
MATH 217 – WORKSHEET 02

Q.1 Bernoulli’s equation has the form

dy

dx
+ P (x)y = Q(x)yn,

where P and Q are given functions. It is first-order linear when n = 0 or n = 1.
For other values of n it can be made linear in a new dependent variable z = z(x)
with the change of variable z = y1−n and the subsequent elimination of y.

Use this method to solve the differential equation y′ + xy = xy4 with initial
condition y = 1 when x = 1.

Solution: Identify n = 4 and so put z = y1−n = y−3 and thus y = z−1/3.
Then z′ = −3y−4y′ or y′ = − 1

3y
4z′. Rewrite the DE and eliminate y to get

−1

3
y4z′ + xy = xy4, ⇐⇒ z′ − 3xy−3 = −3x, ⇐⇒ z′ − 3xz = −3x.

This is a first-order linear equation in z with integrating factor

ρ = exp

∫
−3x dx = exp(−3

2
x2),

so its solution is

z =
1

ρ

∫
−3xρ dx =

1

ρ

∫
−3xρ dx = exp(

3

2
x2)

∫
−3x exp(−3

2
x2) dx

The integral may be evaluated by substituting u = − 3
2x

2, so du = −3x:∫
−3x exp(−3

2
x2) dx =

∫
expu du = expu+ C = exp(−3

2
x2) + C,

so

z = 1 + C exp(
3

2
x2), =⇒ y = z−1/3 =

(
1 + C exp(

3

2
x2)

)−1/3

.

The initial condition y(1) = 1 is satisfied if and only if C = 0, giving the unique
solution y(x) = 1 for all x.

Q.2 Show that each of these equations is exact and find the solution.

(a) (x+ 2
y ) dy + y dx = 0

Solution: Check that

∂

∂x
(x+

2

y
) = 1 =

∂

∂y
(y).

Combine the antiderivatives
∫
(x+ 2

y ) dy = xy + 2 ln |y| and
∫
y dx = xy to get

the implicit solution
xy + 2 ln |y| = C
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(b) (y − x3) dx+ (x+ y3) dy = 0

Solution: Check that

∂

∂y
(y − x3) = 1 =

∂

∂x
(x+ y3).

Combine the antiderivatives
∫
(y − x3) dx = xy − x4/4 and

∫
(x + y3) dy =

xy + y4/4 to get the implicit solution

4xy − x4 + y4 = C

Q.3 See textbook section 2.4 for the definition of orthogonal trajectories.

(a) Find the orthogonal trajectories of the curves y = Cx4.

Solution: Find the slope by differentiation, then eliminate C = y/x4 :

dy

dx
= 4Cx3 =

4y

x
.

Orthogonal trajectories have the negative reciprocals of these slopes:

dy

dx
= − x

4y
.

Solve this ODE by separation of variables to get the orthogonal trajectories:

4y dy = −x dx =⇒ 4y2 + x2 = C.

(b) Fix an integer n ≥ 1. Find the orthogonal trajectories of the curves
y = Cxn.

Solution: Find the slope by differentiation, then eliminate C = y/xn :

dy

dx
= nCxn−1 =

ny

x
.

Orthogonal trajectories have the negative reciprocals of these slopes:

dy

dx
= − x

ny
.

Solve this ODE by separation of variables to get the orthogonal trajectories:

ny dy = −x dx =⇒ ny2 + x2 = C.

(c) Describe how the orthogonal trajectories in part (b) change as n → ∞.

Solution: Writing them as

x2

n
+

y2

1
= C,

to see that these curves are ellipses with a ratio (x semiaxis):(y semiaxis) equal
to

√
n. As n → ∞, these become flatter relative to their width.
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Q.4 Verify that each of the following ODEs is homogeneous and then find
its general solution.

(a) (y + xey/x) dx− x dy = 0.

Solution: Factors before dx and dy are evidently both homogeneous of
degree 1. Rewrite and substitute z = y/x and y′ = z + xz′ to get

dy

dx
=

y

x
+ ey/x, ⇐⇒ z + x

dz

dx
= z + ez. ⇐⇒ e−z dz = x−1 dx.

