Manifolds

Mladen Victor WICKERHAUSER

Washington University in St. Louis, Missouri victor@wustl.edu
http://www.math.wustl.edu/~victor

Dimensionality Reduction and Manifold Estimation PMF - University of Zagreb Winter, 2022

Euclidean Vector Spaces

Euclidean d-space, \mathbf{E}^{d}, has these properties:

- Dimension: $d \in \mathbf{Z}^{+}$, finite but it could be large.
- Set $\mathbf{R}^{d} \stackrel{\text { def }}{=}\left\{\mathbf{x} \stackrel{\text { def }}{=}\left(x_{1}, \ldots, x_{d}\right): x_{i} \in \mathbf{R}, i=1, \ldots, d\right\}$.
- Linearity: $\left(\forall \mathbf{x}, \mathbf{y} \in \mathbf{R}^{d}\right)(\forall c \in \mathbf{R})$,

$$
\mathbf{x}+c \mathbf{y} \stackrel{\text { def }}{=}\left(x_{1}+c y_{1}, \ldots, x_{d}+c y_{d}\right) \in \mathbf{R}^{d} .
$$

- Norm: $\|\mathbf{x}\| \stackrel{\text { def }}{=} \sqrt{x_{1}^{2}+\cdots x_{d}^{2}} \geq 0$.

$$
\|\mathbf{x}\|=0 \Longleftrightarrow \mathbf{x}=\mathbf{0} \stackrel{\text { def }}{=}(0, \ldots, 0)
$$

- Inner product: $\langle\mathbf{x}, \mathbf{y}\rangle \stackrel{\text { def }}{=} x_{1} y_{1}+\cdots+x_{d} y_{d}$. Then $\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$.

Exercise: $|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\|$. When is there equality?

Topology

A topological space is a set X with a topology \mathcal{T}, a collection of subsets called open, satisfying:

- For any index set I and collection $\left\{G_{\alpha}: \alpha \in I\right\} \subset \mathcal{T}$, the union is open: $\cup_{\alpha \in I} G_{\alpha} \in \mathcal{T}$.
- For any finite collection $\left\{G_{1}, \ldots, G_{N}\right\} \subset \mathcal{T}$, the intersection is open: $\cup_{i=1}^{N} G_{i} \in \mathcal{T}$.
Also, $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$, so \mathcal{T} is nonempty.
Write (X, \mathcal{T}) to indicate the topology \mathcal{T}, since topological space X may have more than one.
If $Y \subset X$, then $\left(Y, \mathcal{T}_{Y}\right)$ is a topological space with the convention $\mathcal{T}_{Y} \stackrel{\text { def }}{=}\{G \cap Y: G \in \mathcal{T}\}$. This \mathcal{T}_{Y} is called the relative topology.

Concepts from Topology

Let (X, \mathcal{T}) be a topological space.

- Dense subset: $Y \subset X$ is dense if $X \backslash Y$ contains no open sets.
- Separable space: X contains a countable dense subset.
- Hausdorff space: For any $x, y \in X$ with $x \neq y$, there exist disjoint $G, H \in \mathcal{T}$ with $x \in G$ and $y \in H$.
- Neighborhood of $x \in X$: subset $V \subset X$ with $x \in V$ and $(\exists G \in \mathcal{T}) x \in G \subset V$.
- First countable space: For each $x \in X$, there exist $\left\{G_{1}, G_{2}, \ldots\right\} \subset \mathcal{T}$, such that for every neighborhood V of x, there is some i such that $x \in G_{i} \subset V$.
- Second countable: There exists a countable base $\mathcal{B} \subset \mathcal{T}$ that generates \mathcal{T}, namely every $G \in \mathcal{T}$ is a union of elements of \mathcal{B}.

Exercise: (a) Second countable implies first countable. (b) Second countable implies separable.

Metric Topology

Metric space: set X with distance function $\mathrm{d}: X \times X \rightarrow \mathbf{R}$ satisfying:

- $\mathrm{d}(x, y) \geq 0$;
- $\mathrm{d}(x, y)=0 \Longleftrightarrow x=y$;
- $\mathrm{d}(x, y)=\mathrm{d}(y, x)$;
- $\mathrm{d}(x, z) \leq \mathrm{d}(x, y)+\mathrm{d}(y, z)$.

Open balls: $B(x, r) \stackrel{\text { def }}{=}\{y \in X: \mathrm{d}(x, y)<r\}, x \in X$ and $r>0$.
Metric topology \mathcal{T} is all open balls and all unions of open balls.
Exercise: (a) A metric space is a first countable Hausdorff topological space. (b) A separable metric space is second countable.

Open Covers and Compactness

Let (X, \mathcal{T}) be a topological space.

- An open cover of X is a collection of open sets $\left\{G_{\alpha}: \alpha \in I\right\} \subset \mathcal{T}$ such that $X \subset U_{I} G_{\alpha}$.
- A subcover of $\left\{G_{\alpha}: \alpha \in I\right\}$ is given by $I^{\prime} \subset I$ satisfying $X \subset U_{I^{\prime}} G_{\alpha}$.
- A subcover $\left\{G_{\alpha}: \alpha \in I^{\prime}\right\}$ is called countable if I^{\prime} is countable, and finite if I^{\prime} is finite.

Definition

Topological space X is compact iff every open cover of X has a finite subcover.

Exercise: (Lindelöf) If X is a separable metric space, then every open cover of X has a countable subcover.

Finite Dimensional Euclidean Space

\mathbf{E}^{d} is a metric space with $\mathrm{d}(\mathbf{x}, \mathbf{y}) \stackrel{\text { def }}{=}\|\mathbf{x}-\mathbf{y}\|$.
Metric topology \mathcal{T} for \mathbf{E}^{d} contains all finite intersections of open balls: Put $G=B(x, r)$ and $H=B(y, s)$. Then

$$
\begin{aligned}
G \cap H & =\{z \in X:\|z-x\|<r,\|z-y\|<s\} \\
& =\bigcup_{z \in G \cap H} B\left(z, t_{z}\right)
\end{aligned}
$$

where $t_{z} \stackrel{\text { def }}{=} \min (r-\|z-x\|, s-\|z-y\|)$ for each $z \in G \cap H$. \mathbf{E}^{d} is separable: \mathbf{Q}^{d}, the d-tuples of rational numbers, is a countable dense subset.
\mathbf{E}^{d} is second countable: $\mathcal{B} \stackrel{\text { def }}{=}\left\{B(\mathbf{x}, r): \mathbf{x} \in \mathbf{Q}^{d}, r \in \mathbf{Q}^{+}\right\}$is a countable set of open balls that generates \mathcal{T}.

Homeomorphisms

Two topological spaces $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ are homeomorphic if there exists a map $\phi: X \rightarrow Y$ satisfying:

- bijectivity: ϕ is $1-1$ and onto.
- continuity: if $\phi(x)=y$, then for every $G_{Y} \in \mathcal{T}_{Y}$ with $y \in G_{Y}$ there exists $G_{X} \in \mathcal{T}_{X}$ with $x \in G_{X}$ such that $\phi\left(G_{X}\right) \subset G_{Y}$.
- openness: if $G_{X} \in \mathcal{T}_{X}$, then $\phi\left(G_{X}\right) \in \mathcal{T}_{Y}$.

Equivalently, ϕ is a bijection between X and Y (as a point map) and a bijection between \mathcal{T}_{X} and \mathcal{T}_{Y} (as a set map). This uses:

Exercise: If $\phi: X \rightarrow Y$ is bijective and continuous, then for each $G_{Y} \in \mathcal{T}_{Y}$ there exists $G_{X} \in \mathcal{T}_{X}$ such that $\phi\left(G_{X}\right)=G_{Y}$.

