MATH 217 - WORKSHEET 06

Q.1 For each of the following ODEs, verify that the origin is a regular
singular point and find two linearly independent Frobenius series solutions.

(a) 2zy" +(3—x)y —y=0
Solution: Standard form y"” + py’ + qy = 0:

3—1x 1 13 1 1 1
" _— /— — = = —(- — — = — —_ =
Vit 5y gy =0, = p(x) a:(2 2%)41(96) x2(0 256)~

Both zp(z) and z2¢(z) are polynomials, hence real analytic. Thus 0 is a regular
singular point, with py = % and gp = 0, so the indicial equation is

1 1
Ozf(m)zm(m—1)+pom+%=m2+§m=m(m+§)y

with roots m =0 and m = —1/2.
For m = 0 suppose y(z) = Z;’O:O ajz’. Then the ODE implies

o0
Z 2j(j — Dajz? ' + 3ja;27 ' — jaja? —a;27] =0
7=0

which, after re-indexing and collection of terms in 27 yields

oo

DOl +1)j 430 + 1)ag — (G + Dagla? =0,
7=0

from which we conclude that a;i1 = a;/(2j + 3), so for j =1,2,...,

ap - ap o 27']'
3)5)---(2j+1)  2j+D! (25+1)

aj = agp.

This gives a Frobenius solution

Z 2]—1—1

Jj=0

which is real analytic with infinite radius of convergence.
For m = —1/2 suppose y(z) = Z;io a;x7~1/2. Then the ODE implies

oo

_ .1, 3 i .1 i 1 ; ;
w2y (20 - )0 = e’ +30j = Saa’ ! = (G = 5)aja’ —a;a’] =0
=0

1/2

which, after canceling 271/2, re-indexing, and collection of terms in 7 yields

IR G- b sG+ Do -G+

1 .
i)aj]xj =0,



from which we conclude that a;1 = a;/(2j +2), so for j =1,2,...,

ao ag

2)4)--(25) 2750

a; =

Recognize the resulting power series for e%/2 to obtain another linearly indepen-

dent Frobenius solution

Remark. Using the technique from Section 4.4 of our textbook, it is possible
to find a functional expression for yi:

y1(z) = yo(x)erf (\/@ =27 12e" 2erf(\/2)2),

where erf(u) = % Iy e~ dt is a well-known special function.

(b) 22%y" + 2y’ — (x + 1)y =0
Solution: Standard form y"” + py’ + qy = 0:

. Lox+1 11
Yy = =0, = pl) =~ ()a(e) = (5 — 57)
Both zp(z) and #%q(x) are polynomials, hence real analytic. Thus 0 is a regular
singular point, with py = % and qg = —%, so the indicial equation is
5 1 1 1
0=f(m)=m(m—1)+pom+qo=m —§m—§:(m+§)(m—1),
with roots m =1 and m = —1/2.

For m = —1/2 suppose y(z) = Z;io ;=12 Then the ODE implies

=, 1.3 | ) , )
22N 120 = 50 = S’ + (= Hagal — a2’ — a0 = 0
7=0

which, after canceling 2~!/2, re-indexing, and collection of terms in z7 yields

o, L3 o1 :

IR - )G - 5)+ 6= 5) — Day — aj-iJe? =0,

7=0
from which we conclude that a; = a;_1/(2j% — 3j), so a1 = —ap, and for
ji=23,...,

ag —ag
aj = - ..



This gives a Frobenius solution

_ .—1/2 o — a’
wle) =a - ;j!@j_g)n

where (25 —3)!! = (1)(3)(5) - - - (24 — 3) is the product of the odd integers up to
2j — 3.
For m = 1 suppose y(z) = -7 a;a’*!. Then the ODE implies

w125+ Daga? + (4 Daja? — ae’™ —a;27] =0
§=0

which, after re-indexing, cancellation of the leading z! factor, and collection of
terms in x7 yields

SIEG+1)+ (G +1) = Day — aj_]a? =0,
§=0

from which we conclude that a; = a;_1/(2j% + 3j), so for j =1,2,...,

Qo 3&0

GG (25 +3) gi2j

This gives a Frobenius solution

327
wE =) ey

which is real analytic with infinite radius of convergence.
Remark. The factor 3 in each summand’s numerator is not necessary.
Q.2 Find the Fourier series for the functions below:

(a) f(x) =0if —r <z <0, while f(z) =sinzx if 0 <z <.
Solution: We have

Uy 1 v
aj = — f(z)cosjrdx = ;/0 sinx cos jx dz,
-7

so ag = 2/m. For j > 0, use the identity 2sin A cos B = sin(A + B) +sin(A — B)
to compute

1 (™1 0, j > 0 odd,
a; = —/ i[sin(l + )z +sin(l — j)a]dx = 9 j
T Jo = J > 0 even.
Similarly,
1 (7 1 ("
bj =— f(z)sinjrdx = 7/ sin x sin jx dx,
L ™ Jo



so by = 1/2. For j > 1, use the identity 2sin Asin B = cos(A — B) — cos(A + B)
to compute

s

1 (™1 _ ) 1 [sin(1—j)z sin(l+j)x
by =— - 1—j)x—cos(1 de = — - =0
y 7T/0 2[cos( J)x—cos(1+j)z] dx 5 { T 155 . ,
since sin0 = 0 and sinnm = 0 at all integers n.
(b) f(z) =01if —7 <2 <0, while f(z) =cosz if 0 <z < 7.
Solution: We have
1 (7 ) 1 (7 .
a; = — f(x)cosjrdr = — cos x cos jx dx,
™ J)_n ™ Jo
so ap =0 and a; = 1/2. For j > 1, use 2 cos A cos B = cos(A+ B) + cos(A— B)
to compute
1 /™1 ) ) 1 [sin(l+j)x  sin(l—j)z]"
a; = ;/0 5[cos(1+j)x+cos(1—j)x] dr = Py [ 55 T ) =0,

since sin0 = 0 and sinnm = 0 at all integers n. Similarly,

1 [ 1 /"
bj =— f(x)sinjrdx = 7/ cos x sin jx dx.
™ J)_x ™ Jo
Use the identity 2sin A cos B = sin(A + B) +sin(A — B) as in part (a) above to
compute

1 (71 0, />0 odd,
== [Sm(m)“smu—nxwx:{ i T
0

s 2 m7 j > (0 even.

