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1. Introduction. Suppose that we want to calculate the average value
of a function F (x) with respect to a probability density π(x) on a set X,
specifically

E(F ) =

∫
X

F (x)π(x)dx (1.1.1)

We assume here that X is endowed with an obvious, natural measure “dx”.
If dx is counting measure on X (that is, each point in X has mass one), then
E(F ) is a sum instead of an integral.

We assume that we do not know the density π(x) exactly, but that we
can calculate π(x) within the normalizing constant. That is,

π(x) = Cg(x) (1.1.2)

where g(x) is known or easy to compute but C is unknown. An important
case is that of a Bayesian posterior distribution in statistics. In this case, g(x)
is a prior distribution times a likelihood function. In many cases, g(x) is easy
to write down but the normalizing constant

C = 1
/∫

X

g(x) dx (1.1.3)

is too complex to compute easily. (See Section 5 below.)
The “Metropolis” in the Metropolis-Hastings algorithm is the first au-

thor of a paper in the Journal of Chemical Physics (Metropolis et al. 1953;
see bibliography). In Metropolis’ paper, g(x) is a partition function from
statistical physics.

2. The Metropolis-Hastings algorithm.

2.1. The basic idea. The key idea in the paper Metropolis (1953) is first
to start with a Markov chain Xn on the state space X with a fairly arbi-
trary Markov transition density q(x, y). By definition, q(x, y) is a Markov
transition density if q(x, y) ≥ 0 and

∫
y∈X

q(x, y)dy = 1, and Xn satisfies

Pr(Xn+1 ∈ y + dy | Xn = x) = q(x, y)dy (2.1.1)

(We consider the case of a more general Markov transition function q(x,A)
below.) The second step is to modify the Markov chain Xn to define a new
Markov chain X∗

n with a second transition density p(x, y) that has π(x) as a
stationary probability measure. That is, such that∫

X

π(x)p(x, y) dx = π(y) (2.1.2)
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for all y. Then, by the Birkhoff ergodic theorem (see Appendix A)

lim
n→∞

1

n

n∑
k=1

F (X∗
k) converges a.s. (2.1.3)

for any measurable function F (x) on X with
∫
X
|F (x)|π(x)dx < ∞. The

Markov chain X∗
n is called ergodic if the limit in (2.1.3) is constant whenever∫

X
|F (x)|π(x)dx <∞. In that case, one can show from (2.1.2) that

lim
n→∞

1

n

n∑
k=1

F (X∗
k) =

∫
X

F (x)π(x)dx a.s. (2.1.4)

We can then, in principle, use the left-hand side of (2.1.4) for sufficiently
large n to approximate the integral in (2.1.4). Sufficient conditions that X∗

n

be ergodic are that X∗
n be irreducible and positive recurrent on X. The

relations (2.1.2)–(2.1.4) form the basis of what are now known as Markov
chain Monte Carlo (MCMC) methods.

We next show how to modifyXn with transition density q(x, y) to form a
Markov chain X∗

n with transtion density p(x, y) that has π(x) as a stationary
density. The first step is to define an “acceptance function” a(x, y), which
by definition is an arbitrary function on X ×X such that

0 ≤ a(x, y) ≤ 1 (2.1.5)

We now define X∗
n as follows. Given X∗

n = x, we use the transition density
q(x, y) to “propose” a new state y. (That is, we choose y ∈ X with the
probability distribution (2.1.1).) With probability a(x, y), the proposed state
is accepted and X∗

n+1 = y. Otherwise, the proposal is rejected and X∗
n+1 =

X∗
n = x. (That is, the process stays at the same position for one time step.)

Given X∗
n+1 = z (where z = y if the proposal is accepted and z = x if

the proposal is rejected), the process is repeated to generate X∗
n+2, and so

forth. This defines a new Markov chain X∗
n that is the same as Xn except

for the introduction of “wait states” with X∗
n+1 = X∗

n = x, which occur
with probability a(x, y) when X∗

n = x. By construction, the process X∗
n has

“transition density”

p(x, y) = a(x, y)q(x, y) + A(x)δx(dy) (2.1.6)

where

A(x) = 1 −
∫
z∈X

a(x, z)q(x, z)dz
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Here A(x) is the probability that z ∈ X is proposed but rejected, so that
X∗

n+1 = X∗
n = x. The expression δx(dy) in (2.1.6) represents a Dirac mea-

sure that puts mass one at the point y = x and is otherwise zero. Strictly
speaking, p(x, y) in (2.1.6) does not represent a density with respect to dx if
dx is a continuous measure on X and A(x) > 0. We give a better description
of the algorithm below.

