Name: \square

- This is a timed examination. You are allowed 120 minutes to finish it.
- There are 12 questions worth 10 points each.
- This exam covers the entire course but with emphasis on Chapters 10 and 11 of the textbook.
- No calculators or other devices may be used.
- No books or notes other than a single letter-size sheet of notes and formulas are permitted, nor any collaboration.
- Read the statement of each problem carefully.
- Be sure to ask questions if anything is unclear.
- Show all your work for full credit.
- Your ability to make your solution clear will be part of your grade.

1. Write the solution $u(r, \theta)$ to the Dirichlet problem $\Delta u=0$ on the unit disc $D=\{(r, \theta): r \leq 1\}$, with boundary condition $u(1, \theta)=\sin ^{2} \theta$, using the Poisson kernel, and then find the value $u(0,0)$.
2. Solve the boundary value problem

$$
\begin{aligned}
w_{x x} & =w_{t}, \quad 0<x<\pi, \quad t \geq 0 \\
w(x, 0) & =2 \sin (3 x), \quad 0<x<\pi \\
w(0, t) & =0, \quad t \geq 0 \\
w(\pi, t) & =0, \quad t \geq 0
\end{aligned}
$$

3. Consider the vibrating string problem for $y(x, t)$ on $t \geq 0$ and $0 \leq x \leq \pi$:

$$
\frac{\partial^{2} y}{\partial t^{2}}=k^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

with boundary conditions $y(0, t)=0$ and $y(\pi, t)=0$ for all t, initially at rest with $\left.\frac{\partial y}{\partial t}\right|_{t=0}=0$. Find the solution if the initial position of the string is given by

$$
y(x, 0)=\sin x+\frac{1}{5} \sin 5 x, \quad 0 \leq x \leq \pi
$$

4. Consider the two-dimensional heat equation

$$
\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}=\frac{\partial w}{\partial t}
$$

for $w=w(x, y, t)$. Use the method of separation of variables to find the steady-state solution in the infinite half-strip of the $x y$ plane consisting of $\{(x, y): 0 \leq x \leq \pi, y \geq 0\}$ if the following boundary conditions are satisfied:

$$
\begin{aligned}
w(0, y, t)=w(\pi, y, t) & =0, \quad t \geq 0, y \geq 0 \\
w(x, 0,0) & =2 \sin 7 x, \quad 0 \leq x \leq \pi \\
\lim _{y \rightarrow \infty} w(x, y, t) & =0, \quad t \geq 0,0 \leq x \leq \pi
\end{aligned}
$$

5. Write the second-order system

$$
x^{\prime \prime}=x^{\prime} y+\frac{t^{2}}{x^{2}+y^{2}} \quad y^{\prime \prime}=y^{\prime} x+\frac{1-t^{2}}{x^{2}+y^{2}}
$$

as an equivalent system of first-order equations.
6. Show that $\left(x_{1}, y_{1}\right)=\left(e^{-t}, e^{-t}\right)$ and $\left(x_{2}, y_{2}\right)=\left(e^{3 t},-e^{3 t}\right)$ are solutions to the homogeneous first-order linear system

$$
\begin{aligned}
x^{\prime} & =x-2 y \\
y^{\prime} & =-2 x+y
\end{aligned}
$$

and that they are linearly independent on every closed interval of t.
7. Consider the Volterra predator-prey equation for $x(t)$ and $y(t)$ on $t \geq 0$:

$$
x^{\prime}=x-x y ; \quad y^{\prime}=-y+x y
$$

Find the steady-state solution and compute $x^{\prime \prime}$ and $y^{\prime \prime}$ in terms of x and y.
8. Solve the initial value problem $y^{\prime}-y=e^{2 x}, y(0)=2$, using the Laplace transform.
9. Solve the initial value problem $y^{\prime}-y=e^{2 x}, y(0)=0$, using an integrating factor.
10. Find the Fourier series for the function g defined by

$$
g(x)= \begin{cases}-1, & -\pi \leq x<0 \\ 1, & 0 \leq x<\pi\end{cases}
$$

11. Explain why $x=0$ is an ordinary point for the differential equation $y^{\prime}-y=e^{2 x}$, and then find the recursion for $\left\{a_{j}: j=0,1,2, \ldots\right\}$ in the power series solution

$$
y(x)=\sum_{j=0}^{\infty} a_{j} x^{j} .
$$

(It is not necessary to solve the recursion.)
12. The ODE

$$
y^{(6)}+4 y^{(5)}+3 y^{(4)}-10 y^{(3)}-26 y^{\prime \prime}-24 y^{\prime}-8 y=0
$$

has characteristic equation

$$
r^{6}+4 r^{5}+3 r^{4}-10 r^{3}-26 r^{2}-24 r-8=(r+1)^{2}\left(r^{2}+2 r+2\right)\left(r^{2}-4\right)=0
$$

Find the general solution.

