mathbf{F}(U_{\mathbf{w}}(\mathbf{x},\mathbf{y}))$ is nonsingular (has rank m).

By Implicit Function Theorem, there exists $\mathbf{f}_{\mathbf{w}} : \mathbf{E}^n \to \mathbf{E}^m$, differentiable on some neighborhood $G_{\mathbf{w}} \subset \mathbf{E}^n$, such that

$$\mathbf{F} \circ U_{\mathbf{w}}(\mathbf{x}, \mathbf{f}_{\mathbf{w}}(\mathbf{x})) = \mathbf{0}, \quad \mathbf{x} \in G_{\mathbf{w}}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This $\mathbf{f}_{\mathbf{w}}$ gives a graph parametrization of \mathcal{M} near \mathbf{w} .

Manifold Estimation Application

Write $\mathbf{F} = (F_1, \dots, F_m)$, for $\mathbf{F} : \mathbf{E}^{n+m} \to \mathbf{E}^m$, where $F_i(\mathbf{z}) \in \mathbf{R}$ measures some undesirable property of \mathbf{z} .

Then the variety

$$\mathcal{M} \stackrel{\mathrm{def}}{=} \{ \mathsf{z} \in \mathsf{E}^{n+m} : \mathsf{F}(\mathsf{z}) = \mathbf{0} \}$$

is a set of points without those undesirable properties.

If **F** is differentiable and DF(z) has rank *m* near some $z \in M$, then the graph parametrization generates nearby samples of desirable points.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Curves on a Manifold

Suppose $(\mathcal{M}, \mathcal{T})$ is a manifold with $x \in \mathcal{M}$. A curve through x is a continuous function $\gamma : (-1, 1) \to \mathcal{M}$ with $\gamma(0) = x$.

For every chart (G, ϕ) with $x \in G$ and $\phi : G \to \mathbf{E}^d$, the composition

$$\phi \circ \gamma : (-1,1) \to \mathbf{E}^a$$

is a parametrized curve in \mathbf{E}^d in the ordinary sense, with $\phi \circ \gamma(t)$ defined in some open interval near t = 0.

For differentiable manifold $(\mathcal{M}, \mathcal{T}, \mathcal{A})$, the curve γ is *differentiable* iff

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$rac{d}{dt}[\phi\circ\gamma(t)]$$
 exists and is continuous at $t=0$

for every chart $(G, \phi) \in \mathcal{A}$ with $x \in G$.

Directional Derivatives

Given:

- differentiable function $f : \mathcal{M} \to \mathbf{R}$;
- differentiable curve $\gamma: (-1,1) \to \mathcal{M}$ through $x = \gamma(0)$.

Define the *directional derivative* at x of f along γ to be

$$d_{\gamma}f(x) \stackrel{\mathrm{def}}{=} \left. rac{d}{dt} [f \circ \gamma(t)]
ight|_{t=0} \in \mathbf{R}$$

For coordinate function $\phi : \mathcal{M} \to \mathbf{E}^d$ with $\phi = (\phi_1, \dots, \phi_d)$, the directional derivative is \mathbf{E}^d -valued:

$$d_\gamma \phi(x) \stackrel{ ext{def}}{=} \left. rac{d}{dt} [\phi \circ \gamma(t)]
ight|_{t=0} = (d_\gamma \phi_1(x), \dots, d_\gamma \phi_d(x)) \ \in \mathsf{E}^d$$

In general, differentiable $\mathbf{F} : \mathcal{M} \to \mathbf{E}^m$ has $d_{\gamma} \mathbf{F}(x) \in \mathbf{E}^m$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Tangent Vectors

Define direction vectors at $x \in M$ uniquely using equivalence classes of curves through x:

Definition

 γ and η are equivalent curves through x iff

$$d_{\gamma}\phi(x) = \frac{d}{dt}[\phi \circ \gamma(t)]\Big|_{t=0} = \frac{d}{dt}[\phi \circ \eta(t)]\Big|_{t=0} = d_{\eta}\phi(x)$$

for every x-containing chart in the maximal differentiable atlas. Each equivalence class of such curves defines a unique *tangent* vector to \mathcal{M} at x.