Abstract Manifolds

A manifold $(\mathcal{M}, \mathcal{T})$ is a separable metric space together with an open cover $\left\{G_{\alpha}: \alpha \in I\right\} \subset \mathcal{T}$ and a corresponding collection of homeomorphisms $\left\{\phi_{\alpha}: \alpha \in I\right\}$, satisfying:

- for each $\alpha \in I$ there is some $d \in \mathbf{Z}^{+}$such that $\phi_{\alpha}\left(G_{\alpha}\right)$ is an open subset of d-dimensional Euclidean space \mathbf{E}^{d};
- if $G=G_{\alpha} \cap G_{\beta}$, then $\phi \stackrel{\text { def }}{=} \phi_{\alpha}^{-1} \circ \phi_{\beta}$ is a homeomorphism of metric subspace $\left(G, \mathcal{T}_{G}\right)$ to itself.
A manifold is said to be locally homeomorphic to \mathbf{E}^{d}, and d-dimensional if d is constant. Map ϕ_{α} gives coordinates for G_{α} while ϕ_{α}^{-1} is a parametrization of G_{α}.
Collection $\left\{\left(G_{\alpha}, \phi_{\alpha}\right): \alpha \in I\right\}$ is an atlas of charts for $(\mathcal{M}, \mathcal{T})$. Every \mathcal{M} has a countable atlas; compact \mathcal{M} has a finite atlas.

Transition Functions

Suppose that $(\mathcal{M}, \mathcal{T})$ is a manifold with atlas $\left\{\left(G_{\alpha}, \phi_{\alpha}\right): \alpha \in I\right\}$. For $\alpha, \beta \in I$ such that $G \stackrel{\text { def }}{=} G_{\alpha} \cap G_{\beta}$ is nonempty, define the transition function

$$
\tau_{\alpha \beta} \stackrel{\text { def }}{=} \phi_{\alpha} \circ \phi_{\beta}^{-1}: U \rightarrow U
$$

Here $U \stackrel{\text { def }}{=} \phi_{\alpha}(G)=\phi_{\beta}(G)$ is an open subset of E^{d}.
Compositions of homeomorphisms are homeomorphisms, so $\tau_{\alpha \beta}$ is a homeomorphism with inverse

$$
\tau_{\beta \alpha} \stackrel{\text { def }}{=} \phi_{\beta} \circ \phi_{\alpha}^{-1}: U \rightarrow U
$$

Remark. $\quad \phi_{\alpha}\left(G_{\alpha}\right) \subset \mathbf{E}^{d}$ is a parameter space for $G_{\alpha} \subset \mathcal{M}$. $\tau_{\alpha \beta}$ and $\tau_{\beta \alpha}$ are reparametrizations of G on parameter space U.

Differentiable Functions

Suppose $\mathbf{f}: \mathbf{E}^{n} \rightarrow \mathbf{E}^{m}$ is a function defined on an open set $U \subset \mathbf{E}^{n}$. It may be written in standard coordinates as

$$
\mathbf{f}(\mathbf{x})=\left(f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right) \in \mathbf{E}^{m}, \quad \mathbf{x} \in U \subset \mathbf{E}^{n}
$$

Call \mathbf{f} differentiable if all partial derivatives are continuous on U. Its derivative at $\mathbf{x} \in U$ is the linear transformation

$$
D \mathbf{f}(\mathbf{x}) \stackrel{\text { def }}{=}\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\mathbf{x}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\mathbf{x}) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(\mathbf{x}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\mathbf{x})
\end{array}\right)
$$

a matrix with respect to the standard bases of \mathbf{E}^{n} and \mathbf{E}^{m}.

Differentiable Atlases

Atlas $\mathcal{A}=\left\{\left(G_{\alpha}, \phi_{\alpha}\right): \alpha \in I\right\}$ for manifold $(\mathcal{M}, \mathcal{T})$ is differentiable if every transition function $\tau_{\alpha \beta}, \alpha, \beta \in I$, is differentiable on the overlap domain $U=\phi_{\alpha}\left(G_{\alpha} \cap G_{\beta}\right)=\phi_{\beta}\left(G_{\alpha} \cap G_{\beta}\right) \subset \mathbf{E}^{d}$.
Chart (G, ϕ) is differentially compatible with \mathcal{A} iff $\mathcal{A} \cup(G, \phi)$ is again a differentiable atlas for $(\mathcal{M}, \mathcal{T})$.
Differentiable atlas \mathcal{A} is differentially maximal if any chart that is differentially compatible with \mathcal{A} already belongs to \mathcal{A}.

Remark. Coordinate maps from a differentially maximal atlas \mathcal{A} are used like test functions: $S \subset \mathcal{M}$ is nice iff $\phi(S \cap G) \subset \mathbf{E}^{d}$ is nice for every chart $(G, \phi) \in \mathcal{A}$.

Differentiable Manifolds

A differentiable manifold is a manifold with a maximal differentiable atlas \mathcal{A}. It may be denoted by $(\mathcal{M}, \mathcal{T}, \mathcal{A})$.

Note that the underlying topological space $(\mathcal{M}, \mathcal{T})$ is separable, second countable, and Hausdorff.

Say that $f: \mathcal{M} \rightarrow \mathbf{E}^{m}$ is differentiable at x iff, for every chart $(G, \phi) \in \mathcal{A}$ with $x \in G$, the composition

$$
f \circ \phi^{-1}: \mathbf{E}^{d} \rightarrow \mathbf{E}^{m}
$$

is a differentiable function on $U=\phi(G) \subset \mathbf{E}^{d}$.
Say that f is differentiable on G if it is differentiable at every $x \in G$.

Linear Manifolds

An example differentiable manifold to keep in mind:

- $\mathcal{M}=\mathbf{E}^{d}$,
- \mathcal{T} is the metric topology,
- \mathcal{A} is all charts with coordinate functions ϕ differentially compatible with the identity I: $\mathbf{E}^{d} \rightarrow \mathbf{E}^{d}$.

Exercise: (G, ϕ) is differentially compatible with (G, I) iff $\phi: \mathbf{E}^{d} \rightarrow \mathbf{E}^{d}$ is differentiable on G.

Diffeomorphisms

Differentiable manifolds $(\mathcal{M}, \mathcal{T}, \mathcal{A})$ and $\left(\mathcal{M}^{\prime}, \mathcal{T}^{\prime}, \mathcal{A}^{\prime}\right)$ are diffeomorphic iff there exists a bijection $\Delta: \mathcal{M} \rightarrow \mathcal{M}^{\prime}$ such that

- $\Delta: \mathcal{T} \rightarrow \mathcal{T}^{\prime}$ is a bijection, so Δ is a homeomorphism of topological spaces $(\mathcal{M}, \mathcal{T})$ and $\left(\mathcal{M}^{\prime}, \mathcal{T}^{\prime}\right)$;
- $f: \mathcal{M}^{\prime} \rightarrow \mathbf{E}^{m}$ is differentiable on $G^{\prime} \in \mathcal{T}^{\prime}$ iff $f \circ \Delta: \mathcal{M} \rightarrow \mathbf{E}^{m}$ is differentiable on $G=\Delta^{-1}\left(G^{\prime}\right) \in \mathcal{T}$.
Special case: $\mathcal{M}=\mathcal{M}^{\prime}$, same \mathcal{T} and \mathcal{A}. Then the identity $x \mapsto x$ is a diffeomorphism, but there may be many others, and they form the group of diffeomorphisms.

Differentiable Varieties

Goal: Construct an n-dimensional differentiable manifold as a subset of \mathbf{E}^{n+m}.

