MATH 217 - WORKSHEET 09

Q.1~ Solve each of the following initial value problems using the Laplace transform.

- (a) $y' + y = e^{2x}, y(0) = 0.$
- (b) y'' + 2y' + 2y = 2, y(0) = 0 and y'(0) = 1.
- (c) $y'' + y' = 3x^2$, y(0) = 0 and y'(0) = 1

Q.2 Use the formula L[y'(x)](p) = pL[y(x)](p) - y(0) to derive the formula

$$L\left[\int_0^x f(t) \, dt\right](p) = \frac{1}{p} L[f(x)](p).$$

Q.3 Without worrying about convergence issues, show the following: (a) $\int_0^\infty \frac{\sin yx}{x} dx = \frac{\pi}{2}$, for all y > 0

(b) $\int_0^\infty \frac{\cos yx}{1+x^2} \, dx = \frac{\pi}{2} e^{-y}$, for all y > 0.

Q.4 Compute the convolution f * g(x) of the following pairs of functions: (a) $f(x) = e^{ax}$, $g(x) = e^{bx}$.

- (b) $f(x) = e^x$, g(x) = x.
- (c) $f(x) = \sin at$, $g(x) = \sin bt$, where $a^2 \neq b^2$.

Q.5 For $a \ge 0$, let h_a be the unit step function with a jump at a:

$$h_a(x) = \begin{cases} 0, & x < a, \\ 1, & x \ge a. \end{cases}$$

- (a) Compute the Laplace transform of h_a .
- (b) Compute the convolution $h_a * h_b(x)$ for $a \ge 0$ and $b \ge 0$.
- (c) How could you compute and interpret $L[h'_a(x)]$ for a > 0?