The final step is to find an acceptance function a(x, y) so that (2.1.2)
holds; that is, so that π(x) is a stationary measure for X∗

n. Hastings (1970)
proved (see below) that the transition density p(x, y) in (2.1.6) has π(x) as
a stationary density if the acceptance function a(x, y) satisfies

a(x, y) = min

{
1,

π(y)q(y, x)

π(x)q(x, y)

}
= min

{
1,
q(y, x)/π(x)

q(x, y)/π(y)

}
(2.1.7)

= min

{
1,

g(y)q(y, x)

g(x)q(x, y)

}
= min

{
1,
q(y, x)/g(x)

q(x, y)/g(y)

}
where π(x) = Cg(x) as in (1.1.2). In particular, we don’t need to know the
normalizing constant C in (2.1.7).

The original Metropolis (1953) algorithm assumed q(x, y) = q(y, x), for
which the acceptance function has the simpler form

a(x, y) = min

{
1,

π(y)

π(x)

}
= min

{
1,

g(y)

g(x)

}
If q(x, y) = q(y, x), the algorithm accepts the proposed new value y with
probability one if g(y) ≥ g(x) and accepts it with probability g(y)/g(x) if
g(y) < g(x). If the proposal density q(x, y) is not symmetric (that is, if
q(x, y) ̸= q(y, x)), then the Metropolis-Hastings acceptance function a(x, y)
requires the correction factor q(y, x)/q(x, y) in (2.1.7).

2.2. A question of notation. In Chapter 1 and Section 2.1, the im-
plicit measure “dx” could be the usual volume measure (Lebesgue measure)
if X ⊆ Rd, a counting measure that assigns measure one to each point if X
is discrete, or surface measure in a subspace of Rd. In some descriptions of
the Metropolis-Hastings algorithm, the precise meaning of the implicit mea-
sure dx is understood and can vary from paragraph to paragraph, and even
from term to term in the same equation. This lack of a good notation can
make proofs difficult to follow even when the proofs are basically correct.

For this reason, we will adopt a standard notation for measures from
probability theory and write expressions like those in Section 1 in the form

E(F ) =

∫
X

F (x)π(dx) (2.2.1)
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where π(dx) is a probability measure on X and

π(dx) = Cg(dx) where C = 1
/∫

X

g(dx) (2.2.2)

where g(dx) is a nonnegative measure on X with
∫
X
g(dx) < ∞. By def-

inition, π(dx) is a probability measure of X if it is a nonnegative measure
with π(X) =

∫
X
π(dx) = 1. An expression q(x, dy) is a Markov transition

function on X if

(i) For each x ∈ X, q(x, dy) (as a function of y) is a probability measure
on X,

(ii) For each measurable set A ⊆ X, cA(x) =
∫
A
q(x, dy) is a measurable

function of x.

It follows from (i,ii) that
∫
X
h(y)q(x, dy) is a measurable function on X

whenever h(x) is a bounded measurable function on X.
Let Xn be a Markov chain X with

Pr(Xn+1 ∈ dy | Xn = x) = q(x, dy)

and let a(x, y) be an acceptance function as in (2.1.5). Then the modified
Markov chain X∗

n described in Section 2.1 has transition function

p(x, dy) = a(x, y)q(x, dy) +A(x)δx(dy) (2.2.3)

where

A(x) = 1 −
∫
z∈X

a(x, z)q(x, dz)

This now makes better sense since we do not have to pretend that δx(dy) is a
function on X. Note that p(x, dy) in (2.2.3) satisfies conditions (i,ii) above.
(Technically speaking, we assume that all measures on X are σ-finite and
second countable and defined on the same sigma algebra of subsets of X.
This includes all measures that arise in practice.)

