Name: \square

- This is a timed examination. You are allowed 120 minutes to finish it.
- There are 12 questions worth 10 points each.
- This exam covers the entire course but with emphasis on Chapters 10 and 11 of the textbook.
- No calculators or other devices may be used.
- No books or notes other than a single letter-size sheet of notes and formulas are permitted, nor any collaboration.
- Read the statement of each problem carefully.
- Be sure to ask questions if anything is unclear.
- Show all your work for full credit.
- Your ability to make your solution clear will be part of your grade.

1. Write the solution $u(r, \theta)$ to the Dirichlet problem $\Delta u=0$ on the unit disc $D=\{(r, \theta): r \leq 1\}$, with boundary condition $u(1, \theta)=\sin ^{2} \theta$, using the Poisson kernel, and then find the value $u(0,0)$.

Solution: The Poisson integral formula for the solution is

$$
u(r, \theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\left(1-r^{2}\right) \sin ^{2} \xi}{1-2 r \cos (\theta-\xi)+r^{2}} d \xi
$$

When $r=0$, regardless of θ, it reduces to

$$
u(0, \theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sin ^{2} \xi d \xi=\frac{1}{2}
$$

since $\sin ^{2} \xi=\frac{1}{2}-\frac{1}{2} \cos 2 \xi$ and the integral of $\cos 2 \xi$ over a complete period $-\pi<\xi<\pi$ is zero.
2. Solve the boundary value problem

$$
\begin{aligned}
w_{x x} & =w_{t}, \quad 0<x<\pi, \quad t \geq 0 \\
w(x, 0) & =2 \sin (3 x), \quad 0<x<\pi \\
w(0, t) & =0, \quad t \geq 0 \\
w(\pi, t) & =0, \quad t \geq 0
\end{aligned}
$$

Solution: Following Section 11.3, use separation of variables to write the solution as

$$
w(x, t)=\sum_{j=1}^{\infty} b_{j} e^{-j^{2} t} \sin (j x)
$$

which, for all sequences $\left\{b_{j}\right\}$, satisfies $w(0, t)=w(\pi, t)=0$ for all $t \geq 0$. Then determine $\left\{b_{j}: j=1,2, \ldots\right\}$ from the Fourier sine series for f :

$$
b_{j}=\frac{2}{\pi} \int_{0}^{\pi} 2 \sin (3 x) \sin (j x) d x= \begin{cases}2, & j=3 \\ 0, & j \neq 3\end{cases}
$$

Thus the solution is $w(x, t)=2 e^{-9 t} \sin (3 x)$.
3. Consider the vibrating string problem for $y(x, t)$ on $t \geq 0$ and $0 \leq x \leq \pi$:

$$
\frac{\partial^{2} y}{\partial t^{2}}=k^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

with boundary conditions $y(0, t)=0$ and $y(\pi, t)=0$ for all t, initially at rest with $\left.\frac{\partial y}{\partial t}\right|_{t=0}=0$. Find the solution if the initial position of the string is given by

$$
y(x, 0)=\sin x+\frac{1}{5} \sin 5 x, \quad 0 \leq x \leq \pi
$$

Solution: Separation of variables $y(x, t)=u(x) v(t)$ yields two eigenvalue problems:

$$
\frac{u^{\prime \prime}(x)}{u(x)}=\frac{v^{\prime \prime}(t)}{k^{2} v(t)}=\lambda .
$$