Call the set of such tangent vectors the *tangent space* to \mathcal{M} at x and denote it by $T_x \mathcal{M}$.

Tangent Space Homeomorphisms

Coordinate chart (G, ϕ) , with homeomorphism $\phi : G \to \mathbf{E}^d$, "pushes forward" to a map $d\phi(x) : T_x \mathcal{M} \to \mathbf{E}^d$ at each $x \in G$:

$$d\phi(x)(v) \stackrel{\mathrm{def}}{=} \left. d_\gamma \phi(x) = rac{d}{dt} [\phi \circ \gamma(t)]
ight|_{t=0},$$

where γ is any curve through x in the equivalence class $v \in T_x \mathcal{M}$. This is well-defined precisely because of the equivalence relation.

Theorem

(a) T_xM is a vector space.
(b) dφ(x) is a linear homeomorphism of T_xM onto E^d.

Proof.

Represent $u + cv \leftrightarrow \phi^{-1} (\phi \circ \gamma(t) + \phi \circ \eta(ct))$ to push forward from curves γ, η on \mathcal{M} to tangent vectors u, v in $T_x \mathcal{M}$. See the notes at Oltange.pdf for details.

Tangent Space of a Linear Manifold

Special case: linear manifold $\mathcal{M} = \mathbf{E}^d$, tangent vector $v \in T_x \mathcal{M}$ represented by curve γ through $\gamma(0) = x \in \mathcal{M}$, and differentiable function $f : \mathcal{M} \to \mathbf{R}$. Then by the chain rule, df(x)(v) is

$$d_{\gamma}f(x) = \frac{d}{dt}[f \circ \gamma(t)]\Big|_{t=0} = \sum_{k=1}^{d} \gamma'_{k}(0)\partial_{k}f(x) = \langle \gamma'(0), Df(x) \rangle$$

the inner product of gradient $Df(x) = (\partial_1 f(x), \dots, \partial_d f(x))$ with direction vector $\gamma'(0) = (\gamma'_1(0), \dots, \gamma'_d(0))$.

Alternative viewpoint: $v \in T_x \mathcal{M}$ is a first-order differential operator, evaluated at x:

$$v \stackrel{\text{def}}{=} \sum_{k=1}^{d} \gamma'_k(0) \partial_k \Big|_x \implies v(f) = df(x)(v)$$

Tangent Vectors as Derivations

Formally, for linear manifold $\mathcal{M} = \mathbf{E}^d$,

$$T_{\mathbf{x}}\mathbf{E}^{d} = \operatorname{span} \{\partial_{1}, \ldots, \partial_{d}\}, \quad \text{with "basis" } \{\partial_{k}\}.$$

First-order differential operators ∂ are *derivations*, linear but also obeying the product rule for functions f, g and $c \in \mathbf{R}$:

$$\partial(f + cg) = \partial f + c\partial g; \qquad \partial(fg) = f\partial g + g\partial f.$$

This generalizes to abstract differentiable manifold \mathcal{M} :

$$v(f+cg) = v(f) + cv(g); \quad v(fg) = g(x)v(f) + f(x)v(g),$$

for $v \in T_x \mathcal{M}$, differentiable $f, g : \mathcal{M} \to \mathbf{R}$, and $c \in \mathbf{R}$.

Tangent Bundles

If $x \neq y$ are distinct points in \mathcal{M} , then $T_x \mathcal{M}$ and $T_y \mathcal{M}$ have no points in common.

