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Euclidean Vector Spaces

Euclidean d-space, E9, has these properties:
» Dimension: d € ZT, finite but it could be large.
> Set RY {x def (x1,...,x4) :x; €Ri=1,...,d}.
> Linearity: (Vx,y € RY)(Vc € R),
X+ cy def (x1 +cy1, ..., x4+ cyq) € RY.

> Norm: ||x|| o X2+ x5 >0.

x| =0 <= x=0 % (0,...,0).

» Inner product: (x,y) def x1y1 + -+ + Xq¥q. Then

[1x[] = v/{x,%).

Exercise: |(x,y)| < ||x|||ly|]|. When is there equality?



Topology

A topological space is a set X with a topology T, a collection of
subsets called open, satisfying:

» For any index set / and collection {G, : « € I} C T, the
union is open: Uy Gy € T.
» For any finite collection {G;,..., Gy} C T, the intersection is
open: UV G € T.
Also, D € T and X € T, so T is nonempty.

Write (X, 7) to indicate the topology T, since topological space X
may have more than one.

If Y C X, then (Y, 7Ty) is a topological space with the convention

Ty def {GNY :GeT}. This Ty is called the relative topology.



Concepts from Topology

Let (X,T) be a topological space.

>
>
>

Dense subset: Y C X is dense if X \ Y contains no open sets.
Separable space: X contains a countable dense subset.

Hausdorff space: For any x,y € X with x # y, there exist
disjoint G,H € T with x € G and y € H.

Neighborhood of x € X: subset V C X with x € V and
(3GeT)xeGC V.

First countable space: For each x € X, there exist
{G1, Gy,...} C T, such that for every neighborhood V of x,
there is some i such that x € G; C V.

Second countable: There exists a countable base B C T that
generates T, namely every G € T is a union of elements of 5.

Exercise: (a) Second countable implies first countable. (b) Second
countable implies separable.



Metric Topology

Metric space: set X with distance function d : X x X — R
satisfying:

> d(x,y) > 0;

> d(x,y) = xX=y;

> d(x,y) = d(y7X)

> d(x,z) <d(x,y) +d(y, ).
def

Open balls: B(x,r) =

Metric topology T is all open balls and all unions of open balls.

{ye X :d(x,y)<r}, xeXand r>0.

Exercise: (a) A metric space is a first countable Hausdorff
topological space. (b) A separable metric space is second
countable.



Open Covers and Compactness

Let (X, T) be a topological space.
» An open cover of X is a collection of open sets
{Gy : @ €1} C T such that X C |J; G,.
» A subcover of {G, : « € I} is given by I" C I satisfying
X C Uy Ga.
» A subcover {G, : « € I'} is called countable if I' is countable,
and finite if I’ is finite.
Definition
Topological space X is compact iff every open cover of X has a
finite subcover.

Exercise: (Lindelof) If X is a separable metric space, then every
open cover of X has a countable subcover.



Finite Dimensional Euclidean Space
def
= [x—yl

Metric topology T for EY contains all finite intersections of open
balls: Put G = B(x,r) and H = B(y,s). Then

E9 is a metric space with d(x,y)

GNH = {zeX:|z—x||<nl|z-y| <s}
= U B(z, t,),
zeGNH
where t, & min(r — ||z — x||,s — ||z — y||) for each z € GN H.

E? is separable: QY the d-tuples of rational numbers, is a
countable dense subset.

: f :
E< is second countable: B % {B(x,r):x€ Q9 recQt}isa
countable set of open balls that generates 7.



Homeomorphisms

Two topological spaces (X, 7x) and (Y, 7y) are homeomorphic if
there exists a map ¢ : X — Y satisfying:

P bijectivity: ¢ is 1-1 and onto.

> continuity: if ¢(x) =y, then for every Gy € Ty with y € Gy
there exists Gx € Tx with x € Gx such that ¢(Gx) C Gy.

» openness: if Gx € Tx, then ¢(Gx) € Ty.