Method: For differentiable $\mathbf{F}: \mathbf{E}^{n+m} \rightarrow \mathbf{E}^{m}$ with $\mathbf{F}=\left(F_{1}, \ldots, F_{m}\right)$, define the differentiable variety

$$
\mathcal{M} \stackrel{\text { def }}{=}\left\{\mathbf{z} \in \mathbf{E}^{n+m}: \mathbf{F}(\mathbf{z})=\mathbf{0}\right\}=\bigcap_{i=1}^{m}\left\{\mathbf{z} \in \mathbf{E}^{n+m}: F_{i}(\mathbf{z})=0\right\} .
$$

Define \mathcal{T} to be the relative (metric) topology, the restrictions of open \mathbf{E}^{n+m} subsets to \mathcal{M}.

Apply the Implicit Function Theorem (see below) to find charts.

Inverse Function Theorem

Warm-up exercise:

Theorem

Suppose that $\mathbf{f}: \mathbf{E}^{d} \rightarrow \mathbf{E}^{d}$ is differentiable near $\mathbf{x} \in \mathbf{E}^{d}$ with nonsingular $D \mathbf{f}(\mathbf{x})$ (iff $\operatorname{det} D \mathbf{f}(\mathbf{x}) \neq 0$, iff matrix $D \mathbf{f}(\mathbf{x})$ is invertible). Then there exists a function $\mathbf{g}: \mathbf{E}^{d} \rightarrow \mathbf{E}^{d}$, differentiable near $\mathbf{y} \stackrel{\text { def }}{=} \mathbf{f}(\mathbf{x})$, such that:

- $\mathbf{g} \circ \mathbf{f}\left(\mathbf{x}^{\prime}\right)=\mathbf{x}^{\prime}$ for all \mathbf{x}^{\prime} sufficiently near \mathbf{x}, and
- $\mathbf{f} \circ \mathbf{g}\left(\mathbf{y}^{\prime}\right)=\mathbf{y}^{\prime}$ for all \mathbf{y}^{\prime} sufficiently near \mathbf{y}.

Furthermore, $D \mathbf{g}(\mathbf{y})=D \mathbf{f}(\mathbf{x})^{-1}$ is nonsingular, and

$$
D \mathbf{g}\left(\mathbf{y}^{\prime}\right)=D \mathbf{f}\left(\mathbf{g}\left(\mathbf{y}^{\prime}\right)\right)^{-1}
$$

for all \mathbf{y}^{\prime} sufficiently near \mathbf{y}.

Inverse Function Theorem (proof sketch, part 1)

For each \mathbf{y}^{\prime} near $\mathbf{y}=\mathbf{f}(\mathbf{x})$, define a sequence by $\mathbf{x}_{0} \stackrel{\text { def }}{=} \mathbf{x}$ and

$$
\mathbf{x}_{n+1}=\mathbf{x}_{n}-D \mathbf{f}(\mathbf{x})^{-1}\left[\mathbf{f}\left(\mathbf{x}_{n}\right)-\mathbf{y}^{\prime}\right] \stackrel{\text { def }}{=} K\left(\mathbf{x}_{n}\right), \quad n=0,1,2, \ldots .
$$

Use the differentiability of \mathbf{f} near \mathbf{x} to compare K at \mathbf{u}, \mathbf{v} near \mathbf{x} :

$$
\begin{aligned}
K(\mathbf{u})-K(\mathbf{v}) & =\mathbf{u}-\mathbf{v}-D \mathbf{f}(\mathbf{x})^{-1}[\mathbf{f}(\mathbf{u})-\mathbf{f}(\mathbf{v})] \\
& =\left[\mathrm{I}-D \mathbf{f}(\mathbf{x})^{-1} D \mathbf{f}(\mathbf{v})\right](\mathbf{u}-\mathbf{v})+o(\|\mathbf{u}-\mathbf{v}\|) .
\end{aligned}
$$

Since $D \mathbf{f}(\mathbf{v}) \rightarrow D \mathbf{f}(\mathbf{x})$ as $\mathbf{v} \rightarrow \mathbf{x}$, so $\mathrm{I}-D \mathbf{f}(\mathbf{x})^{-1} D \mathbf{f}(\mathbf{v}) \rightarrow 0$.
Thus K is a contraction near \mathbf{x}.
By a similar estimate: if \mathbf{y}^{\prime} is near \mathbf{y}, then $\left\{\mathbf{x}_{n}\right\}$ stays near \mathbf{x}.

Inverse Function Theorem (proof sketch, part 2)

By the contraction mapping theorem, $\mathbf{x}_{n}=K^{n}(\mathbf{x}) \rightarrow \mathbf{x}^{\prime}$, the unique fixed point $\mathbf{x}^{\prime}=K\left(\mathbf{x}^{\prime}\right)$. Then by the definition of K,

$$
\mathbf{0}=\mathbf{x}^{\prime}-K\left(\mathbf{x}^{\prime}\right)=D \mathbf{f}(\mathbf{x})^{-1}\left[\mathbf{f}\left(\mathbf{x}^{\prime}\right)-\mathbf{y}^{\prime}\right], \quad \Longrightarrow \mathbf{f}\left(\mathbf{x}^{\prime}\right)=\mathbf{y}^{\prime}
$$

This defines the inverse function $\mathbf{g}\left(\mathbf{y}^{\prime}\right) \stackrel{\text { def }}{=} \mathbf{x}^{\prime}$ at all \mathbf{y}^{\prime} near \mathbf{y}.
Since $\mathbf{y}^{\prime}=\mathbf{f} \circ \mathbf{g}\left(\mathbf{y}^{\prime}\right)$, apply the chain rule to compute

$$
\mathrm{I}=D[\mathbf{f} \circ \mathbf{g}]\left(\mathbf{y}^{\prime}\right)=D \mathbf{f}\left(\mathbf{g}\left(\mathbf{y}^{\prime}\right)\right) D \mathbf{g}\left(\mathbf{y}^{\prime}\right)=D \mathbf{f}\left(\mathbf{x}^{\prime}\right) D \mathbf{g}\left(\mathbf{y}^{\prime}\right)
$$

Conclude that $D \mathbf{f}\left(\mathbf{x}^{\prime}\right)$ is nonsingular, so $D \mathbf{g}\left(\mathbf{y}^{\prime}\right)=D \mathbf{f}\left(\mathbf{x}^{\prime}\right)^{-1}$.
Details may be found in the supplement 01extra.pdf.

Newton-Raphson Iteration

For \mathbf{y}^{\prime} near \mathbf{y}, it is faster to find $\mathbf{x}^{\prime}=\mathbf{g}\left(\mathbf{y}^{\prime}\right)$ by solving $\mathbf{f}\left(\mathbf{x}^{\prime}\right)=\mathbf{y}^{\prime}$ for \mathbf{x}^{\prime} using Newton-Raphson iteration from $\mathbf{x}_{0} \stackrel{\text { def }}{=} \mathbf{x}$:
$\mathbf{x}_{n+1}=\mathbf{x}_{n}-D \mathbf{f}\left(\mathbf{x}_{n}\right)^{-1}\left[\mathbf{f}\left(\mathbf{x}_{n}\right)-\mathbf{y}^{\prime}\right] \stackrel{\text { def }}{=} K^{\prime}\left(\mathbf{x}_{n}\right), \quad n=0,1,2, \ldots$.
Note the similarity with K used in the existence proof: $D \mathbf{f}(\mathbf{x})^{-1}$ is simply replaced with $D \mathbf{f}\left(\mathbf{x}_{n}\right)^{-1}$.
But $\mathbf{f}\left(\mathbf{x}^{\prime}\right)=\mathbf{y}^{\prime}$ and \mathbf{f} is also differentiable at \mathbf{x}^{\prime}, so