The *tangent bundle* of a differentiable manifold \mathcal{M} is

$$T\mathcal{M} \stackrel{\text{def}}{=} \bigcup_{x \in \mathcal{M}} \{x\} \times T_x \mathcal{M},$$

For each chart (G, ϕ) in the maximal atlas for \mathcal{M} , the map $\Phi : T\mathcal{M} \to \mathbf{E}^d \times \mathbf{E}^d$ defined by

$$\Phi(x,v) \stackrel{\text{def}}{=} (\phi(x), d\phi(x)(v))$$

is a homeomorphism on the open set $\{\{x\} \times T_x \mathcal{M} : x \in G\}$, so $T\mathcal{M}$ is itself a manifold (of dimension 2*d*).

Differentials

Differentiable $f : \mathcal{M} \to \mathbf{R}$ has a *differential* $df : \mathcal{TM} \to \mathbf{R}$, defined using directional derivatives:

$$df(x,v) \stackrel{\mathrm{def}}{=} \left. rac{d}{dt} [f \circ \gamma(t)] \right|_{t=0}, \quad \left\{ egin{array}{c} \gamma: (-1,1)
ightarrow \mathcal{M} \ \gamma(0) = x, \ \gamma \leftrightarrow v. \end{array}
ight.$$

Any other curve $\eta \leftrightarrow v$ (representing v) gives the same result:

$$\begin{aligned} \frac{d}{dt}[f \circ \eta(t)]\Big|_{t=0} &= \left. \frac{d}{dt}[(f \circ \phi^{-1}) \circ \phi \circ \eta(t)] \right|_{t=0} \\ &= \left. D[f \circ \phi^{-1}](\phi(x)) \left. \frac{d}{dt}[\phi \circ \eta(t)] \right|_{t=0} \right. \\ &= \left. D[f \circ \phi^{-1}](\phi(x)) \left. \frac{d}{dt}[\phi \circ \gamma(t)] \right|_{t=0} \\ &= \left. \frac{d}{dt}[f \circ \gamma(t)] \right|_{t=0}. \end{aligned}$$

using the chain rule with $f \circ \phi^{-1} : \mathbf{E}^d \to \mathbf{R}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Differentials Between Manifolds

For $f : \mathcal{M} \to \mathcal{N}$, define $df : T\mathcal{M} \to T\mathcal{N}$ by: $df(x, v) \stackrel{\text{def}}{=} (y, w); \begin{cases} y = f(x) \in \mathcal{N}; \\ \gamma \leftrightarrow v \in T_x \mathcal{M}; \\ f \circ \gamma \leftrightarrow w \in T_y \mathcal{N}. \end{cases}$

This *df* is well-defined, since for any charts $(G, \phi), (H, \psi)$ on \mathcal{M}, \mathcal{N} with $x \in G, y \in H$, respectively.

$$\begin{aligned} \frac{d}{dt} [\psi \circ f \circ \gamma(t)] \Big|_{t=0} &= \left. \frac{d}{dt} [\psi \circ f \circ \phi^{-1} \circ \phi \circ \gamma(t)] \right|_{t=0} \\ &= \left. D[\psi \circ f \circ \phi^{-1}](y) \frac{d}{dt} [\phi \circ \gamma(t)] \right|_{t=0}, \end{aligned}$$

which is the same for all curves in the same equivalence class as γ .

A D N A 目 N A E N A E N A B N A C N

Vector Fields on \mathbf{E}^d

Special case: Linear manifold $\mathcal{M} = \mathbf{E}^d$, $T_x \mathcal{M} = \mathbf{E}^d$, $T\mathcal{M} = \mathbf{E}^{2d}$. Generalize vector $v = \sum_k c_k \partial_k \Big|_x \in T_x \mathbf{E}^d$ to a vector field

$$\xi(x) \stackrel{\mathrm{def}}{=} \sum_{k=1}^{d} c_k(x) \partial_k \Big|_x,$$

using coefficient functions $c_1(x), \ldots, c_d(x)$ instead of constants.