Similarly, we say that the transition function p(x, dy) has π(dx) as a
stationary measure if ∫

X

p(x, dy)π(dx) = π(dy) (2.2.4)

considered as measure in y on X, or equivalently if∫
X

∫
X

f(y)p(x, dy)π(dx) =

∫
X

f(y)π(dy) (2.2.5)
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for all measurable functions f(y) ≥ 0 on X. The condition (2.2.5) is usually
easier to work with than (2.2.4). Recall that

∫
f(y)π(dy) = ∞ is allowed

in measure theory if f(y) ≥ 0 and π(dy) ≥ 0 is a nonnegative measure. In
general, most theorems in measure theory for nonegative σ-finite measures
are valid if the real numbers are extended in this way, so that there is no
need to require that the integrals in (2.2.5) be finite.

(Exercises: (1) Prove that (2.2.5) for all measurable f(y) ≥ 0 is equiv-
alent to (2.2.4).

(2) Show that p(x, dy)π(dx) in (2.2.4) defines a probability measure on
the product space X ×X.)

If the measures π(dx), g(dx), and q(x, y) have densities with respect to
a measure dx on X, then

π(dx) = π1(x)dx, g(dx) = g1(x)dx, q(x, dy) = q1(x, y)dy (2.2.6)

where π1(x), g1(x), and q1(x, y) are measurable functions on X or X ×X.
The larger family of transition functions q(x, dy) includes not only exam-
ples of ergodic Markov chains on X that cannot be expressed as q(x, y)dy
for Lebesgue measure dy on X ⊆ Rd, but also Markov chains on linear or
nonlinear subspaces of Rd whose transition function does not have a density
with respect to d-dimensional Lebesgue measure. We will see examples of
this in the next chapter.

2.3. Reversibility and the “detailed balance” condition. If π(dx) is
a probability measure and p(x, dy) a Markov transition function on X, then∫∫

X×X

π(dx)p(x, dy) =

∫
x∈X

(∫
y∈X

p(x, dy)

)
π(dx) = 1

by Fubini’s theorem. Thus π(dx)p(x, dy) is a probability measure on the
product space X × X. It follows that one can define random variables X1

and Y1 with joint distribution

P (X1 ∈ dx, Y1 ∈ dy) = π(dx)p(x, dy) (2.3.1)

on X × X. It follows from Fubini’s theorem that P (X1 ∈ dx) =∫
y
π(dx)p(x, dy) = π(dx) and hence E

(
f(X1)

)
=
∫
X
f(x)π(dx) for mea-

surable functions f(x) ≥ 0. Similarly E
(
f(Y1)

)
=
∫
X
f(x)π(dx) if the sta-

tionarity condition (2.2.4) holds. In general, (2.2.4) is equivalent to

E
(
f(X1)

)
= E

(
f(Y1)

)
(2.3.2)
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for measurable functions f(y) ≥ 0.
In many Markov chains for which stationarity holds, the relation

π(dx)p(x, dy) = π(dy)p(y, dx) (2.3.3)

also holds. Since then∫
x∈X

π(dx)p(x, dy) =

∫
x∈X

π(dy)p(y, dx) = π(dy)

it follows that (2.3.3) implies stationarity (2.2.4), although the reverse may
not hold. The relation (2.3.3) is called the “detailed balance condition” by
Chib and Greenberg (1995).

An equivalent form of (2.3.3) is∫
X

∫
X

f(x, y)π(dx)p(x, dy) =

∫
X

∫
X

f(x, y)π(dy)p(y, dx) (2.3.4)

or
E
(
f(X,Y )

)
= E

(
f(Y,X)

)
for measurable functions f(x, y) ≥ 0 on the product space X × X for the
random variables X,Y in (2.3.1).

(Exercise: Prove that (2.3.4) for all measurable f(x, y) ≥ 0 is equivalent
to (2.3.3), and that (2.3.3) implies (2.2.4).)

Since (2.3.1) can be viewed as the probability that X starts at x and
then goes to Y = y, and the right-hand side of (2.3.3) can be viewed as the
probability thatX starts at y and then goes to Y = x, the relation (2.3.3) can
be described as saying that the transition function p(x, dy) is time reversible
with respect to the probability measure π(dx). (Usually time reversible is
abbreviated to just reversible.)