The boundary conditions in $x \in[0, \pi]$ force the solution $u(x)=\sin n x$ for integer n, so $\lambda=-n^{2}$. The initially-at-rest condition is that $v^{\prime}(0)=0$, which forces the solution $v(t)=\cos n k t$. Using linearity, we get a general solution of the form

$$
y=\sum_{n=1}^{\infty} b_{n} \sin n x \cos n k t
$$

with coefficients $\left\{b_{n}: n=1,2, \ldots\right\}$ yet to be determined.
But the initial shape condition implies that

$$
\sin x+\frac{1}{5} \sin 5 x=y(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin n x
$$

from which we conclude, by comparing Fourier sine expansions, that $b_{1}=1, b_{5}=1 / 5$, and $b_{n}=0$ for $n \notin\{1,5\}$. Thus

$$
y(x, t)=\sin x \cos k t+\frac{1}{5} \sin 5 x \cos 5 k t .
$$

4. Consider the two-dimensional heat equation

$$
\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}=\frac{\partial w}{\partial t}
$$

for $w=w(x, y, t)$. Use the method of separation of variables to find the steady-state solution in the infinite half-strip of the $x y$ plane consisting of $\{(x, y): 0 \leq x \leq \pi, y \geq 0\}$ if the following boundary conditions are satisfied:

$$
\begin{aligned}
w(0, y, t)=w(\pi, y, t) & =0, \quad t \geq 0, y \geq 0 \\
w(x, 0,0) & =2 \sin 7 x, \quad 0 \leq x \leq \pi \\
\lim _{y \rightarrow \infty} w(x, y, t) & =0, \quad t \geq 0,0 \leq x \leq \pi
\end{aligned}
$$

Solution: The steady-state solution has $\partial w / \partial t=0$, so there is no t-dependence, and the PDE reduces to

$$
\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}=\frac{\partial w}{\partial t}=0
$$

giving Dirichlet's equation. Now separate variables $w(x, y)=u(x) v(y)$ to get two eigenvalue problems from the PDE:

$$
u^{\prime \prime}=\lambda u, \quad u(0)=u(\pi)=0 ; \quad v^{\prime \prime}=-\lambda v, \quad v(y) \rightarrow 0 \text { as } y \rightarrow \infty .
$$

The first implies that $\lambda=-n^{2}$ for some integer n and that $u(x)=\sin n x$. The second implies that $v(y)=e^{-n y}$ and that $n>0$. Combining these gives

$$
w(x, y)=\sum_{n=1}^{\infty} b_{n} e^{-n y} \sin n x
$$

where b_{n} is the Fourier sine coefficient of the boundary function $2 \sin 7 x$, found by setting $y=0$ to get $w(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin n x=2 \sin 7 x$. But this has the finite sine series $b_{7}=2$, with $b_{j}=0$ for all $j \neq 7$. Thus

$$
w(x, y)=2 e^{-7 y} \sin 7 x
$$

5. Write the second-order system

$$
x^{\prime \prime}=x^{\prime} y+\frac{t^{2}}{x^{2}+y^{2}} \quad y^{\prime \prime}=y^{\prime} x+\frac{1-t^{2}}{x^{2}+y^{2}}
$$

as an equivalent system of first-order equations.

Solution: Let $x_{0}=x(t), x_{1}=x^{\prime}, y_{0}=y(t)$, and $y_{1}=y^{\prime}$. The equivalent system is then

$$
\begin{aligned}
x_{0}^{\prime} & =x_{1} \\
x_{1}^{\prime} & =x_{1} y_{0}+\frac{t^{2}}{x_{0}^{2}+y_{0}^{2}} \\
y_{0}^{\prime} & =y_{1} \\
y_{1}^{\prime} & =y_{1} x_{0}+\frac{1-t^{2}}{x_{0}^{2}+y_{0}^{2}}
\end{aligned}
$$

6. Show that $\left(x_{1}, y_{1}\right)=\left(e^{-t}, e^{-t}\right)$ and $\left(x_{2}, y_{2}\right)=\left(e^{3 t},-e^{3 t}\right)$ are solutions to the homogeneous first-order linear system

$$
\begin{aligned}
x^{\prime} & =x-2 y \\
y^{\prime} & =-2 x+y
\end{aligned}
$$

and that they are linearly independent on every closed interval of t.