For each $x \in \mathcal{M}$, this sends a differentiable function $f : \mathbf{E}^d \to \mathbf{R}$ to its directional derivative at x in the $\xi(x)$ direction:

$$\xi(x)(f) = \sum_{k=1}^{d} c_k(x) \partial_k f(x).$$

It generalizes to vector valued f in the obvious componentwise way.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Vector Fields in General

For differentiable manifold \mathcal{M} , define a vector field $\xi : \mathcal{M} \to \mathcal{TM}$ by

$$\xi(x) \stackrel{\text{def}}{=} (x, v), \qquad v \in T_x \mathcal{M},$$

where v is a tangent vector whose action on differentiable functions $f : \mathcal{M} \to \mathbf{R}$ is

$$v(f)(x) = df(x)(v) = d_{\gamma}f(x),$$

the directional derivative of f at x along any curve γ through x in the equivalence class of v at x.

Exercise: ξ is well-defined. Namely, explain why the directional derivatives of f agree for all of v's equivalent curves through x.

Germs

Fix $x \in \mathcal{M}$ for differentiable manifold $(\mathcal{M}, \mathcal{T}, \mathcal{A})$.

Say that two differentiable functions $f_1, f_2 : \mathcal{M} \to \mathbf{E}^m$ are in the same *germ* at x iff

$$(\exists G \in \mathcal{T}) \ \Big(x \in G \text{ and } (\forall z \in G) \ f_1(z) = f_2(z) \Big).$$

(Without loss, G is part of a chart in A.) Each germ at x is an equivalence class. Germs allow generalization to smooth manifolds. **Exercise:** : $\mathcal{G}(x) \stackrel{\text{def}}{=} \{ \text{all germs at } x \} \text{ is an algebra under pointwise addition and multiplication.} \}$

Remark. $\mathcal{G}(x)$ is infinite-dimensional: for $(G, \phi) \in \mathcal{A}$ with $x \in G$, the functions $g_k(z) \stackrel{\text{def}}{=} \phi_1(z)^k$, k = 0, 1, 2, ... are linearly independent polynomials in the first coordinate ϕ_1 .

Partitions of Unity

A partition of unity subordinate to a countable locally finite open cover $\{G_k\}$ for a manifold $(\mathcal{M}, \mathcal{T}, \mathcal{A})$ is a countable set of functions $\{\rho_k : \mathcal{M} \to \mathbf{R}\}$ such that, for all k = 1, 2, ...,

• ρ_k is differentiable on \mathcal{M} ,

•
$$0 \le
ho_k(x) \le 1$$
 for all $x \in \mathcal{M}$,

•
$$\rho_k(x) = 0$$
 for all $x \notin G_k$,

and

$$\sum_{k=1}^{\infty} \rho_k(x) = 1, \qquad \text{for all } x \in \mathcal{M}.$$

(Note that only finitely many summands are nonzero.)

Remark. A finite cover is obviously locally finite, but in fact every (differentiable) manifold has a countable locally finite open cover and a partition of unity subordinate to that cover.

Immersions and Embeddings

Suppose that X and Y are differentiable manifolds with tangent bundles TX and TY, respectively.

Say that

- X is *immersed* in Y if there is a differentiable map
 Φ : X → Y whose derivative dΦ : TX → TY is injective.
 Note: Φ need not be injective.
- X is embedded in Y if the immersion Φ : X → Y is also injective, so it is diffeomorphism between X and Φ(X) ⊂ Y.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lemma

If X is compact, then an injective immersion is an embedding.

Whitney Embedding Theorem

Roughly speaking, any abstract manifold can be realized as a differentiable variety. There are various versions:

Theorem (Whitney 1)

A compact d-dimensional differentiable manifold can be embedded into \mathbf{E}^N for all sufficiently large N.

Theorem (Whitney 2)

A compact d-dimensional differentiable manifold can be embedded into \mathbf{E}^{2d+1} and immersed into \mathbf{E}^{2d} .

Theorem (Whitney 3)

A d-dimensional smooth manifold can be embedded into E^{2d} and immersed into E^{2d-1} .