A useful necessary and sufficient condition for (2.3.3) is the following.

Lemma 2.3.1 (Tierney 1994). Suppose that p(x, dy) in (2.2.3) is derived
from the transition function q(x, dy), the acceptance function a(x, y) with
0 ≤ a(x, y) ≤ 1, and the probability measure π(dx). In particular

p(x, dy) = a(x, y)q(x, dy) +A(x)δx(dy), (2.3.5)

A(x) = 1−
∫
z∈X

a(x, z)q(x, dz)

Then the detailed balanced condition (2.3.3) holds if and only if

π(dx)a(x, y)q(x, dy) = π(dy)a(y, x)q(y, dx) (2.3.6)
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in the sense that the two measures on X ×X are the same.

Corollary 2.3.1. If (2.3.6) holds, then π(dx) is a stationary measure
for p(x, dy) in (2.2.5)

Proof of Lemma 2.3.1. By (2.3.5),

π(dx)p(x, dy) = π(dx)a(x, y)q(x, dy) + π(dx)A(x)δx(dy) (2.3.7)

and

π(dy)p(y, dx) = π(dy)a(y, x)q(y, dx) + π(dy)A(y)δy(dx) (2.3.8)

The two measures on the right-hand side of (2.3.7)–(2.3.8) are the same by
Tonelli’s theorem since, by arguing as in (2.3.4),∫

x

∫
y

f(x, y)δx(dy)π(dx)A(x) =

∫
x

f(x, x)A(x)π(dx)

and ∫
y

∫
x

f(x, y)δy(dx)A(y)π(dy) =

∫
x

f(y, y)A(y)π(dy)

for measurable f(x, y) ≥ 0. The two measures in the middle of the lines
(2.3.7)–(2.3.8) are exactly the two measures in (2.3.6). If they are the same,
the two measures in the detailed balance condition (2.3.3) are the same, and
vice versa. This completes the proof of Lemma 2.3.1.

2.4. The Metropolis-Hastings theorem. The purpose here is to prove

Theorem 2.4.1. (Metropolis-Hastings) Assume that the probability
measure pi(dx) and transition function q(x, dy) satisfy

q(x, dy) = q(x, y)dy and π(dx) = π(x)dx (2.4.1)

for a nonnegative measure dx on X. Define p(x, dy) by (2.3.5) for the accep-
tance function

a(x, y) = min

{
1,

π(y)q(y, x)

π(x)q(x, y)

}
(2.4.2)

where the right-hand size of (2.4.2) is replaced by 1 if π(x)q(x, y) = 0. Then
p(x, dy) satisfies the detailed balance condition (2.3.3). In particular, π(x)dx
is a stationary measure for p(x, dy).
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Proof. By (2.4.2),

π(x)a(x, y)q(x, y) = min {π(x)q(x, y), π(y)q(y, x) } (2.4.3)

= π(y)a(y, x)q(y, x)

since the right-hand side of the first equation in (2.4.3) is a symmetric func-
tion of x and y. This implies (2.3.6) in Lemma 2.3.1 and hence the reversibil-
ity condition (2.3.3).

Since all that is required for the reversibility condition (2.3.3) is

π(x)a(x, y)q(x, y) = π(y)a(y, x)q(y, x) (2.4.4)

one can ask whether or not there exists a modification X∗
n of Xn as in Sec-

tion 2.1 with a minimum number of wait states. The answer is yes, as the
following Corollary indicates.

Corollary 2.4.1. The function a(x, y) in (2.4.2) is the pointwise maximum
value of all functions with 0 ≤ a(x, y) ≤ 1 that satisfy the reversibility con-
dition (2.3.3) for p(x, dy) in (2.3.5). That is, among all acceptance functions
a(x, y) satisfying (2.4.4), the function a(x, y) in (2.4.2) has the smallest prob-
ability of wait states at all x ∈ X.

Proof. Let Q be the set of all functions b(x, y) such that 0 ≤ b(x, y) ≤ 1
and

π(x)b(x, y)q(x, y) = π(y)b(y, x)q(y, x) (2.4.5)

for all x, y ∈ X. Note that if b1(x, y) and b2(x, y) both satisfy (2.4.5), then
so does b3(x, y) = max{b1(x, y), b2(x, y)}, and similarly so does a(x, y) =
maxb∈Q b(x, y).

