Supplement 1: Manifolds

Mladen Victor Wickerhauser
PMF 2022: Dimensionality Reduction and Manifold Estimation

January 10, 2022

1 Inverse Function Theorem proof.

1.0.1 K is a contraction map.

For each $\mathbf{y}^{\prime} \in \mathbf{E}^{d}$, define a function $K: \mathbf{E}^{d} \rightarrow \mathbf{E}^{d}$ by

$$
K(\mathbf{u}) \stackrel{\text { def }}{=} \mathbf{u}-D \mathbf{f}(\mathbf{x})^{-1}\left[\mathbf{f}(\mathbf{u})-\mathbf{y}^{\prime}\right],
$$

relying on the hypothesis that $D \mathbf{f}(\mathbf{x})$ is nonsingular, hence invertible.
Use K to define a sequence $\left\{\mathbf{x}_{n}\right\}$ recursively:

$$
\mathbf{x}_{0} \stackrel{\text { def }}{=} \mathbf{x} ; \quad \mathbf{x}_{n+1}=K\left(\mathbf{x}_{n}\right)=\mathbf{x}_{n}-D \mathbf{f}(\mathbf{x})^{-1}\left[\mathbf{f}\left(\mathbf{x}_{n}\right)-\mathbf{y}^{\prime}\right], \quad n=0,1,2, \ldots .
$$

From the definition of differentiability for functions $\mathbf{f}: \mathbf{E}^{n} \rightarrow \mathbf{E}^{m}$,

$$
\mathbf{f}(\mathbf{u})=\mathbf{f}(\mathbf{v})+D \mathbf{f}(\mathbf{v})(\mathbf{u}-\mathbf{v})+E(\mathbf{u}, \mathbf{v}),
$$

where the error satisfies $\|E(\mathbf{u}, \mathbf{v})\|=o(\|\mathbf{u}-\mathbf{v}\|)$ as $\mathbf{u} \rightarrow \mathbf{v}$. Substitute this estimate into $K(\mathbf{u})$ and $K(\mathbf{v})$ to show that K is a contraction map near \mathbf{x} :

$$
\begin{aligned}
K(\mathbf{u})-K(\mathbf{v}) & =\mathbf{u}-\mathbf{v}-D \mathbf{f}(\mathbf{x})^{-1}[\mathbf{f}(\mathbf{u})-\mathbf{f}(\mathbf{v})] \\
& =\mathbf{u}-\mathbf{v}-D \mathbf{f}(\mathbf{x})^{-1}[D \mathbf{f}(\mathbf{v})(\mathbf{u}-\mathbf{v})+E(\mathbf{u}, \mathbf{v})] \\
& =\left[\mathrm{I}-D \mathbf{f}(\mathbf{x})^{-1} D \mathbf{f}(\mathbf{v})\right](\mathbf{u}-\mathbf{v})+D \mathbf{f}(\mathbf{x})^{-1} E(\mathbf{u}, \mathbf{v}) .
\end{aligned}
$$

Now \mathbf{f} is continuously differentiable near \mathbf{x}, so $D \mathbf{f}(\mathbf{v}) \rightarrow D \mathbf{f}(\mathbf{x})$ as $\mathbf{v} \rightarrow \mathbf{x}$, so I $-D \mathbf{f}(\mathbf{x})^{-1} D \mathbf{f}(\mathbf{v}) \rightarrow 0$. (Every coefficient of the matrix tends to 0 .) Thus

$$
\begin{equation*}
\left(\exists \delta_{1}>0\right) \quad \mathbf{v} \in B\left(\mathbf{x}, \delta_{1}\right) \Longrightarrow\left\|\mathrm{I}-D \mathbf{f}(\mathbf{x})^{-1} D \mathbf{f}(\mathbf{v})\right\|_{\mathrm{op}}<\frac{1}{4} \tag{1}
\end{equation*}
$$