Weaker Whitney Embedding Theorem, part 1

Theorem

A compact d-dimensional differentiable manifold has an embedding into \mathbf{E}^N for all sufficiently large N.

Proof: Compact \mathcal{M} has finite atlas $\mathcal{A} = \{(G_1, \phi_1), \dots, (G_n, \phi_n)\}$. Let $\{\rho_1, \dots, \rho_n\}$ be a differentiable partition of unity subordinate to $\{G_1, \dots, G_n\}$.

Define $\Phi: \mathcal{M} \to \mathbf{E}^{nd+n}$ by

$$\Phi(x) \stackrel{\text{def}}{=} (\rho_1(x)\phi_1(x),\ldots,\rho_n(x)\phi_n(x),\rho_1(x),\ldots,\rho_n(x)),$$

with the convention that $\rho_k(x)\phi_k(x) = \rho_k(x) = 0$ for $x \notin G_k$.

To prove that Φ is an embedding, it remains to show that Φ is injective and differentiable with injective differential.

Weaker Embedding Theorem, part 2

 Φ is injective: if $\Phi(x_1) = \Phi(x_2)$, then $(\exists k)\rho_k(x_1) = \rho_k(x_2) \neq 0$, so $x_1, x_2 \in G_k$. But then also

$$\rho_k(x_1)\phi_k(x_1) = \rho_k(x_2)\phi_k(x_2) \implies \phi_k(x_1) = \phi_k(x_2) \implies x_1 = x_2,$$

since ϕ_k is injective.

 Φ is differentiable: for any differentially compatible chart (G, ϕ), and any k = 1, ..., n,

▶ $\phi_k \circ \phi^{-1} : \mathbf{E}^d \to \mathbf{E}^d$ is a differentiable transition function,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ $\rho_k \circ \phi^{-1} : \mathbf{E}^d \to \mathbf{R}$ is differentiable by construction.

Thus every component of Φ is differentiable on \mathcal{M} .

Weaker Embedding Theorem, part 3

 $d\Phi$ is injective: suffices to prove $d\Phi(x, v) = (\Phi(y), \mathbf{0}) \implies v = 0$. Fix x and evaluate $d\Phi(x)$ on $v \in T_x \mathcal{M}$ using the product rule:

$$d\Phi(x)(v) = \left(v(\rho_1)\phi_1(x) + \rho_1(x)d\phi_1(x)(v), \dots \\ \dots, v(\rho_n)\phi_n(x) + \rho_n(x)d\phi_n(x)(v), \\ v(\rho_1), \dots, v(\rho_n)\right) = \mathbf{0}$$

$$\implies \quad v(\rho_1) = \dots = v(\rho_n) = \mathbf{0}$$

$$\implies \quad \rho_1(x)d\phi_1(x)(v) = \dots = \rho_n(x)d\phi_n(x)(v) = \mathbf{0}.$$

But $(\exists k)\rho_k(x) \neq 0$, so $d\phi_k(x)(v) = \mathbf{0}$, which implies that v = 0 since $d\phi_k(x)$ is linear and injective.

Piecewise Linear Manifolds

Idea: Replace "differentiable," or locally close to linear, with "piecewise linear."

Method:

- Require transition functions to be piecewise linear.
- Use only piecewise linear functions and germs.

Tools:

- Convex sets in E^d
- Convex hull of a finite set
- Simplexes: convex hulls with nonempty relative interiors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Tesselations: unions of nonoverlapping simplexes.

References

- Louis Auslander and Robert E. MacKenzie, Introduction to Differentiable Manifolds, Dover, 1977.
- Jenny Wilson's talk on manifolds: WOMPtalk-Manifolds.pdf
- Thurston's notes on partitions of unity: PartOfUnityLocFiniteRefinements.pdf
- Brahim Abdenbi's paper on the Whitney Embedding Theorem: Brahim-Abdenbi-presentation-Whitney.pdf

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Whitney Embedding Theorem proofs: lecture10.pdf