Equivalently, ¢ is a bijection between X and Y (as a point map)
and a bijection between Tx and 7Ty (as a set map). This uses:

Exercise: If ¢ : X — Y is bijective and continuous, then for each
Gy € Ty there exists Gx € Tx such that ¢(Gx) = Gy.



Abstract Manifolds

A manifold (M, T) is a separable metric space together with an
open cover {G, : a € I} C T and a corresponding collection of
homeomorphisms {¢, : « € [}, satisfying:
> for each a € [ there is some d € Z" such that ¢,(G,) is an
open subset of d-dimensional Euclidean space EY;
» if G = G, N Gg, then ¢ def ¢zt o ¢p is a homeomorphism of
metric subspace (G, 7¢) to itself.

A manifold is said to be locally homeomorphic to E?, and
d-dimensional if d is constant. Map ¢, gives coordinates for G,
while ¢! is a parametrization of G,.

Collection {(Ga, ¢a) : @ € I} is an atlas of charts for (M, T).
Every M has a countable atlas; compact M has a finite atlas.



Transition Functions

Suppose that (M, T) is a manifold with atlas {(G,, ¢) : @ € 1}.

For o, 8 € I such that G def Ga N Gg is nonempty, define the
transition function

Taf def qﬁaoqbgl U= U.
Here U &' ¢a(G) = ¢5(G) is an open subset of E€.
Compositions of homeomorphisms are homeomorphisms, so 7,3 is
a homeomorphism with inverse

Tha def @BOQS;]'ZU—) U.

Remark. ¢,(G,) C E9 is a parameter space for G, C M.
TaB and TBa are reparametrizations of G on parameter space U.



Differentiable Functions

Suppose f : E" — E™ is a function defined on an open set U C E".
It may be written in standard coordinates as

f(x) = (A(x),...,fm(x)) € E™, xe UCE".

Call f differentiable if all partial derivatives are continuous on U.
Its derivative at x € U is the linear transformation

%(X) e Sh(x)
Dfx) < | = .. |,
%T(X) %@(X)

a matrix with respect to the standard bases of E” and E".



Differentiable Atlases

Atlas A = {(Ga, ¢o) : « € I} for manifold (M, T) is differentiable
if every transition function 7,3, o, 3 € I, is differentiable on the
overlap domain U = ¢,(G, N Gg) = ¢5(Ga N Gg) C E.

Chart (G, ¢) is differentially compatible with A iff AU (G, ¢) is
again a differentiable atlas for (M, T).

Differentiable atlas A is differentially maximal if any chart that is
differentially compatible with A already belongs to A.

Remark. Coordinate maps from a differentially maximal atlas A
are used like test functions: S C M is nice iff (SN G) C E9 is
nice for every chart (G, ¢) € A.



Differentiable Manifolds

A differentiable manifold is a manifold with a maximal
differentiable atlas A. It may be denoted by (M, T, A).

Note that the underlying topological space (M, T) is separable,
second countable, and Hausdorff.

Say that f : M — E™ is differentiable at x iff, for every chart
(G, ¢) € A with x € G, the composition

fog ' EY —E”
is a differentiable function on U = ¢(G) C E¢.

Say that f is differentiable on G if it is differentiable at every
x € G.



Linear Manifolds

An example differentiable manifold to keep in mind:
> M =EY,
» 7T is the metric topology,

> A is all charts with coordinate functions ¢ differentially
compatible with the identity I: EY — E“.

Exercise: (G, ¢) is differentially compatible with (G, 1) iff
¢ E9 — E9 is differentiable on G.



Diffeomorphisms

Differentiable manifolds (M, T, .A) and (M', 7", A’) are
diffeomorphic iff there exists a bijection A : M — M’ such that
» A:7T — T is a bijection, so A is a homeomorphism of
topological spaces (M, T) and (M, T");
» f: M’ — E™ is differentiable on G’ € T" iff fo A: M — E™
is differentiable on G = A™1(G') € T.
Special case: M = M’, same T and A. Then the identity x — x
is a diffeomorphism, but there may be many others, and they form
the group of diffeomorphisms.