Solution: Check by differentiation and substitution:

$$
\begin{aligned}
x_{1}^{\prime} & =-e^{-t} \\
y_{1}^{\prime} & =-e^{-t}-2 e^{-t}=x_{1}-2 y_{1} \\
& =-2 e^{-t}+e^{-t}=-2 x_{1}+y_{1}
\end{aligned}
$$

and likewise

$$
\begin{aligned}
x_{2}^{\prime}=3 e^{3 t} & =e^{3 t}-2\left(-e^{3 t}\right)=x_{2}+2 y_{2} \\
y_{2}^{\prime}=-3 e^{3 t} & =-2 e^{3 t}+\left(-e-{ }^{3 t}\right)=-2 x_{2}+y_{2}
\end{aligned}
$$

For linear independence, check the Wronskian:

$$
W(t)=\operatorname{det}\left(\begin{array}{ll}
x_{1}(t) & x_{2}(t) \\
y_{1}(t) & y_{2}(t)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
e^{-t} & e^{3 t} \\
e^{-t} & -e^{3 t}
\end{array}\right)=-2 e^{2 t}<0, \quad \text { all } t .
$$

Thus $W(t)$ is never zero for any t. Conclude that $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are linearly independent on every closed interval of t.
7. Consider the Volterra predator-prey equation for $x(t)$ and $y(t)$ on $t \geq 0$:

$$
x^{\prime}=x-x y ; \quad y^{\prime}=-y+x y
$$

Find the steady-state solution and compute $x^{\prime \prime}$ and $y^{\prime \prime}$ in terms of x and y.

Solution: To find the steady-state solution, put $x^{\prime}=0$ and $y^{\prime}=0$ and solve to get

$$
x(t)=1, \quad y(t)=1,
$$

both independent of time.
Differentiate the Volterra system, substitute, and simplify:

$$
x^{\prime \prime}=x^{\prime}-x^{\prime} y-x y^{\prime}=x-x y-(x-x y) y-x(-y+x y)=x-x y+x y^{2}-x^{2} y
$$

and

$$
y^{\prime \prime}=-y^{\prime}+x^{\prime} y+x y^{\prime}=y-x y+(x-x y) y+x(-y+x y)=y-x y-x y^{2}+x^{2} y
$$

8. Solve the initial value problem $y^{\prime}-y=e^{2 x}, y(0)=2$, using the Laplace transform.

Solution: Transforming both sides gives $L\left[y^{\prime}-y\right](p)=L\left[e^{2 x}\right](p)$, which evaluates to

$$
(p-1) L[y](p)-y(0)=\frac{1}{p-2}
$$

But then

$$
L[y](p)=\frac{2}{p-1}+\frac{1}{(p-1)(p-2)}=\frac{2}{p-1}+\left(\frac{1}{p-2}-\frac{1}{p-1}\right)=\frac{1}{p-1}+\frac{1}{p-2},
$$

after adding $y(0)=2$ to both sides, dividing by $p-1$, and expanding into partial fractions and simplifying. This gives

$$
y(x)=L^{-1}\left[\frac{1}{p-1}+\frac{1}{p-2}\right](x)=e^{x}+e^{2 x}
$$

using linearity and the precomputed Laplace transform $L\left[e^{a x}\right](p)=1 /(p-a)$.
9. Solve the initial value problem $y^{\prime}-y=e^{2 x}, y(0)=0$, using an integrating factor.

Solution: This is a first-order linear equation in the form $y^{\prime}+p y=q$ with $p(x)=-1$ and $q(x)=e^{2 x}$. The integrating factor is

$$
\mu(x)=\exp \int p(x) d x=e^{-x}
$$

and the general solution is

$$
y(x)=\frac{1}{\mu} \int \mu(x) q(x) d x=e^{x} \int e^{x} d x=e^{x}\left[e^{x}+C\right]=e^{2 x}+C e^{x} .
$$