$$
\begin{aligned}
\mathbf{f}\left(\mathbf{x}^{\prime}+\mathbf{h}\right) & =\mathbf{y}^{\prime}+D \mathbf{f}\left(\mathbf{x}^{\prime}\right) \mathbf{h}+o(\|\mathbf{h}\|), \quad \text { as } \mathbf{h} \rightarrow \mathbf{0}, \\
\Longrightarrow \quad K^{\prime}\left(\mathbf{x}^{\prime}+\mathbf{h}\right) & =\mathbf{x}^{\prime}+\mathbf{h}-D \mathbf{f}\left(\mathbf{x}^{\prime}+\mathbf{h}\right)^{-1}\left[D \mathbf{f}\left(\mathbf{x}^{\prime}\right) \mathbf{h}+o(\|\mathbf{h}\|)\right] \\
& =\mathbf{x}^{\prime}+\left[\mathrm{I}-D \mathbf{f}\left(\mathbf{x}^{\prime}+\mathbf{h}\right)^{-1} D \mathbf{f}\left(\mathbf{x}^{\prime}\right)\right] \mathbf{h}+o(\|\mathbf{h}\|) .
\end{aligned}
$$

Now $I-D \mathbf{f}\left(\mathbf{x}^{\prime}+\mathbf{h}\right)^{-1} D \mathbf{f}\left(\mathbf{x}^{\prime}\right) \rightarrow 0$ as $\mathbf{h} \rightarrow \mathbf{0}$, so K^{\prime} is a contraction map near \mathbf{x}^{\prime}.

Exercise: K^{\prime} iteration converges to the same unique root \mathbf{x}^{\prime} as K.

Defining Functions Implicitly

Goal: given $\mathbf{F}(\mathbf{x}, \mathbf{y})=\mathbf{0}$, find $\mathbf{f}(\mathbf{x})=\mathbf{y}$ such that $\mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x}))=\mathbf{0}$.
Method: iteration, contraction, and implicit differentiation.
Notation: fix $n, m \in \mathbf{Z}^{+}$and define

$$
(\mathbf{x}, \mathbf{y}) \stackrel{\text { def }}{=}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \in \mathbf{E}^{n} \times \mathbf{E}^{m}=\mathbf{E}^{n+m}
$$

Write $\mathbf{F}: \mathbf{E}^{n+m} \rightarrow \mathbf{E}^{m}$ in this notation as

$$
\mathbf{F}(\mathbf{x}, \mathbf{y})=\left(\begin{array}{c}
F_{1}(\mathbf{x}, \mathbf{y}) \\
\vdots \\
F_{m}(\mathbf{x}, \mathbf{y})
\end{array}\right)=\left(\begin{array}{c}
F_{1}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \\
\vdots \\
F_{m}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
\end{array}\right)
$$

Partial Derivative Matrices

Suppose $\mathbf{F}: \mathbf{E}^{n+m} \rightarrow \mathbf{E}^{m}$ is differentiable at (\mathbf{x}, \mathbf{y}). Then

$$
D_{\mathbf{x}} \mathbf{F}(\mathbf{x}, \mathbf{y}) \stackrel{\text { def }}{=}\left(\begin{array}{ccc}
\frac{\partial F_{1}}{\partial x_{1}}(\mathbf{x}, \mathbf{y}) & \cdots & \frac{\partial F_{1}}{\partial x_{n}}(\mathbf{x}, \mathbf{y}) \\
\vdots & \ddots & \vdots \\
\frac{\partial F_{m}}{\partial x_{1}}(\mathbf{x}, \mathbf{y}) & \cdots & \frac{\partial F_{m}}{\partial x_{n}}(\mathbf{x}, \mathbf{y})
\end{array}\right) \in \mathbf{R}^{m \times n}
$$

for the first n coordinates, and

$$
D_{\mathbf{y}} \mathbf{F}(\mathbf{x}, \mathbf{y}) \stackrel{\text { def }}{=}\left(\begin{array}{ccc}
\frac{\partial F_{1}}{\partial y_{1}}(\mathbf{x}, \mathbf{y}) & \cdots & \frac{\partial F_{1}}{\partial y_{m}}(\mathbf{x}, \mathbf{y}) \\
\vdots & \ddots & \vdots \\
\frac{\partial F_{m}}{\partial y_{1}}(\mathbf{x}, \mathbf{y}) & \cdots & \frac{\partial F_{m}}{\partial y_{m}}(\mathbf{x}, \mathbf{y})
\end{array}\right) \in \mathbf{R}^{m \times m}
$$

for the last m. The second matrix is square so it can be invertible.
Exercise: Linear \mathbf{F} implies $D_{\mathbf{x}} \mathbf{F}(\mathbf{x}, \mathbf{y})$ and $D_{\mathbf{y}} \mathbf{F}(\mathbf{x}, \mathbf{y})$ are constant.

Implicit Function Theorem

Theorem
Let $\mathbf{F}: \mathbf{E}^{n+m} \rightarrow \mathbf{E}^{m}$ be differentiable on an open set $U \subset \mathbf{E}^{n+m}$.
Suppose that there is some point $(\mathbf{a}, \mathbf{b}) \in U$ such that

- $\mathbf{F}(\mathbf{a}, \mathbf{b})=\mathbf{0}$, and
- $D_{\mathbf{y}} \mathbf{F}(\mathbf{a}, \mathbf{b})$ is invertible (as an $m \times m$ matrix).

Then there exists $\mathbf{f}: \mathbf{E}^{n} \rightarrow \mathbf{E}^{m}$, with $\mathbf{f}(\mathbf{a})=\mathbf{b}$, such that

$$
\mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x}))=\mathbf{0}
$$

for all \mathbf{x} sufficiently near \mathbf{a}. In addition, \mathbf{f} is differentiable at \mathbf{a} with $D \mathbf{f}(\mathbf{a})=-D_{\mathbf{y}} \mathbf{F}(\mathbf{a}, \mathbf{b})^{-1} D_{\mathrm{x}} \mathbf{F}(\mathbf{a}, \mathbf{b})$, and

$$
D \mathbf{f}(\mathbf{x})=-D_{\mathbf{y}} \mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x}))^{-1} D_{\mathbf{x}} \mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x}))
$$

for all \mathbf{x} sufficiently near \mathbf{a}.

Linear Implicit Function Theorem

Special case: $\mathbf{F}: \mathbf{E}^{n+m} \rightarrow \mathbf{E}^{m}$ is a linear function. Then

$$
\mathbf{F}(\mathbf{x}, \mathbf{y})=L_{x} \mathbf{x}+L_{y} \mathbf{y}, \quad \mathbf{x} \in \mathbf{E}^{n}, \mathbf{y} \in \mathbf{E}^{m}
$$

where $L_{x} \in \mathbf{R}^{m \times n}$ and $L_{y} \in \mathbf{R}^{m \times m}$ are matrices. Thus

- $L_{x}=D_{\mathbf{x}} \mathbf{F}(\mathbf{x}, \mathbf{y})=D_{\mathbf{x}} \mathbf{F}(\mathbf{a}, \mathbf{b})$, all $(\mathbf{x}, \mathbf{y}) \in \mathbf{E}^{n+m}$.
- $L_{y}=D_{\mathbf{y}} \mathbf{F}(\mathbf{x}, \mathbf{y})=D_{\mathbf{y}} \mathbf{F}(\mathbf{a}, \mathbf{b})$, all $(\mathbf{x}, \mathbf{y}) \in \mathbf{E}^{n+m}$.
- $D_{\mathbf{y}} \mathbf{F}(\mathbf{a}, \mathbf{b})$ is invertible iff L_{y} is invertible.
- $\mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x}))=L_{x} \mathbf{x}+L_{y} \mathbf{f}(\mathbf{x})=\mathbf{0} \Longleftrightarrow \mathbf{f}(\mathbf{x})=-L_{y}^{-1} L_{x} \mathbf{x}$.
- $D \mathbf{f}(\mathbf{x})=-L_{y}^{-1} L_{x}=-D_{\mathbf{y}} \mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x}))^{-1} D_{\mathbf{x}} \mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x}))$.