Integrate both sides to obtain

−e−z = ln |x|+ C, ⇐⇒ Bx = e−e−z

, ⇐⇒ Bx = e−e−y/x

,

for some constant B
(b) x2y′ − 3xy = 2y2

Solution: Rewrite as x2 dy − (3xy + 2y2) dx = 0 and note that both x2

and −(3xy + 2y2) are homogeneous of degree 2.
Rewrite again and substitute z = y/x and y′ = z + xz′ to get

dy

dx
=

−3xy − 2y2

x2
= −3y

x
− 2

y2

x2
, =⇒ z + xz′ = −3z − 2z2.

This gives an ODE for z solvable by separation of variables:

dz

dx
=

−4z − 2z2

x
⇐⇒ dz

z2 + 2z
=

−2

x
dx ⇐⇒ 1

2

[
1

z
− 1

z + 2

]
dz =

−2

x
dx

(after expansion into partial fractions). Integrate both sides to get

ln |z| − ln |z + 2| = −4 ln |x|+ C, =⇒ z

z + 2
= Bx−4, =⇒ y

y + 2x
= Bx−4,

for some constant B after replacing z = y/x.
Q.5 Solve these differential equations by finding an integrating factor.

(a) (x+ 3y2) dx+ 2xy dy = 0

Solution: Compute the relevant partial derivatives for M = x + 3y2 and
N = 2xy:

∂

∂y
(x+ 3y2) = 6y;

∂

∂x
(2xy) = 2y.

The ODE fails the test for exactness, and it is also not separable. However,

g =
∂M/∂y − ∂N/∂x

N
=

6y − 2y

2xy
=

2

x

is a function of x alone, so use the integrating factor

µ(x) = exp

∫
g(x) dx = exp(2 ln |x|) = x2
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to get the exact equation (x3+3x2y2) dx+2x3y dy = 0. Combine the antideriva-
tives ∫

(x3 + 3x2y2) dx = x4/4 + x3y2,

∫
(2x3y) dy = x3y2,

to get the implicit solution x4 + 4x3y2 = C for some constant C.
(b) (y ln y − 2xy) dx+ (x+ y) dy = 0

Solution: Compute the relevant partial derivatives for M = y ln y − 2xy
and N = x+ y:

∂M

∂y
= 1 + ln y − 2x;

∂N

∂x
= 1.

The ODE fails the test for exactness, and it is also not separable. However,

h = −∂M/∂y − ∂N/∂x

M
= − ln y − 2x

y ln y − 2xy
= −1

y

is a function of y alone, so use the integrating factor

µ(y) = exp

∫
h(y) dy = exp(− ln |y|) = 1

y

to get the exact equation (ln y − 2x) dx + (1 + x/y) dy = 0. Combine the
antiderivatives∫

(ln y − 2x) dx = x ln y − x2,

∫
(1 + x/y) dy = y + x ln y,

to get the implicit solution x ln y + y − x2 = C for some constant C.
Q.6 Solve these ODE initial value problems by reduction of order.

(a) y′′ = 3y′, with y(0) = 0 and y′(0) = 1.

Solution: Let z = y′ to get z′ = y′′ and the reduced equation z′ = 3z,
which has the general solution z(x) = Ae3x for some constant A.

Use 1 = y′(0) = z(0) = A to get the particular solution z(x) = e3x.
Integrate once more to find y from solve y′ = z = e3x, giving the general

solution

y(x) =
1

3
e3x +B,

for some constant B.
Use 0 = y(0) = 1

3 +B to compute B = −1/3, so

y(x) =
1

3
e3x − 1

3

solves the initial value problem.
(b) xy′′ + y′ = 2x, with y′(1) = 2 and y(1) = 0

Solution: Substitute z = y′ and thus z′ = y′′ to get the first order linear
equation xz′ + z = 2x, which in standard form is

z′ +
1

x
z = 2.
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This may be solved using the integrating factor

ρ = exp

∫
1

x
dx = exp lnx = x,

giving the solution

z(x) =
1

ρ

∫
2ρ dx =

1

x

∫
2x dx = x+

A

x
,

for an arbitrary constant A. Use the initial condition 2 = y′(1) = z(1) = 1 +A
to compute A = 1, so z(x) = x+ 1/x.

Integrate once more to find

y(x) =

∫
z(x) dx =

1

2
x2 + ln |x|+B,

for another constant B. Use the initial condition 0 = y(1) = 1
2 (1)

2 + ln 1+B =
1
2 +B to compute B = −1/2, so

y(x) =
1

2
x2 + ln |x| − 1

2
.
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