Here $\|\cdot\|_{\text {op }}$ is the "operator norm." For $d \times d$ matrix $A,\|A\|_{\text {op }} \stackrel{\text { def }}{=} \sup \{\|A \mathbf{x}\| /\|\mathbf{x}\|$: $\left.\mathbf{x} \in \mathbf{E}^{d}, \mathbf{x} \neq \mathbf{0}\right\}$. It is a continuous function of the coefficients of A and thus $\|A\|_{\text {op }} \rightarrow 0$ as $A \rightarrow 0$. It satisfies $\|A \mathbf{x}\| \leq\|A\|_{\text {op }}\|\mathbf{x}\|$ for all $\mathbf{x} \in \mathbf{E}^{d}$.

Likewise, since $D \mathbf{f}(\mathbf{x})^{-1}$ is bounded and $\|E(\mathbf{u}, \mathbf{v})\|=o(\|\mathbf{u}-\mathbf{v}\|)$,

$$
\begin{equation*}
\left(\exists \delta_{2}>0\right) \quad \mathbf{u}, \mathbf{v} \in B\left(\mathbf{x}, \delta_{2}\right) \Longrightarrow\left\|D \mathbf{f}(\mathbf{x})^{-1} E(\mathbf{u}, \mathbf{v})\right\| \leq \frac{1}{4}\|\mathbf{u}-\mathbf{v}\| \tag{2}
\end{equation*}
$$

Put $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ to conclude that if $\mathbf{u}, \mathbf{v} \in B(\mathbf{x}, \delta)$, then

$$
\begin{aligned}
\|K(\mathbf{u})-K(\mathbf{v})\| & =\left\|\left[\mathrm{I}-D \mathbf{f}(\mathbf{x})^{-1} D \mathbf{f}(\mathbf{v})\right](\mathbf{u}-\mathbf{v})+D \mathbf{f}(\mathbf{x})^{-1} E(\mathbf{u}, \mathbf{v})\right\| \\
& \leq\left\|\mathrm{I}-D \mathbf{f}(\mathbf{x})^{-1} D \mathbf{f}(\mathbf{v})\right\|\|\mathbf{u}-\mathbf{v}\|+\left\|D \mathbf{f}(\mathbf{x})^{-1} E(\mathbf{u}, \mathbf{v})\right\| \\
& \leq \frac{1}{4}\|\mathbf{u}-\mathbf{v}\|+\frac{1}{4}\|\mathbf{u}-\mathbf{v}\|=\frac{1}{2}\|\mathbf{u}-\mathbf{v}\|
\end{aligned}
$$

If $\left\{\mathbf{x}_{n}\right\}$ stays in this ball $B(\mathbf{x}, \delta)$, then by the contraction mapping theorem it will converge to a unique fixed point.

1.0.2 K preserves a neighborhood of x .

To show that $\left\{\mathbf{x}_{n}\right\}$ stays sufficiently near \mathbf{x} if \mathbf{y}^{\prime} is sufficiently near \mathbf{y}, use

$$
\mathbf{f}(\mathbf{u})=\mathbf{y}+D \mathbf{f}(\mathbf{x})(\mathbf{u}-\mathbf{x})+E(\mathbf{u}, \mathbf{x})
$$

where $\|E(\mathbf{u}, \mathbf{x})\|=o(\|\mathbf{u}-\mathbf{x}\|)$ as $\mathbf{u} \rightarrow \mathbf{x}$, to estimate

$$
\begin{aligned}
K(\mathbf{u})-\mathbf{x} & =\mathbf{u}-D \mathbf{f}(\mathbf{x})^{-1}\left[\mathbf{f}(\mathbf{u})-\mathbf{y}^{\prime}\right]-\mathbf{x} \\
& =\mathbf{u}-\mathbf{x}-D \mathbf{f}(\mathbf{x})^{-1}\left[\mathbf{y}-\mathbf{y}^{\prime}+D \mathbf{f}(\mathbf{x})(\mathbf{u}-\mathbf{x})+E(\mathbf{u}, \mathbf{x})\right] \\
& =-D \mathbf{f}(\mathbf{x})^{-1}\left(\mathbf{y}-\mathbf{y}^{\prime}\right)-D \mathbf{f}(\mathbf{x})^{-1} E(\mathbf{u}, \mathbf{x})
\end{aligned}
$$