Differentiable Varieties

Goal: Construct an n-dimensional differentiable manifold as a
subset of E"TM,

Method: For differentiable F : E"™™ — E™ with F = (Fy,..., Fp),
define the differentiable variety

M & {z€ E"™: F(z) =0} = 6{2 € E"™: Fi(z) = 0}.

Define T to be the relative (metric) topology, the restrictions of
open E"™™ subsets to M.

Apply the Implicit Function Theorem (see below) to find charts.



Inverse Function Theorem

Warm-up exercise:

Theorem

Suppose that f : E9 — E? is differentiable near x € EY with
nonsingular Df (x) (iff det Df(x) # 0, iff matrix Df(x) is invertible).
Then there exists a function g : E? — EY, differentiable near

o f(x), such that:

» gof(x') =x' for all X' sufficiently near x, and

> fog(y) =y forally sufficiently neary.
Furthermore, Dg(y) = Df(x)~! is nonsingular, and

Dg(y') = Df(g(y)) ™"

for all y' sufficiently near'y.



Inverse Function Theorem (proof sketch, part 1)

For each y’ near y = f(x), define a sequence by xg 4t x and

def

Xni1 = Xp — DF(x) "f(xn) — ¥'] K(xn), n=0,1,2,....

Use the differentiability of f near x to compare K at u,v near x:

K(u) — K(v) = u—v— Df(x)7![f(u) — f(v)]
= [1= DF()TDF(W)] (u = v) + of|u - v]).
Since Df(v) — Df(x) as v — x, so I — Df(x) "1 Df(v) — 0.

Thus K is a contraction near x.
By a similar estimate: if y’ is near y, then {x,} stays near x.



Inverse Function Theorem (proof sketch, part 2)

By the contraction mapping theorem, x, = K"(x) — x/, the
unique fixed point x' = K(x). Then by the definition of K,

0 =x'— K(x) = Df(x) " f(x) — ¥, = f(xX) =Y.

This defines the inverse function g(y’) def v at all y' neary.

Since y' = f o g(y’), apply the chain rule to compute

I = D[f o g](y') = Df(g(y'))Dg(y’) = Df(x') Dg(y)-
Conclude that Df(x) is nonsingular, so Dg(y’) = Df(x')~1. O

Details may be found in the supplement Olextra.pdf.



Newton-Raphson Iteration

For y’ neary, it is faster to find x' = g(y’) by solving f(x') =y’ for

x" using Newton-Raphson iteration from xg def .
_ def
Xni1 = Xn — DF(x,) 7 Hf(x,) —y] = K'(x,), n=0,1,2,....

Note the similarity with K used in the existence proof: Df(x)~! is
simply replaced with Df(x,)~!.
But f(x’) =y’ and f is also differentiable at x’, so

f(x'+h) = y +Df(x)h+o(]|h]]), ash—0,
— K'(X4+h) = X' +h—Df(x +h)"[Df(x')h + o(||h|])]
= X +[I— Df(xX' +h)"1Df(x)]h + o(||h|).
Now I — Df(x’ +h)~1Df(x') — 0 as h — 0, so K’ is a contraction
map near x’.

Exercise: K’ iteration converges to the same unique root x’ as K.



Defining Functions Implicitly

Goal: given F(x,y) =0, find f(x) =y such that F(x,f(x)) = 0.

Method: iteration, contraction, and implicit differentiation.
Notation: fix n,m € Z™ and define
def
(x,y) = (X15- s Xn, Y15+ Ym) € E" x E" = E"T™
Write F : E"™™ — E™ in this notation as

Fl(X,Y) Fl(Xla”'aXnvylv"').ym)
F(x,y) = : = :
Fm(xay) Fm(Xlw"?Xna}/lv"'vym)



Partial Derivative Matrices

Suppose F : E"™™ — E™ is differentiable at (x,y). Then

o (x y) S (x,y)
DiF(x,y) & : ; € R™x"
%%’(x,y) 9n(x,y)
for the first n coordinates, and
» GEy) o S (xy)
DyF(x,y) = : : € R™XM
Po(x,y) - Gr(xy)

for the last m. The second matrix is square so it can be invertible.

