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1 Inverse Function Theorem proof.
1.0.1 K is a contraction map.

For each y′ ∈ Ed, define a function K : Ed → Ed by

K(u) def= u−Df(x)−1[f(u)− y′],

relying on the hypothesis that Df(x) is nonsingular, hence invertible.
Use K to define a sequence {xn} recursively:

x0
def= x; xn+1 = K(xn) = xn −Df(x)−1[f(xn)− y′], n = 0, 1, 2, . . . .

From the definition of differentiability for functions f : En → Em,

f(u) = f(v) +Df(v)(u− v) + E(u,v),

where the error satisfies ‖E(u,v)‖ = o(‖u − v‖) as u → v. Substitute this
estimate into K(u) and K(v) to show that K is a contraction map near x:

K(u)−K(v) = u− v−Df(x)−1 [f(u)− f(v)]

= u− v−Df(x)−1
[
Df(v)(u− v) + E(u,v)

]
=

[
I−Df(x)−1Df(v)

]
(u− v) +Df(x)−1E(u,v).

Now f is continuously differentiable near x, so Df(v) → Df(x) as v → x, so
I−Df(x)−1Df(v)→ 0. (Every coefficient of the matrix tends to 0.) Thus

(∃δ1 > 0) v ∈ B(x, δ1) =⇒
∥∥I−Df(x)−1Df(v)

∥∥
op <

1
4 (1)

Here ‖·‖op is the “operator norm.” For d×dmatrixA, ‖A‖op
def= sup{‖Ax‖/‖x‖ :

x ∈ Ed, x 6= 0}. It is a continuous function of the coefficients of A and thus
‖A‖op → 0 as A→ 0. It satisfies ‖Ax‖ ≤ ‖A‖op‖x‖ for all x ∈ Ed.
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Likewise, since Df(x)−1 is bounded and ‖E(u,v)‖ = o(‖u− v‖),

(∃δ2 > 0) u,v ∈ B(x, δ2) =⇒ ‖Df(x)−1E(u,v)‖ ≤ 1
4‖u− v‖. (2)

Put δ = min{δ1, δ2} to conclude that if u,v ∈ B(x, δ), then

‖K(u)−K(v)‖ =
∥∥[I−Df(x)−1Df(v)

]
(u− v) +Df(x)−1E(u,v)

∥∥
≤

∥∥I−Df(x)−1Df(v)
∥∥ ‖u− v‖+

∥∥Df(x)−1E(u,v)
∥∥

≤ 1
4‖u− v‖+ 1

4‖u− v‖ = 1
2‖u− v‖.

If {xn} stays in this ball B(x, δ), then by the contraction mapping theorem it
will converge to a unique fixed point.

1.0.2 K preserves a neighborhood of x.

To show that {xn} stays sufficiently near x if y′ is sufficiently near y, use

f(u) = y +Df(x)(u− x) + E(u,x),

where ‖E(u,x)‖ = o(‖u− x‖) as u→ x, to estimate

K(u)− x = u−Df(x)−1 [f(u)− y′]− x

= u−x−Df(x)−1
[
y−y′ +Df(x)(u−x) + E(u,x)

]
= −Df(x)−1(y− y′)−Df(x)−1E(u,x).

But Df(x)−1 is bounded, so there exists ε > 0 such that

y′ ∈ B(y, ε) =⇒ ‖Df(x)−1(y− y′)‖ < 1
2δ,

where δ = min{δ1, δ2} from Eq.1 and Eq.2. Then Eq.2 implies

u ∈ B(x, δ) =⇒ ‖Df(x)−1E(u,x)‖ ≤ 1
4‖u− x‖ ≤ 1

4δ.

Hence, if y′ ∈ B(y, ε), then

u ∈ B(x, δ) =⇒ ‖K(u)− x‖ ≤ 1
2δ + 1

4δ < δ.

Conclude that xn ∈ B(x, δ) =⇒ xn+1 = K(xn) ∈ B(x, δ), so that for all
y′ ∈ B(y, ε),

x0 ∈ B(x, δ) =⇒ {xn} ⊂ B(x, δ).
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1.0.3 Sequence {xn} converges to a unique fixed point.

Suppose that y′ ∈ B(y, ε) so that by the previous results, K : B(x, δ)→ B(x, δ)
is a contraction map satisfying

u,v ∈ B(x, δ) =⇒ ‖K(u)−K(v)‖ ≤ 1
2‖u− v‖. (3)

Then for any x0 ∈ B(x, δ), the sequence defined by xn+1 = K(xn) will satisfy

‖xN+1 − xN‖ = ‖K(xN )−K(xN−1‖ ≤
1
2 ‖xN − xN−1‖ ,

for N = 0, 1, 2, . . . . Repeat this estimate N times to get the inequality

‖xN+1 − xN‖ ≤
(

1
2

)N

‖x1 − x0‖ < 2δ
(

1
2

)N

,

since x1,x0 ∈ B(x, δ). But this implies that {xn} is a Cauchy sequence:

‖xN+n − xN‖ ≤
n−1∑
i=0
‖xN+i+1 − xN+i‖ <

n−1∑
i=0

2δ
(

1
2

)N+i

<
4δ
2N

.

Metric space Ed is complete, so {xn} converges to a point x′ ∈ Ed that satisfies
K(x′) = x′. This limit is unique in B(x, δ), since for any other point x′′ ∈
B(x, δ) with x′′ = K(x′′), the contraction property implies

‖x′′ − x′‖ = ‖K(x′′)−K(x′)‖ ≤ 1
2‖x

′′ − x′‖,

which forces ‖x′′ − x′‖ = 0 and thus x′′ = x′.
Since x′ = K(x′) = x′−Df(x)−1[f(x′)−y′], conclude that this unique fixed

point satisfies f(x′) = y′. Thus it defines a function

g(y′) = x′ ∈ B(x, δ), y′ ∈ B(y, ε).

This g is the inverse function for f .

1.0.4 The inverse map is differentiable.

Since y′ = f ◦ g(y′) at all y′ in an open neighborhood of y = f(x), apply the
chain rule to compute

I = D[f ◦ g](y′) = Df(g(y′))Dg(y′) = Dg(y′)Df(x′),

for x′ = g(y′). Neither d× d factor matrix is singular since their product is the
nonsingular identity matrix. It follows that Df(x′) is invertible with

Dg(y′) = Df(x′)−1.

This completes the proof of the Inverse Function Theorem. 2
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