But $\operatorname{Df}(\mathbf{x})^{-1}$ is bounded, so there exists $\epsilon>0$ such that

$$
\mathbf{y}^{\prime} \in B(\mathbf{y}, \epsilon) \Longrightarrow\left\|D \mathbf{f}(\mathbf{x})^{-1}\left(\mathbf{y}-\mathbf{y}^{\prime}\right)\right\|<\frac{1}{2} \delta
$$

where $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ from Eq. 1 and Eq.2. Then Eq. 2 implies

$$
\mathbf{u} \in B(\mathbf{x}, \delta) \Longrightarrow\left\|D \mathbf{f}(\mathbf{x})^{-1} E(\mathbf{u}, \mathbf{x})\right\| \leq \frac{1}{4}\|\mathbf{u}-\mathbf{x}\| \leq \frac{1}{4} \delta
$$

Hence, if $\mathbf{y}^{\prime} \in B(\mathbf{y}, \epsilon)$, then

$$
\mathbf{u} \in B(\mathbf{x}, \delta) \Longrightarrow\|K(\mathbf{u})-\mathbf{x}\| \leq \frac{1}{2} \delta+\frac{1}{4} \delta<\delta
$$

Conclude that $\mathbf{x}_{n} \in B(\mathbf{x}, \delta) \Longrightarrow \mathbf{x}_{n+1}=K\left(\mathbf{x}_{n}\right) \in B(\mathbf{x}, \delta)$, so that for all $\mathbf{y}^{\prime} \in B(\mathbf{y}, \epsilon)$,

$$
\mathbf{x}_{0} \in B(\mathbf{x}, \delta) \Longrightarrow\left\{\mathbf{x}_{n}\right\} \subset B(\mathbf{x}, \delta)
$$

1.0.3 Sequence $\left\{\mathrm{x}_{n}\right\}$ converges to a unique fixed point.

Suppose that $\mathbf{y}^{\prime} \in B(\mathbf{y}, \epsilon)$ so that by the previous results, $K: B(\mathbf{x}, \delta) \rightarrow B(\mathbf{x}, \delta)$ is a contraction map satisfying

$$
\begin{equation*}
\mathbf{u}, \mathbf{v} \in B(\mathbf{x}, \delta) \Longrightarrow\|K(\mathbf{u})-K(\mathbf{v})\| \leq \frac{1}{2}\|\mathbf{u}-\mathbf{v}\| \tag{3}
\end{equation*}
$$

Then for any $\mathbf{x}_{0} \in B(\mathbf{x}, \delta)$, the sequence defined by $\mathbf{x}_{n+1}=K\left(\mathbf{x}_{n}\right)$ will satisfy

$$
\left\|\mathbf{x}_{N+1}-\mathbf{x}_{N}\right\|=\| K\left(\mathbf{x}_{N}\right)-K\left(\mathbf{x}_{N-1}\left\|\leq \frac{1}{2}\right\| \mathbf{x}_{N}-\mathbf{x}_{N-1} \|\right.
$$

for $N=0,1,2, \ldots$ Repeat this estimate N times to get the inequality

$$
\left\|\mathbf{x}_{N+1}-\mathbf{x}_{N}\right\| \leq\left(\frac{1}{2}\right)^{N}\left\|\mathbf{x}_{1}-\mathbf{x}_{0}\right\|<2 \delta\left(\frac{1}{2}\right)^{N}
$$

since $\mathbf{x}_{1}, \mathbf{x}_{0} \in B(\mathbf{x}, \delta)$. But this implies that $\left\{\mathbf{x}_{n}\right\}$ is a Cauchy sequence:

$$
\left\|\mathbf{x}_{N+n}-\mathbf{x}_{N}\right\| \leq \sum_{i=0}^{n-1}\left\|\mathbf{x}_{N+i+1}-\mathbf{x}_{N+i}\right\|<\sum_{i=0}^{n-1} 2 \delta\left(\frac{1}{2}\right)^{N+i}<\frac{4 \delta}{2^{N}}
$$