If π(x)q(x, y) = 0, then a(x, y) = 1 by (2.4.5), and (2.4.2) holds by defi-
nition. If π(x)q(x, y) > 0 and 0 ≤ π(y)q(y, x) ≤ π(x)q(x, y), then a(y, x) = 1
and a(x, y) ≤ 1 by (2.4.5). Then

a(x, y) =
π(y)q(y, x)

π(x)q(x, y)
< 1

by (2.4.5), which implies (2.4.2). If 0 < π(x)q(x, y) < π(y)q(y, x), then
a(x, y) = 1 and the right-hand side of (2.4.2) is also 1. This completes the
proof of Corollary 2.4.1.

2.5. Consequences of the Metropolis-Hastings theorem. It follows
in general that
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Theorem 2.5.1. Let X∗
n be an ergodic Markov chain with stationary dis-

tribution π(dx). Assume F (x) ≥ 0. Then

lim
n→∞

1

n

n∑
k=1

F (X∗
k) =

∫
X

F (x)π(x)dx a.s. (2.5.1)

lim
n→∞

1

n

n∑
k=1

F (X∗
k)

2 =

∫
X

F (x)2 π(x)dx a.s.

and for integers m ≥ 0

lim
n→∞

1

n

n∑
k=1

F (X∗
k)F (X

∗
k+m)

=

∫
X

F (x)

∫
X

F (y)π(y)pm(x, dy)π(x) dx a.s. (2.5.2)

The function pm(x, dy) = Pr(Xm ∈ dy | X0 = x) in (2.5.2) is the mth power
of the transition density p(x, dy) in (2.3.5).

The relations (2.5.1) imply that, in principle, it does not matter what
proposal function q(x, y) we use as long as we use the correct acceptance
function for π(x). The random variables F (X∗

k) will have the same asymp-
totic mean and variance in all cases.

However, the asymptotic variance of the average (1/n)
∑n

k=1 F (X
∗
k)

in (2.5.1) (as opposed to the asymptotic variance of F (X∗
k)) depends on the

limiting autocovariances in (2.5.2). Proposal functions that minimize these
autocovariances will lead to more accurate estimators of the right-hand side
of (2.5.1) for finite n.

Similarly, different ergodic Markov chains X∗
n take longer to converge

or “mix”, so that the minimum n for which the left-hand side of (2.5.1) is a
reasonable approximation of the integral side can vary even if the asymptotic
covariances are the same. Thus, in practice, particular choices of the proposal
functions q(x, dy) do matter.

3. Important examples of MCMC Markov chains. Some particular
forms of MCMC algorithms or proposal functions are used often enough to
have special names:

3.1. Random walk sampling. In general if q(x, y) = q(y, x) is a sym-
metric density, then the acceptance function (2.4.2) simplifies to

a(x, y) = min

{
1,

π(y)

π(x)

}
(3.1.1)
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This is Metropolis’ (1953) original form of the algorithm. The usual definition
of random walk for q(x, y) in Rd assumes q(x, y) = q(y − x), or equivalently
that the proposal random variable Y satisfies

{Y | X = x } ≈ x+W (3.1.2)

for a random variable W whose density is fW (y) = q(y). Metropolis’ condi-
tion q(x, y) = q(y, x) is equivalent to fW (x) = fW (−x), which is equivalent
to W ≈ −W or that the distribution of W be symmetric about 0.

3.1.1. Step sizes for random-walk sampling. While the behavior of the
Markov chain generated by fW (x) and π(x) is less sensitive to the shape of
the distribution fW (x), it is sensitive to the size of the steps. Usually (3.1.2)
is written in the form

{Y | X = x } ≈ x+ hW (3.1.3)

and then the value of h > 0 is chosen (or “tuned”) so that the Markov chain
has good convergence properties. While Theorem 2.5.1 says that the chain
will eventually approximate the stationary distribution π(x) for any h > 0,
this may take a very long time if the value of h is chosen inappropriately.