Exercise: Linear F implies DyF(x,y) and DyF(x,y) are constant.



Implicit Function Theorem

Theorem
Let F: E"t™ — E™ be differentiable on an open set U C E"t™.
Suppose that there is some point (a,b) € U such that

» F(a,b) =0, and
» DyF(a,b) is invertible (as an m x m matrix).
Then there exists f : E" — E™, with f(a) = b, such that

F(x,f(x)) =0

for all x sufficiently near a. In addition, f is differentiable at a with
Df(a) = —DyF(a,b)"!DF(a,b), and

Df(x) = —DyF(x, f(x)) " DxF(x, f(x))

for all x sufficiently near a.



Linear Implicit Function Theorem

Special case: F: E"™™ — E™ is a linear function. Then
F(x,y) = Lix+ Ly, xe E" ye E™,

where L, € R™" and L, € R™*™ are matrices. Thus
» L, = DsF(x,y) = DxF(a,b), all (x,y) € E"*™.
> L, = DyF(x,y) = DyF(a,b), all (x,y) € E™™.
» DyF(a,b) is invertible iff L, is invertible.
> F(x,f(x)) = Lx+ L,f(x) =0 < f(x)=—L,'Lx.
> Df(x) = —L;le = —DyF(x, f(x)) "1 DF(x, f(x)).

The proof is simple: all derivatives are constant matrices.



Implicit Function Theorem (proof sketch 1)

General case: F : E™™™ — E™ is differentiable.

DyF(a,b) is invertible and continuous, so DyF(x, b) is invertible for
all x € E" sufficiently near a. Given such x, define {yx} C E™ by

— def
Yo=b; yir1=yk — DyF(x,b) 'F(x,yk) = H(yx), k >0.
But H is a contraction in a neighborhood of b:

H(u)—H(v) = u—v—DyF(x,b)_l[F(x,u)—F(x,v)]
= [1=DyF(x,b) 1Dy F(x,v)| (u=v) + o( [u—v]]).

—+0asv—b

Hence yx — y = H(y), the unique fixed point, so F(x,y) = 0.

Put f(x) o y to get F(x,f(x)) = 0 for all x sufficiently near a.



Implicit Function Theorem (proof sketch 2)

Apply the chain rule to x — F(x,f(x)) = 0 to get

0 = DyF(x,f(x))+ DyF(x,f(x))Df(x)
= Df(x) = —DyF(x,f(x)) 'DF(x,f(x)),

for all x sufficiently near a.

O

Remark. Faster convergence y, — y = f(x) is obtained with
Newton-Raphson iteration:

_ def
Vi1 = Yk — DyF(x,yi) TF(x,yx) = H'(yi),

which differs from H by using DyF(x,yx) ! instead of DyF(x,b)™1.



Local Parametrizations

Suppose F : E"™™ — E™ is differentiable and let M be the
differentiable variety

M ={(x,y) € E"" : F(x,y) = 0},

with the relative metric topology 7 inherited from E™™.
For (a,b) € M where DyF(a,b) is nonsingular, there exists
differentiable f : E” — E™ such that

F(x,f(x)) =0

for all x sufficiently near a. Hence for some r > 0,

G Y {(x,f(x)):x € B(a,r) CE"} ¢ M

is a neighborhood of (a,b) in M given by a graph.



Local Coordinate Charts

The graph G = {(x,f(x)) : x € B(a,r) C E"} C M has a
coordinate chart

$:G— Bla,r) CE  ¢(xf(x) ¥ x.