The proof is simple: all derivatives are constant matrices.

Implicit Function Theorem (proof sketch 1)

General case: $\mathbf{F}: \mathbf{E}^{n+m} \rightarrow \mathbf{E}^{m}$ is differentiable.
$D_{\mathbf{y}} \mathbf{F}(\mathbf{a}, \mathbf{b})$ is invertible and continuous, so $D_{\mathbf{y}} \mathbf{F}(\mathbf{x}, \mathbf{b})$ is invertible for all $\mathbf{x} \in \mathbf{E}^{n}$ sufficiently near \mathbf{a}. Given such \mathbf{x}, define $\left\{\mathbf{y}_{k}\right\} \subset \mathbf{E}^{m}$ by

$$
\mathbf{y}_{0}=\mathbf{b} ; \quad \mathbf{y}_{k+1}=\mathbf{y}_{k}-D_{\mathbf{y}} \mathbf{F}(\mathbf{x}, \mathbf{b})^{-1} \mathbf{F}\left(\mathbf{x}, \mathbf{y}_{k}\right) \stackrel{\text { def }}{=} H\left(\mathbf{y}_{k}\right), k \geq 0 .
$$

But H is a contraction in a neighborhood of \mathbf{b} :

$$
\begin{aligned}
H(\mathbf{u})-H(\mathbf{v}) & =\mathbf{u}-\mathbf{v}-D_{\mathbf{y}} \mathbf{F}(\mathbf{x}, \mathbf{b})^{-1}[\mathbf{F}(\mathbf{x}, \mathbf{u})-\mathbf{F}(\mathbf{x}, \mathbf{v})] \\
& =\underbrace{\left[\mathrm{I}-D_{\mathbf{y}} \mathbf{F}(\mathbf{x}, \mathbf{b})^{-1} D_{\mathbf{y}} F(\mathbf{x}, \mathbf{v})\right]}_{\rightarrow 0 \text { as } \mathbf{v} \rightarrow \mathbf{b}}(\mathbf{u}-\mathbf{v})+o(\|\mathbf{u}-\mathbf{v}\|)
\end{aligned}
$$

Hence $\mathbf{y}_{k} \rightarrow \mathbf{y}=H(\mathbf{y})$, the unique fixed point, so $\mathbf{F}(\mathbf{x}, \mathbf{y})=\mathbf{0}$.
Put $\mathbf{f}(\mathbf{x}) \stackrel{\text { def }}{=} \mathbf{y}$ to get $\mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x}))=\mathbf{0}$ for all \mathbf{x} sufficiently near \mathbf{a}.

Implicit Function Theorem (proof sketch 2)

Apply the chain rule to $\mathbf{x} \mapsto \mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x}))=\mathbf{0}$ to get

$$
\begin{aligned}
\mathbf{0} & =D_{\mathbf{x}} \mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x}))+D_{\mathbf{y}} \mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x})) D \mathbf{f}(\mathbf{x}) \\
\Longrightarrow D \mathbf{f}(\mathbf{x}) & =-D_{\mathbf{y}} \mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x}))^{-1} D_{\mathbf{x}} \mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x}))
\end{aligned}
$$

for all x sufficiently near \mathbf{a}.
Remark. Faster convergence $\mathbf{y}_{k} \rightarrow \mathbf{y}=\mathbf{f}(\mathbf{x})$ is obtained with Newton-Raphson iteration:

$$
\mathbf{y}_{k+1}=\mathbf{y}_{k}-D_{\mathbf{y}} \mathbf{F}\left(\mathbf{x}, \mathbf{y}_{k}\right)^{-1} \mathbf{F}\left(\mathbf{x}, \mathbf{y}_{k}\right) \stackrel{\text { def }}{=} H^{\prime}\left(\mathbf{y}_{k}\right)
$$

which differs from H by using $D_{\mathbf{y}} \mathbf{F}\left(\mathbf{x}, \mathbf{y}_{k}\right)^{-1}$ instead of $D_{\mathbf{y}} \mathbf{F}(\mathbf{x}, \mathbf{b})^{-1}$.

Local Parametrizations

Suppose $\mathbf{F}: \mathbf{E}^{n+m} \rightarrow \mathbf{E}^{m}$ is differentiable and let \mathcal{M} be the differentiable variety

$$
\mathcal{M}=\left\{(\mathbf{x}, \mathbf{y}) \in \mathbf{E}^{n+m}: \mathbf{F}(\mathbf{x}, \mathbf{y})=\mathbf{0}\right\}
$$

with the relative metric topology \mathcal{T} inherited from \mathbf{E}^{n+m}. For $(\mathbf{a}, \mathbf{b}) \in \mathcal{M}$ where $D_{\mathbf{y}} \mathbf{F}(\mathbf{a}, \mathbf{b})$ is nonsingular, there exists differentiable $\mathbf{f}: \mathbf{E}^{n} \rightarrow \mathbf{E}^{m}$ such that

$$
\mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x}))=\mathbf{0}
$$

for all \mathbf{x} sufficiently near \mathbf{a}. Hence for some $r>0$,

$$
G \stackrel{\text { def }}{=}\left\{(\mathbf{x}, \mathbf{f}(\mathbf{x})): \mathbf{x} \in B(\mathbf{a}, r) \subset \mathbf{E}^{n}\right\} \subset \mathcal{M}
$$

is a neighborhood of (\mathbf{a}, \mathbf{b}) in \mathcal{M} given by a graph.

Local Coordinate Charts

The graph $G=\left\{(\mathbf{x}, \mathbf{f}(\mathbf{x})): \mathbf{x} \in B(\mathbf{a}, r) \subset \mathbf{E}^{n}\right\} \subset \mathcal{M}$ has a coordinate chart

$$
\phi: G \rightarrow B(\mathbf{a}, r) \subset \mathbf{E}^{n} ; \quad \phi(\mathbf{x}, \mathbf{f}(\mathbf{x})) \stackrel{\text { def }}{=} \mathbf{x}
$$

This is obviously continuous. The inverse is local parametrization

$$
\phi^{-1}(\mathbf{x})=(\mathbf{x}, \mathbf{f}(\mathbf{x}))
$$

If $\psi: \mathbf{E}^{n+m} \rightarrow \mathbf{E}^{n}$ is differentiable, then by the chain rule:

$$
D\left[\psi \circ \phi^{-1}\right](\mathbf{x})=D_{\mathbf{x}} \psi(\mathbf{x}, \mathbf{f}(\mathbf{x}))+D_{\mathbf{y}} \psi(\mathbf{x}, \mathbf{f}(\mathbf{x})) D \mathbf{f}(\mathbf{x})
$$

so ψ restricted to G is differentially compatible with ϕ.

Parametrizations Elsewhere

Suppose $\mathbf{F}: \mathbf{E}^{n+m} \rightarrow \mathbf{E}^{m}$ is differentiable and let \mathcal{M} be the differentiable variety

$$
\mathcal{M}=\left\{\mathbf{z} \in \mathbf{E}^{n+m}: \mathbf{F}(\mathbf{z})=\mathbf{0}\right\}
$$

Fix $\mathbf{z}_{0} \in \mathcal{M}$ and suppose $D \mathbf{F}\left(\mathbf{z}_{0}\right)$ has maximal rank m.