Solve for $C=-1$ from the initial condition $y(0)=0=1+C$ to get

$$
y(t)=e^{2 x}-e^{x}
$$

10. Find the Fourier series for the function g defined by

$$
g(x)= \begin{cases}-1, & -\pi \leq x<0 \\ 1, & 0 \leq x<\pi\end{cases}
$$

Solution: First note that g is an odd function. Hence the Fourier series for g has no cosine components, so $a_{j}=0$ for all $j \geq 1$, and its sine components are

$$
b_{j}=\frac{2}{\pi} \int_{0}^{\pi} \sin j x d x=\left.\frac{2}{\pi}\left[\frac{-\cos j x}{j}\right]\right|_{0} ^{\pi}=\frac{2}{\pi}\left[\frac{-\cos j \pi+1}{j}\right]= \begin{cases}\frac{4}{j \pi}, & \text { if } j \text { is odd } \\ 0, & \text { if } j \text { is even }\end{cases}
$$

for $j=1,2,3, \ldots$ Thus,

$$
g(x)=\sum_{\text {odd } j \geq 1} \frac{4}{j \pi} \sin j x=\sum_{k=0}^{\infty} \frac{4}{(2 k+1) \pi} \sin (2 k+1) x
$$

Here we write odd $j \geq 1$ as $j=2 k+1$ for $k \geq 0$.
11. Explain why $x=0$ is an ordinary point for the differential equation $y^{\prime}-y=e^{2 x}$, and then find the recursion for $\left\{a_{j}: j=0,1,2, \ldots\right\}$ in the power series solution

$$
y(x)=\sum_{j=0}^{\infty} a_{j} x^{j} .
$$

(It is not necessary to solve the recursion.)

Solution: Write the equation as $y^{\prime}+p(x) y=q(x)$ and observe that the coefficient functions $p(x)=-1$ and $q(x)=e^{2 x}$ are analytic in an open interval around 0 . Hence $x=0$ is an ordinary point by definition.
The power series for $y^{\prime}-y$ is obtained by differentiating term by term:

$$
y^{\prime}(x)-y(x)=\sum_{j=0}^{\infty} j a_{j} x^{j-1}-\sum_{j=0}^{\infty} a_{j} x^{j}=\sum_{j=0}^{\infty}\left[(j+1) a_{j+1}-a_{j}\right] x^{j},
$$

after reindexing and combining terms in x^{j}. This must equal the power series

$$
e^{2 x}=1+\frac{2 x}{1!}+\frac{(2 x)^{2}}{2!}+\cdots=\sum_{j=0}^{\infty} \frac{2^{j}}{j!} x^{j}
$$

so the coefficients of x^{j} must be equal in both series, so

$$
(j+1) a_{j+1}-a_{j}=\frac{2^{j}}{j!}, \quad \Longrightarrow a_{j+1}=\frac{a_{j}}{j+1}+\frac{2^{j}}{(j+1)!}
$$

for $j=0,1,2, \ldots$.
12. The ODE

$$
y^{(6)}+4 y^{(5)}+3 y^{(4)}-10 y^{(3)}-26 y^{\prime \prime}-24 y^{\prime}-8 y=0
$$

has characteristic equation

$$
r^{6}+4 r^{5}+3 r^{4}-10 r^{3}-26 r^{2}-24 r-8=(r+1)^{2}\left(r^{2}+2 r+2\right)\left(r^{2}-4\right)=0
$$

Find the general solution.

Solution:

$$
y(x)=A_{1} e^{-x}+A_{2} x e^{-x}+B_{1} e^{-x} \cos x+B_{2} e^{-x} \sin x+C e^{2 x}+D e^{-2 x}
$$

corresponding to the repeated real root $-1\left(A_{1} e^{-x}+A_{2} x e^{-x}\right)$, complex conjugate roots $-1 \pm i$ $\left(B_{1} e^{-x} \cos x+B_{2} e^{-x} \sin x\right)$, and distinct real roots $2\left(C e^{2 x}\right)$ and $-2\left(D e^{-2 x}\right)$.

