MATH 217 - WORKSHEET 06

- $Q.1\,$ For each of the following ODEs, verify that the origin is a regular singular point and find two linearly independent Frobenius series solutions.
 - (a) 2xy'' + (3-x)y' y = 0
 - (b) $2x^2y'' + xy' (x+1)y = 0$
 - Q.2 Find the Fourier series for the functions below:
 - (a) f(x) = 0 if $-\pi \le x < 0$, while $f(x) = \sin x$ if $0 \le x < \pi$.
 - (b) f(x) = 0 if $-\pi \le x < 0$, while $f(x) = \cos x$ if $0 \le x < \pi$.
 - Q.3 Find the Fourier series for the functions below:
 - (a) f(x) = -1 if $-\pi \le x < 0$, while f(x) = +1 if $0 \le x < \pi$.
 - (b) $g(x) = x \frac{\pi}{2}$ if $-\pi \le x < 0$, while $g(x) = \frac{\pi}{2} x$ if $0 \le x < \pi$.
 - Q.4 Let f be the 2π periodic function defined on $[-\pi,\pi)$ by

$$f(x) = \begin{cases} 0, & -\pi \le x < 0, \\ x^2, & 0 \le x < \pi \end{cases}$$

- (a) Find the Fourier series for f.
- (b) Use Dirichlet's theorem (Th.7.2.7, p.177 in the textbook) with the results from part (a) at x=0 to prove that

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$$

(c) Use Dirichlet's theorem with the part (a) series at $x = \pi$ to prove that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$$

- (d) Derive part (c) from part (b). (Hint: add $2\sum_{n}(1/[2n]^2)$ to both sides.)
- Q.5 Determine whether the following functions are odd, even, or neither.

1

$$x^{5}\sin x$$
, $x^{2}\sin 2x$, e^{x} , $(\sin x)^{3}$, $\sin x^{2}$, $\cos(x+x^{3})$, $\frac{\sin x}{x}$, $x+x^{2}+x^{3}$, $\ln\frac{1+x}{1-x}$

- Q.6 Let $f(x) = \pi/4$ be the constant function.
- (a) Show that the sine series for f is

$$\frac{\pi}{4} = \sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots, \qquad 0 < x < \pi.$$

- (b) Let $x=\pi/2$ in part (a) and deduce an infinite sum formula.
- (c) Find the cosine series for f.