Lemma

There exists a coordinate system $\mathbf{z}=U(\mathbf{x}, \mathbf{y}), \mathbf{x} \in \mathbf{E}^{n}, \mathbf{y} \in \mathbf{E}^{m}$, with $\mathbf{z}_{0}=U\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right)$, such that $D_{\mathbf{y}} \mathbf{F}\left(U\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right)\right)$ has rank m.
Proof sketch: Find m pivot columns by reducing matrix $D \mathbf{F}\left(\mathbf{z}_{0}\right)$ to row echelon form. Let \mathbf{y} be coordinates with respect to a basis for the pivot column space, and let \mathbf{x} be the coordinates for a basis of the orthogonal complement.

Graph Parametrizations for Nonsingular Varieties

Say that $\mathbf{F}: \mathbf{E}^{n+m} \rightarrow \mathbf{E}^{m}$ gives a nonsingular differentiable variety $\mathcal{M}=\{\mathbf{z}: \mathbf{F}(\mathbf{z})=\mathbf{0}\}$ if $D \mathbf{F}(\mathbf{z})$ has maximal rank m for all $\mathbf{z} \in \mathcal{M}$.

For each $\mathbf{w} \in \mathcal{M}$, let $\mathbf{z}=U_{\mathbf{w}}(\mathbf{x}, \mathbf{y})$ be change of variables such that

$$
D_{\mathbf{y}} \mathbf{F}\left(U_{\mathbf{w}}(\mathbf{x}, \mathbf{y})\right) \text { is nonsingular (has rank } m \text {). }
$$

By Implicit Function Theorem, there exists $\mathbf{f}_{\mathbf{w}}: \mathbf{E}^{n} \rightarrow \mathbf{E}^{m}$, differentiable on some neighborhood $G_{w} \subset \mathbf{E}^{n}$, such that

$$
\mathbf{F} \circ U_{w}\left(\mathbf{x}, \mathbf{f}_{\mathbf{w}}(\mathbf{x})\right)=\mathbf{0}, \quad \mathbf{x} \in G_{\mathbf{w}}
$$

This \mathbf{f}_{w} gives a graph parametrization of \mathcal{M} near \mathbf{w}.

Manifold Estimation Application

Write $\mathbf{F}=\left(F_{1}, \ldots, F_{m}\right)$, for $\mathbf{F}: \mathbf{E}^{n+m} \rightarrow \mathbf{E}^{m}$, where $F_{i}(\mathbf{z}) \in \mathbf{R}$ measures some undesirable property of \mathbf{z}.

Then the variety

$$
\mathcal{M} \stackrel{\text { def }}{=}\left\{\mathbf{z} \in \mathbf{E}^{n+m}: \mathbf{F}(\mathbf{z})=\mathbf{0}\right\}
$$

is a set of points without those undesirable properties.
If \mathbf{F} is differentiable and $D \mathbf{F}(\mathbf{z})$ has rank m near some $\mathbf{z} \in \mathcal{M}$, then the graph parametrization generates nearby samples of desirable points.

Curves on a Manifold

Suppose $(\mathcal{M}, \mathcal{T})$ is a manifold with $x \in \mathcal{M}$. A curve through x is a continuous function $\gamma:(-1,1) \rightarrow \mathcal{M}$ with $\gamma(0)=x$.
For every chart (G, ϕ) with $x \in G$ and $\phi: G \rightarrow \mathbf{E}^{d}$, the composition

$$
\phi \circ \gamma:(-1,1) \rightarrow \mathbf{E}^{d}
$$

is a parametrized curve in \mathbf{E}^{d} in the ordinary sense, with $\phi \circ \gamma(t)$ defined in some open interval near $t=0$.

For differentiable manifold $(\mathcal{M}, \mathcal{T}, \mathcal{A})$, the curve γ is differentiable iff

$$
\frac{d}{d t}[\phi \circ \gamma(t)] \text { exists and is continuous at } t=0
$$

for every chart $(G, \phi) \in \mathcal{A}$ with $x \in G$.

Directional Derivatives

Given:

- differentiable function $f: \mathcal{M} \rightarrow \mathbf{R}$;
- differentiable curve $\gamma:(-1,1) \rightarrow \mathcal{M}$ through $x=\gamma(0)$.

Define the directional derivative at x of f along γ to be

$$
\left.d_{\gamma} f(x) \stackrel{\text { def }}{=} \frac{d}{d t}[f \circ \gamma(t)]\right|_{t=0} \in \mathbf{R} .
$$

For coordinate function $\phi: \mathcal{M} \rightarrow \mathbf{E}^{d}$ with $\phi=\left(\phi_{1}, \ldots, \phi_{d}\right)$, the directional derivative is \mathbf{E}^{d}-valued:

$$
\left.d_{\gamma} \phi(x) \stackrel{\text { def }}{=} \frac{d}{d t}[\phi \circ \gamma(t)]\right|_{t=0}=\left(d_{\gamma} \phi_{1}(x), \ldots, d_{\gamma} \phi_{d}(x)\right) \in \mathbf{E}^{d}
$$

In general, differentiable $\mathbf{F}: \mathcal{M} \rightarrow \mathbf{E}^{m}$ has $d_{\gamma} \mathbf{F}(x) \in \mathbf{E}^{m}$.

Tangent Vectors

Define direction vectors at $x \in \mathcal{M}$ uniquely using equivalence classes of curves through x :

Definition

γ and η are equivalent curves through x iff

$$
d_{\gamma} \phi(x)=\left.\frac{d}{d t}[\phi \circ \gamma(t)]\right|_{t=0}=\left.\frac{d}{d t}[\phi \circ \eta(t)]\right|_{t=0}=d_{\eta} \phi(x)
$$

for every x-containing chart in the maximal differentiable atlas.
Each equivalence class of such curves defines a unique tangent vector to \mathcal{M} at x.

Call the set of such tangent vectors the tangent space to \mathcal{M} at x and denote it by $T_{x} \mathcal{M}$.

Tangent Space Homeomorphisms

Coordinate chart (G, ϕ), with homeomorphism $\phi: G \rightarrow \mathbf{E}^{d}$, "pushes forward" to a map $d \phi(x): T_{x} \mathcal{M} \rightarrow \mathbf{E}^{d}$ at each $x \in G$:

$$
d \phi(x)(v) \stackrel{\text { def }}{=} d_{\gamma} \phi(x)=\left.\frac{d}{d t}[\phi \circ \gamma(t)]\right|_{t=0},
$$

where γ is any curve through x in the equivalence class $v \in T_{x} \mathcal{M}$. This is well-defined precisely because of the equivalence relation.

Theorem
(a) $T_{x} \mathcal{M}$ is a vector space.
(b) $d \phi(x)$ is a linear homeomorphism of $T_{x} \mathcal{M}$ onto \mathbf{E}^{d}.

Proof.
Represent $u+c v \leftrightarrow \phi^{-1}(\phi \circ \gamma(t)+\phi \circ \eta(c t))$ to push forward from curves γ, η on \mathcal{M} to tangent vectors u, v in $T_{x} \mathcal{M}$.
See the notes at 01tange.pdf for details.