This is obviously continuous. The inverse is local parametrization
¢~ (x) = (x,f(x)).
If ¢p : E™™ — E" is differentiable, then by the chain rule:
D [0 67| (x) = Duth(x, £(x)) + Dyti(x, F(x)) DF (x),

so 1) restricted to G is differentially compatible with ¢.



Parametrizations Elsewhere

Suppose F : E"™™ — E™ is differentiable and let M be the
differentiable variety

M = {z € E™"™ . F(z) = 0},

Fix zg € M and suppose DF(zp) has maximal rank m.

Lemma

There exists a coordinate system z = U(x,y), x ¢ E", y € E™,
with zo = U(xo, Yo), such that DyF(U(xo,Yyo)) has rank m.

Proof sketch: Find m pivot columns by reducing matrix DF(z)
to row echelon form. Let y be coordinates with respect to a basis
for the pivot column space, and let x be the coordinates for a basis
of the orthogonal complement. O



Graph Parametrizations for Nonsingular Varieties

Say that F : E"™™ — E™ gives a nonsingular differentiable variety
M = {z: F(z) = 0} if DF(z) has maximal rank m for all z € M.

For each w € M, let z = Uy(x,y) be change of variables such that
DyF(Un(x,y)) is nonsingular (has rank m).

By Implicit Function Theorem, there exists f,, : E" — E™,
differentiable on some neighborhood G,, C E”, such that

Fo Un(x,fu(x)) =0, xe€ Gy.

This f,, gives a graph parametrization of M near w.



Manifold Estimation Application

Write F = (F1,...,Fp), for F: E"™™ — E™, where F;(z) € R
measures some undesirable property of z.

Then the variety

M Y (2B F(z) = 0}

is a set of points without those undesirable properties.

If F is differentiable and DF(z) has rank m near some z € M, then
the graph parametrization generates nearby samples of desirable
points.



Curves on a Manifold

Suppose (M, T) is a manifold with x € M. A curve through x is
a continuous function v : (—=1,1) — M with v(0) = x.

For every chart (G, ¢) with x € G and ¢ : G — E¥, the
composition
pory:(-1,1) = E?

is a parametrized curve in E9 in the ordinary sense, with ¢ o~y(t)
defined in some open interval near t = 0.

For differentiable manifold (M, T, .A), the curve v is differentiable
iff

d
a[g{) o 7(t)] exists and is continuous at t = 0

for every chart (G, ¢) € A with x € G.



Directional Derivatives

Given:
» differentiable function f : M — R;
» differentiable curve v : (—1,1) — M through x = ~(0).

Define the directional derivative at x of f along  to be

def d

df(x) < Zlfor(d)]] _ €R.

For coordinate function ¢ : M — E? with ¢ = (¢1,...,¢q), the
directional derivative is E9-valued:

d0() 2 Cpor(e)] = (dr(x). .. hou(x)) € E?

=0

In general, differentiable F : M — E™ has d,F(x) € E™.



Tangent Vectors

Define direction vectors at x € M uniquely using equivalence
classes of curves through x:

Definition

~ and 7 are equivalent curves through x iff

= Llpon(t)]] = do(x)

d
dp(x) = —[poy(t ‘
Lo(x) = oo (0]] _
for every x-containing chart in the maximal differentiable atlas.
Each equivalence class of such curves defines a unique tangent
vector to M at x.

Call the set of such tangent vectors the tangent space to M at x
and denote it by T, M.



Tangent Space Homeomorphisms

Coordinate chart (G, ¢), with homeomorphism ¢ : G — E9,
“pushes forward” to a map d¢(x) : TxM — E9 at each x € G:

do()(v) & do(x) = T1por (1))

)
t=0

where ~ is any curve through x in the equivalence class v € T, M.
This is well-defined precisely because of the equivalence relation.

Theorem
(a) TxM is a vector space.
(b) dé(x) is a linear homeomorphism of T, M onto E€.

Proof.