Q.3 Find the Fourier series for the functions below:
(a) f(x)=—-1if —r <2 <0, while f(z) =4+1if0<z <.
Solution: Clearly ag = 0 by antisymmetry. For j > 0, compute

1/ 1 (7
a; = f/ (=1)cosjxdx + f/ (+1) cos jx dz =0,
T Jo

™ —T
while
I L I L 4
by =— (=Dsinjxde+ — | (+1)sinjzdr = —.
T . T Jo TJ

(b) g(z) =2 — § if =7 <2 <0, while g(z) =F —zif 0 <z <.

Solution: First notice that ag = 0 by cancellation.

The remaining coefficients may be found directly using integration by parts
as in Example 7.7.7, p.167 of the textbook, but it is faster to notice that ¢’'(z) =
—f(t), where f is the function from part (a) above. The Fourier series for g
may be differentiated term by term to give the series for — f, and corresponding



coeflicients may be identified: b; = 0 for all 7 > 0 since these are proportional
to the cosine coefficients of f, while

a; = — i=1,2,3,...

since, when multiplied by j, these are the sine coefficients of f.
Q.4 Let f be the 27 periodic function defined on [—m, 7) by

f(x):{o,2 r<z<0,

z¢, 0<z<m

(a) Find the Fourier series for f.

Solution: Integrate twice by parts, which may be done by computer algebra
software such as Macsyma, to get

—x/j, j even,
b 1/F Zsinjzd
P= — x“sin jx dr =
- o J n2% 4 ‘
T = jodd,
Uy,

while ag = 72/3 and for j > 0,

1" 2(—1)7
a; = — z? cos jx dr = ( )
T o J?

(b) Use Dirichlet’s theorem (Th.7.2.7, p.177 in the textbook) with the results
from part (a) at © = 0 to prove that

(=)t 11 1 2
Y G =l-mtmogto=g
~ n 22 32 4 12

Solution: By Dirichlet’s theorem, the Fourier series for f converges to f(x)
at each point x where f is continuous. Thus we may evaluate f(0) = 0 using
the Fourier seriews from part (a).

Since all terms b;sinjz = 0 at = 0, only the cosine terms remain. But
cosjx =1 for all j if x = 0, giving

o0

172 2(—1)7 w2 ZOO (—1)i+t
0 = —-—— = — = -
2 ’ 12
23 o 7 12 = J

as claimed.
(¢) Use Dirichlet’s theorem with the part (a) series at © = 7 to prove that

n2 22 7 32 7 42 6

n=1



Solution: For this result, observe that the Fourier series for f () converges
to the midpoint [f(7—) + f(7—)]/2 = 722 for the periodic function f, which is
discontinuous at x = 7 with limit f(7r+) = 0. But then, since the sin jz terms
all vanish at x = m, we have

2 1n? K21yt g2 1
32534- TCOS]W—K 2227

j=1

from which the result follows.
(d) Derive part (c) from part (b). (Hint: add 23, (1/[2n]?) to both sides.)

Solution: First, write B = .72, 1/n? and note that

11X 1 1
3233

n=1

n=1
oo
1
2 =
D P
n=1
Then, following the hint, add this quantity to the alternating series in part (b)

to get
B= Z

from which the result follows.
Q.5 Determine whether the following functions are odd, even, or neither.

n+1
— B
+ 2

sinx

Osinz, 2%sin2z, €, (sinz)®, sinz?, cos(z+a?), —=, at+a’tad,
x
Solution: Odd:
142z
r?sin2zx, (sinz)®, In +
1—x
Even: .
s
osinz, sina?, cos(x + z%), ﬁ,
x
Neither:
e”, x+a’+ad,
Q.6 Let f(x) = m/4 be the constant function.
(a) Show that the sine series for f is
T . sindx  sinbzx
— =sinx + O<z<m.

4 3 "5 T

Solution: Compute the sine series coefficients

2 (M7 . 0, n even,
b, = — —sinnaxdr =
o 4 1/n, n odd.

1 1+
n
1

— X



Thus, since only the odd terms are nonzero, on the right half interval,

sin3r  sinbzx

= f(z) =sinz + 3 5

4+ O<z<m,

e~

as claimed.
(b) Let = 7/2 in part (a) and deduce an infinite sum formula.

Solution: By Dirichlet’s theorem, the Fourier sine series for f(z) converges
to f(m/2) = /4 at x = w/2. But sin[(2k + 1)7/2] = (—1)* in that series, so we
have

(¢) Find the cosine series for f.

Solution: The even extension of f to [—m, 7] is the constant periodic
function f(z) = 7 /4, all x. Therefore its Fourier cosine series contains only one
nonzero coefficient, the constant term ag = 7/2, with a, = 0 for all n > 0.