Tangent Space of a Linear Manifold

Special case: linear manifold $\mathcal{M}=\mathbf{E}^{d}$, tangent vector $v \in T_{x} \mathcal{M}$ represented by curve γ through $\gamma(0)=x \in \mathcal{M}$, and differentiable function $f: \mathcal{M} \rightarrow \mathbf{R}$. Then by the chain rule, $d f(x)(v)$ is

$$
d_{\gamma} f(x)=\left.\frac{d}{d t}[f \circ \gamma(t)]\right|_{t=0}=\sum_{k=1}^{d} \gamma_{k}^{\prime}(0) \partial_{k} f(x)=\left\langle\gamma^{\prime}(0), \operatorname{Df}(x)\right\rangle
$$

the inner product of gradient $D f(x)=\left(\partial_{1} f(x), \ldots, \partial_{d} f(x)\right)$ with direction vector $\gamma^{\prime}(0)=\left(\gamma_{1}^{\prime}(0), \ldots, \gamma_{d}^{\prime}(0)\right)$.
Alternative viewpoint: $v \in T_{x} \mathcal{M}$ is a first-order differential operator, evaluated at x :

$$
\left.v \stackrel{\text { def }}{=} \sum_{k=1}^{d} \gamma_{k}^{\prime}(0) \partial_{k}\right|_{x} \quad \Longrightarrow \quad v(f)=d f(x)(v)
$$

Tangent Vectors as Derivations

Formally, for linear manifold $\mathcal{M}=\mathbf{E}^{d}$,

$$
T_{x} \mathbf{E}^{d}=\operatorname{span}\left\{\partial_{1}, \ldots, \partial_{d}\right\}, \quad \text { with "basis" }\left\{\partial_{k}\right\}
$$

First-order differential operators ∂ are derivations, linear but also obeying the product rule for functions f, g and $c \in \mathbf{R}$:

$$
\partial(f+c g)=\partial f+c \partial g ; \quad \partial(f g)=f \partial g+g \partial f
$$

This generalizes to abstract differentiable manifold \mathcal{M} :

$$
v(f+c g)=v(f)+c v(g) ; \quad v(f g)=g(x) v(f)+f(x) v(g),
$$

for $v \in T_{x} \mathcal{M}$, differentiable $f, g: \mathcal{M} \rightarrow \mathbf{R}$, and $c \in \mathbf{R}$.

Tangent Bundles

If $x \neq y$ are distinct points in \mathcal{M}, then $T_{x} \mathcal{M}$ and $T_{y} \mathcal{M}$ have no points in common.

The tangent bundle of a differentiable manifold \mathcal{M} is

$$
T \mathcal{M} \stackrel{\text { def }}{=} \bigcup_{x \in \mathcal{M}}\{x\} \times T_{x} \mathcal{M}
$$

For each chart (G, ϕ) in the maximal atlas for \mathcal{M}, the map $\Phi: T \mathcal{M} \rightarrow \mathbf{E}^{d} \times \mathbf{E}^{d}$ defined by

$$
\Phi(x, v) \stackrel{\text { def }}{=}(\phi(x), d \phi(x)(v))
$$

is a homeomorphism on the open set $\left\{\{x\} \times T_{x} \mathcal{M}: x \in G\right\}$, so $T \mathcal{M}$ is itself a manifold (of dimension $2 d$).

Differentials

Differentiable $f: \mathcal{M} \rightarrow \mathbf{R}$ has a differential $d f: T \mathcal{M} \rightarrow \mathbf{R}$, defined using directional derivatives:

$$
\left.d f(x, v) \stackrel{\text { def }}{=} \frac{d}{d t}[f \circ \gamma(t)]\right|_{t=0}, \quad\left\{\begin{array}{l}
\gamma:(-1,1) \rightarrow \mathcal{M} \\
\gamma(0)=x, \gamma \leftrightarrow v .
\end{array}\right.
$$

Any other curve $\eta \leftrightarrow v$ (representing v) gives the same result:

$$
\begin{aligned}
\left.\frac{d}{d t}[f \circ \eta(t)]\right|_{t=0} & =\left.\frac{d}{d t}\left[\left(f \circ \phi^{-1}\right) \circ \phi \circ \eta(t)\right]\right|_{t=0} \\
& =\left.D\left[f \circ \phi^{-1}\right](\phi(x)) \frac{d}{d t}[\phi \circ \eta(t)]\right|_{t=0} \\
& =\left.D\left[f \circ \phi^{-1}\right](\phi(x)) \frac{d}{d t}[\phi \circ \gamma(t)]\right|_{t=0} \\
& =\left.\frac{d}{d t}[f \circ \gamma(t)]\right|_{t=0}
\end{aligned}
$$

using the chain rule with $f \circ \phi^{-1}: \mathbf{E}^{d} \rightarrow \mathbf{R}$.

Differentials Between Manifolds

For $f: \mathcal{M} \rightarrow \mathcal{N}$, define $d f: T \mathcal{M} \rightarrow T \mathcal{N}$ by:

$$
d f(x, v) \stackrel{\text { def }}{=}(y, w) ;\left\{\begin{aligned}
y & =f(x) \in \mathcal{N} \\
\gamma & \leftrightarrow v \in T_{x} \mathcal{M} ; \\
f \circ \gamma & \leftrightarrow w \in T_{y} \mathcal{N} .
\end{aligned}\right.
$$

This $d f$ is well-defined, since for any charts $(G, \phi),(H, \psi)$ on \mathcal{M}, \mathcal{N} with $x \in G, y \in H$, respectively.

$$
\begin{aligned}
\left.\frac{d}{d t}[\psi \circ f \circ \gamma(t)]\right|_{t=0} & =\left.\frac{d}{d t}\left[\psi \circ f \circ \phi^{-1} \circ \phi \circ \gamma(t)\right]\right|_{t=0} \\
& =\left.D\left[\psi \circ f \circ \phi^{-1}\right](y) \frac{d}{d t}[\phi \circ \gamma(t)]\right|_{t=0},
\end{aligned}
$$

which is the same for all curves in the same equivalence class as γ.

Vector Fields on \mathbf{E}^{d}

Special case: Linear manifold $\mathcal{M}=\mathbf{E}^{d}, T_{x} \mathcal{M}=\mathbf{E}^{d}, T \mathcal{M}=\mathbf{E}^{2 d}$.
Generalize vector $v=\left.\sum_{k} c_{k} \partial_{k}\right|_{x} \in T_{x} \mathbf{E}^{d}$ to a vector field

$$
\left.\xi(x) \stackrel{\text { def }}{=} \sum_{k=1}^{d} c_{k}(x) \partial_{k}\right|_{x},
$$

using coefficient functions $c_{1}(x), \ldots, c_{d}(x)$ instead of constants.
For each $x \in \mathcal{M}$, this sends a differentiable function $f: \mathbf{E}^{d} \rightarrow \mathbf{R}$ to its directional derivative at x in the $\xi(x)$ direction:

$$
\xi(x)(f)=\sum_{k=1}^{d} c_{k}(x) \partial_{k} f(x)
$$

It generalizes to vector valued f in the obvious componentwise way.

Vector Fields in General

For differentiable manifold \mathcal{M}, define a vector field $\xi: \mathcal{M} \rightarrow T \mathcal{M}$ by

$$
\xi(x) \stackrel{\text { def }}{=}(x, v), \quad v \in T_{x} \mathcal{M}
$$

where v is a tangent vector whose action on differentiable functions $f: \mathcal{M} \rightarrow \mathbf{R}$ is

$$
v(f)(x)=d f(x)(v)=d_{\gamma} f(x)
$$

the directional derivative of f at x along any curve γ through x in the equivalence class of v at x.
Exercise: ξ is well-defined. Namely, explain why the directional derivatives of f agree for all of $v^{\prime} s$ equivalent curves through x.