Represent u + cv <+ ¢~ 1 (¢ o y(t) + ¢ o n(ct)) to push forward
from curves v,n on M to tangent vectors u, v in T, M.
See the notes at Oltange.pdf for details. O



Tangent Space of a Linear Manifold

Special case: linear manifold M = E¢, tangent vector v € T, M
represented by curve 7 through +(0) = x € M, and differentiable
function f : M — R. Then by the chain rule, df(x)(v) is

df(x) = [f 10| zwk = (/(0), DF (%))

the inner product of gradient Df (x) = (01f(x), ..., d4f(x)) with
direction vector 7/(0) = (71(0), ..., v4(0)).

Alternative viewpoint: v € T, M is a first-order differential
operator, evaluated at x:

d
def
v E ) %(0)0k i}
k=1




Tangent Vectors as Derivations

Formally, for linear manifold M = E“,
T,EY =span {0y,...,04}, with “basis" {0k }.

First-order differential operators 0 are derivations, linear but also
obeying the product rule for functions f, g and ¢ € R:

O(f + cg) = Of + cog; d(fg) = fog + gof.
This generalizes to abstract differentiable manifold M:
v(f +cg) = v(f) +cv(g):  v(fg) = g(x)v(f) + f(x)v(g),

for v € T, M, differentiable f,g: M — R, and c € R.



Tangent Bundles

If x # y are distinct points in M, then T, M and T, M have no
points in common.

The tangent bundle of a differentiable manifold M is

TM X | {x} x TeM,
xXeEM

For each chart (G, ¢) in the maximal atlas for M, the map
®: TM — E9 x E? defined by

def

O(x,v) = (¢(x), de(x)(v))

is a homeomorphism on the open set {{x} x T,M : x € G}, so
T M is itself a manifold (of dimension 2d).



Differentials

Differentiable f : M — R has a differential df : TM — R, defined
using directional derivatives:

df(x,v) %[fov(t)]’tzoa { 1(03—:1)(1)7 :&

Any other curve 1 <> v (representing v) gives the same result:

Slrone)| = Sireoosontr]

= DIf oo (6()) Sloon(o]|
= D[f oo (0() Sloor ()]
= Cron(e)]

using the chain rule with fo ¢! : EY — R.



Differentials Between Manifolds

For f : M — N, define df : TM — TN by:

. y = f(x)eN;
df (x,v) o (y,w); v & ve T M,
foy < weTWN.

This df is well-defined, since for any charts (G, ¢), (H, ) on
M, N with x € G,y € H, respectively.

ppofor(tl] = Swofosopon()]

t=0 t=0

= Dl fos ) Spor(r)] .

which is the same for all curves in the same equivalence class as 7.



Vector Fields on E

Special case: Linear manifold M = EY, T,M =E?, TM = E?.
e T.E? to a vector field

X

Generalize vector v = ), cx0k

d
€0) E Y a(x)ok

k=1

)
X

using coefficient functions ci(x),. .., cq(x) instead of constants.

For each x € M, this sends a differentiable function f : EY — R to
its directional derivative at x in the &(x) direction:

d

E(x)(F) = c(x)Okf (x).

k=1

It generalizes to vector valued f in the obvious componentwise way.



Vector Fields in General

For differentiable manifold M, define a vector field £ : M — TM
by
def
f(X) = (Xv V), ve T M,
where v is a tangent vector whose action on differentiable
functions f : M — R is

v(F)(x) = df (x)(v) = d,f(x),

the directional derivative of f at x along any curve v through x in
the equivalence class of v at x.

Exercise: ¢ is well-defined. Namely, explain why the directional
derivatives of f agree for all of v's equivalent curves through x.



Germs

Fix x € M for differentiable manifold (M, T, A).

Say that two differentiable functions f;, f : M — E™ are in the
same germ at x iff

(3G €T) (x € G and (vz € G) A(2) = h(2)).

(Without loss, G is part of a chart in .A.) Each germ at x is an
equivalence class. Germs allow generalization to smooth manifolds.