Metric space \mathbf{E}^{d} is complete, so $\left\{\mathbf{x}_{n}\right\}$ converges to a point $\mathbf{x}^{\prime} \in \mathbf{E}^{d}$ that satisfies $K\left(\mathbf{x}^{\prime}\right)=\mathbf{x}^{\prime}$. This limit is unique in $B(\mathbf{x}, \delta)$, since for any other point $\mathbf{x}^{\prime \prime} \in$ $B(\mathbf{x}, \delta)$ with $\mathbf{x}^{\prime \prime}=K\left(\mathbf{x}^{\prime \prime}\right)$, the contraction property implies

$$
\left\|\mathbf{x}^{\prime \prime}-\mathbf{x}^{\prime}\right\|=\left\|K\left(\mathbf{x}^{\prime \prime}\right)-K\left(\mathbf{x}^{\prime}\right)\right\| \leq \frac{1}{2}\left\|\mathbf{x}^{\prime \prime}-\mathbf{x}^{\prime}\right\|
$$

which forces $\left\|\mathbf{x}^{\prime \prime}-\mathrm{x}^{\prime}\right\|=0$ and thus $\mathbf{x}^{\prime \prime}=\mathrm{x}^{\prime}$.
Since $\mathbf{x}^{\prime}=K\left(\mathbf{x}^{\prime}\right)=\mathbf{x}^{\prime}-D \mathbf{f}(\mathbf{x})^{-1}\left[\mathbf{f}\left(\mathbf{x}^{\prime}\right)-\mathbf{y}^{\prime}\right]$, conclude that this unique fixed point satisfies $\mathbf{f}\left(\mathbf{x}^{\prime}\right)=\mathbf{y}^{\prime}$. Thus it defines a function

$$
\mathbf{g}\left(\mathbf{y}^{\prime}\right)=\mathbf{x}^{\prime} \in B(\mathbf{x}, \delta), \quad \mathbf{y}^{\prime} \in B(\mathbf{y}, \epsilon)
$$

This \mathbf{g} is the inverse function for \mathbf{f}.

1.0.4 The inverse map is differentiable.

Since $\mathbf{y}^{\prime}=\mathbf{f} \circ \mathbf{g}\left(\mathbf{y}^{\prime}\right)$ at all \mathbf{y}^{\prime} in an open neighborhood of $\mathbf{y}=\mathbf{f}(\mathbf{x})$, apply the chain rule to compute

$$
\mathrm{I}=D[\mathbf{f} \circ \mathbf{g}]\left(\mathbf{y}^{\prime}\right)=D \mathbf{f}\left(\mathbf{g}\left(\mathbf{y}^{\prime}\right)\right) D \mathbf{g}\left(\mathbf{y}^{\prime}\right)=D \mathbf{g}\left(\mathbf{y}^{\prime}\right) D \mathbf{f}\left(\mathbf{x}^{\prime}\right)
$$

for $\mathbf{x}^{\prime}=\mathbf{g}\left(\mathbf{y}^{\prime}\right)$. Neither $d \times d$ factor matrix is singular since their product is the nonsingular identity matrix. It follows that $D \mathbf{f}\left(\mathbf{x}^{\prime}\right)$ is invertible with

$$
D \mathbf{g}\left(\mathbf{y}^{\prime}\right)=D \mathbf{f}\left(\mathbf{x}^{\prime}\right)^{-1}
$$

This completes the proof of the Inverse Function Theorem.