Germs

Fix $x \in \mathcal{M}$ for differentiable manifold $(\mathcal{M}, \mathcal{T}, \mathcal{A})$.
Say that two differentiable functions $f_{1}, f_{2}: \mathcal{M} \rightarrow \mathbf{E}^{m}$ are in the same germ at x iff

$$
(\exists G \in \mathcal{T})\left(x \in G \text { and }(\forall z \in G) f_{1}(z)=f_{2}(z)\right)
$$

(Without loss, G is part of a chart in \mathcal{A}.) Each germ at x is an equivalence class. Germs allow generalization to smooth manifolds.
Exercise: : $\mathcal{G}(x) \stackrel{\text { def }}{=}\{$ all germs at $x\}$ is an algebra under pointwise addition and multiplication.

Remark. $\mathcal{G}(x)$ is infinite-dimensional: for $(G, \phi) \in \mathcal{A}$ with $x \in G$, the functions $g_{k}(z) \stackrel{\text { def }}{=} \phi_{1}(z)^{k}, k=0,1,2, \ldots$ are linearly independent polynomials in the first coordinate ϕ_{1}.

Partitions of Unity

A partition of unity subordinate to a countable locally finite open cover $\left\{G_{k}\right\}$ for a manifold $(\mathcal{M}, \mathcal{T}, \mathcal{A})$ is a countable set of functions $\left\{\rho_{k}: \mathcal{M} \rightarrow \mathbf{R}\right\}$ such that, for all $k=1,2, \ldots$,

- ρ_{k} is differentiable on \mathcal{M},
- $0 \leq \rho_{k}(x) \leq 1$ for all $x \in \mathcal{M}$,
- $\rho_{k}(x)=0$ for all $x \notin G_{k}$,
and

$$
\sum_{k=1}^{\infty} \rho_{k}(x)=1, \quad \text { for all } x \in \mathcal{M}
$$

(Note that only finitely many summands are nonzero.)
Remark. A finite cover is obviously locally finite, but in fact every (differentiable) manifold has a countable locally finite open cover and a partition of unity subordinate to that cover.

Immersions and Embeddings

Suppose that X and Y are differentiable manifolds with tangent bundles $T X$ and $T Y$, respectively.

Say that

- X is immersed in Y if there is a differentiable map $\Phi: X \rightarrow Y$ whose derivative $d \Phi: T X \rightarrow T Y$ is injective. Note: Φ need not be injective.
- X is embedded in Y if the immersion $\Phi: X \rightarrow Y$ is also injective, so it is diffeomorphism between X and $\Phi(X) \subset Y$.

Lemma
If X is compact, then an injective immersion is an embedding.

Whitney Embedding Theorem

Roughly speaking, any abstract manifold can be realized as a differentiable variety. There are various versions:

Theorem (Whitney 1)
A compact d-dimensional differentiable manifold can be embedded into \mathbf{E}^{N} for all sufficiently large N.

Theorem (Whitney 2)
A compact d-dimensional differentiable manifold can be embedded into $\mathbf{E}^{2 d+1}$ and immersed into $\mathbf{E}^{2 d}$.

Theorem (Whitney 3)
A d-dimensional smooth manifold can be embedded into $\mathbf{E}^{2 d}$ and immersed into $\mathbf{E}^{2 d-1}$.

Weaker Whitney Embedding Theorem, part 1

Theorem

A compact d-dimensional differentiable manifold has an embedding into \mathbf{E}^{N} for all sufficiently large N.
Proof: Compact \mathcal{M} has finite atlas $\mathcal{A}=\left\{\left(G_{1}, \phi_{1}\right), \ldots,\left(G_{n}, \phi_{n}\right)\right\}$. Let $\left\{\rho_{1}, \ldots, \rho_{n}\right\}$ be a differentiable partition of unity subordinate to $\left\{G_{1}, \ldots, G_{n}\right\}$.

Define $\Phi: \mathcal{M} \rightarrow \mathbf{E}^{n d+n}$ by

$$
\Phi(x) \stackrel{\text { def }}{=}\left(\rho_{1}(x) \phi_{1}(x), \ldots, \rho_{n}(x) \phi_{n}(x), \rho_{1}(x), \ldots, \rho_{n}(x)\right),
$$

with the convention that $\rho_{k}(x) \phi_{k}(x)=\rho_{k}(x)=0$ for $x \notin G_{k}$.
To prove that Φ is an embedding, it remains to show that Φ is injective and differentiable with injective differential.

Weaker Embedding Theorem, part 2

Φ is injective: if $\Phi\left(x_{1}\right)=\Phi\left(x_{2}\right)$, then $(\exists k) \rho_{k}\left(x_{1}\right)=\rho_{k}\left(x_{2}\right) \neq 0$, so $x_{1}, x_{2} \in G_{k}$. But then also
$\rho_{k}\left(x_{1}\right) \phi_{k}\left(x_{1}\right)=\rho_{k}\left(x_{2}\right) \phi_{k}\left(x_{2}\right) \Longrightarrow \phi_{k}\left(x_{1}\right)=\phi_{k}\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}$,
since ϕ_{k} is injective.
Φ is differentiable: for any differentially compatible chart (G, ϕ), and any $k=1, \ldots, n$,
$-\phi_{k} \circ \phi^{-1}: \mathbf{E}^{d} \rightarrow \mathbf{E}^{d}$ is a differentiable transition function,
$-\rho_{k} \circ \phi^{-1}: \mathbf{E}^{d} \rightarrow \mathbf{R}$ is differentiable by construction.
Thus every component of Φ is differentiable on \mathcal{M}.

Weaker Embedding Theorem, part 3

$d \Phi$ is injective: suffices to prove $d \Phi(x, v)=(\Phi(y), \mathbf{0}) \Longrightarrow v=0$.
Fix x and evaluate $d \Phi(x)$ on $v \in T_{x} \mathcal{M}$ using the product rule:

$$
\begin{gathered}
d \Phi(x)(v)=\left(v\left(\rho_{1}\right) \phi_{1}(x)+\rho_{1}(x) d \phi_{1}(x)(v), \ldots\right. \\
\ldots, v\left(\rho_{n}\right) \phi_{n}(x)+\rho_{n}(x) d \phi_{n}(x)(v) \\
\\
\left.v\left(\rho_{1}\right), \ldots, v\left(\rho_{n}\right)\right)=\mathbf{0} \\
\Longrightarrow \quad v\left(\rho_{1}\right)=\cdots=v\left(\rho_{n}\right)=0 \\
\Longrightarrow \quad \rho_{1}(x) d \phi_{1}(x)(v)=\cdots=\rho_{n}(x) d \phi_{n}(x)(v)=\mathbf{0} .
\end{gathered}
$$

But $(\exists k) \rho_{k}(x) \neq 0$, so $d \phi_{k}(x)(v)=\mathbf{0}$, which implies that $v=0$ since $d \phi_{k}(x)$ is linear and injective.

Piecewise Linear Manifolds

Idea: Replace "differentiable," or locally close to linear, with "piecewise linear."

Method:

- Require transition functions to be piecewise linear.
- Use only piecewise linear functions and germs.

Tools:

- Convex sets in \mathbf{E}^{d}
- Convex hull of a finite set
- Simplexes: convex hulls with nonempty relative interiors.
- Tesselations: unions of nonoverlapping simplexes.

References

- Louis Auslander and Robert E. MacKenzie, Introduction to Differentiable Manifolds, Dover, 1977.
- Jenny Wilson's talk on manifolds: WOMPtalk-Manifolds.pdf
- Thurston's notes on partitions of unity: PartOfUnityLocFiniteRefinements.pdf
- Brahim Abdenbi's paper on the Whitney Embedding Theorem: Brahim-Abdenbi-presentation-Whitney.pdf
- Whitney Embedding Theorem proofs: lecture10.pdf