Exercise: : G(x) & {all germs at x} is an algebra under
pointwise addition and multiplication.
Remark. §(x) is infinite-dimensional: for (G, ¢) € A with

x € G, the functions gi(z) & $1(2), k=10,1,2,... are linearly
independent polynomials in the first coordinate ¢;.



Partitions of Unity

A partition of unity subordinate to a countable locally finite open
cover { Gy} for a manifold (M, 7, .A) is a countable set of
functions {px : M — R} such that, for all k =1,2,...,

> o is differentiable on M,
> 0 < pi(x) <1 forall x e M,
» pi(x) =0 for all x ¢ Gy,

and -
Z pk(x) =1, for all x € M.
k=1

(Note that only finitely many summands are nonzero.)

Remark. A finite cover is obviously locally finite, but in fact
every (differentiable) manifold has a countable locally finite open
cover and a partition of unity subordinate to that cover.



Immersions and Embeddings

Suppose that X and Y are differentiable manifolds with tangent
bundles TX and TY, respectively.

Say that

> X is immersed in Y if there is a differentiable map
® : X — Y whose derivative d® : TX — TY is injective.
Note: ® need not be injective.

> X is embedded in Y if the immersion ¢ : X — Y is also
injective, so it is diffeomorphism between X and ®(X) C Y.

Lemma
If X is compact, then an injective immersion is an embedding.



Whitney Embedding Theorem

Roughly speaking, any abstract manifold can be realized as a
differentiable variety. There are various versions:
Theorem (Whitney 1)

A compact d-dimensional differentiable manifold can be embedded
into EN for all sufficiently large N.

Theorem (Whitney 2)

A compact d-dimensional differentiable manifold can be embedded
into E29t1 and immersed into E9.

Theorem (Whitney 3)

A d-dimensional smooth manifold can be embedded into E2¢ and
immersed into E29-1,



Weaker Whitney Embedding Theorem, part 1

Theorem

A compact d-dimensional differentiable manifold has an
embedding into EN for all sufficiently large N.

Proof: Compact M has finite atlas A = {(G1,¢1),...,(Gp, én)}-
Let {p1,...,pn} be a differentiable partition of unity subordinate
to {Gl, Ceey G,,}.

Define ® : M — E"+7 by

O(x) = (P()61(x), - pa(x)Ea(x): P1(x); .-, pa(x)),

with the convention that pi(x)ok(x) = pk(x) = 0 for x ¢ Gy.

To prove that @ is an embedding, it remains to show that ® is
injective and differentiable with injective differential.



Weaker Embedding Theorem, part 2

® is injective: if ®(x1) = P(x2), then (Fk)pk(x1) = pr(x2) # 0, so
x1, x> € Gi. But then also

pr(x1)0k(x1) = pr(x2)Pk(x2) = dk(x1) = Pk(x) = x1 = x,

since ¢y is injective.
o is differentiable: for any differentially compatible chart (G, ¢),
and any k=1,...,n,
> $ro0¢ 1 EY — E? is a differentiable transition function,
> proo¢t:EY = Ris differentiable by construction.

Thus every component of ® is differentiable on M.



Weaker Embedding Theorem, part 3

d® is injective: suffices to prove d®(x,v) = (®(y),0) = v =0.

Fix x and evaluate d®(x) on v € T M using the product rule:

do(x)(v) = ((pl)¢1( )+ p1(x)der(x)(v), .
<pn)¢n( )+pn(x) ()()

)

= v(pl) == ( )
= pl(X)d<151( ) —Pn( )dén(x)(v) = 0.

v
v) =
But (3k)pk(x) # 0, so dpx(x )( ) 0, which implies that v =0

since do(x) is linear and inject O



Piecewise Linear Manifolds

Idea: Replace “differentiable,” or locally close to linear, with
“piecewise linear.”
Method:
» Require transition functions to be piecewise linear.
» Use only piecewise linear functions and germs.
Tools:
» Convex sets in E9
» Convex hull of a finite set
» Simplexes: convex hulls with nonempty relative interiors.

» Tesselations: unions of nonoverlapping simplexes.
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