If h in (3.1.3) is too large, then proposals will rarely be accepted and
the Markov chain in (2.5.1) will rarely move, and the ratios in (2.5.1) will
take a long time to converge. If h is too small, then two problems can arise.
First, the chain Xn will take only small steps and may take a long time
before it can cover a significant portion of X, let alone before its sample
statistics approximate π(x). A second, less obvious, problem is that pro-
posals may be accepted too often. This means that the process Xn may be
more determined in the short run by the proposal distribution q(x, y) (and
its stationary distribution) then by π(x), which is the stationary distribu-
tion of p(x, y). Again, the chain X∗

n may take a long time before its sample
statistics approximate π(x).

As a rule of thumb, conventional wisdom is to adjust h empirically so
that the acceptance ratio (which is one minus the proportion of wait states)
is in the range 30–50%, with 30-40% tending to work better than 40-50%.
Metropolis random walks with a smaller acceptance ratio (generally due to
a larger value of h) are said to take “fewer but higher-quality steps”.

3.1.2. Random walks with x-dependent step size. It can happen that
values of h in (3.1.3) are too large in certain parts of the domain, where per-
haps π(x) is highly variable, and too small in other parts of the domain,
where π(x) is relatively flat. The latter problem can happen if, for example,
the density π(x) ∼ C/xa for large x. If Xn = x for large x, then π(x) is
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essentially constant in the range x1 = x ± h, and nearly all proposals are
accepted. The result is similar to an unbiased coin-tossing random walk on
the tail of the distribution. In general, if you continually toss an unbiased
coin, subtract one head for each tail received, and start with X0 = 20 (for
example), then eventually you will have Xn = 0, but the number of tosses
until this happens has an infinite mean and a very heavy-tailed distribution.
For a Metropolis random walk, this can show up as rare long excursions to
improbably large values of x if h is too small on the tail of the distribution.

In either case, a possible solution is to have the step size depend on x,
either in a regular way or else as different values in different regions in X.
In general, define the proposal q(x, y) as the distribution of

{Y | X = x } ≈ x+ hxW (3.1.4)

whereW is a random variable with density fW (x). Then for any measurable
function ϕ(y) ≥ 0

Ex

(
ϕ(Y )

)
=

∫
X

ϕ(x+ hxy)fW (y) dy =

(
1

hx

)d∫
X

ϕ(x+ y)fW

(
y

hx

)
dy

=

(
1

hx

)d∫
X

ϕ(y)fW

(
y − x

hx

)
dy

This means that the proposal density q(x, y) for (3.1.4) is

q(x, y) =

(
1

hx

)d
fW

(
y − x

hx

)
(3.1.5)

with respect to dy. The acceptance function is then

a(x, y) = min

{
1,

π(y)

π(x)

(
hx
hy

)d fW ((x− y)/hy
)

fW
(
(y − x)/hx

)} (3.1.6)

by Theorem 2.4.1. If W is symmetric (fW (x) = fW (−x)), then

a(x, y) = min

{
1,

π(y)

π(x)

(
hx
hy

)d}
As a check, note that this reduces to (3.1.1) if hx = hy.

For example, suppose that W in (3.1.4) is multivariate normal with
mean zero and positive definite covariance matrix Σ. Then

fW (x) =
1√

(2π)d det(Σ|)
exp
(
−(1/2)x′Σ−1x

)
(3.1.7)
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Since Σ is symmetric and positive definite, Σ = RDR′ where R is an orthog-
onal matrix and D is diagonal with positive entries. A way of simulating the
random variable W is to set

W = RD1/2Z (3.1.8)

where Z = (Z1, Z2, . . . , Zd) for independent mean-one variance-one normal
random variables Zi. Then

Cov(W ) =
(
RD1/2

)
Cov(Z)

(
RD1/2

)′
= RDR′ = Σ

so thatW in (3.1.8) has the correct distribution. This means that Y in (3.1.4)
can be simulated by

Y = X + hXW = X + hXRD
1/2Z (3.1.9)

By (3.1.7)

fW
(
(x− y)/hy

)
fW
(
(y − x)/hx

) = exp

(
−1

2
A(x− y)

(
1

h2y
− 1

h2x

))
(3.1.10)

= exp

(
− 1

2h2x
A(x− y)

((
h2x
h2y

)
− 1

))
where A(x) = x′Σ−1x. By (3.1.9)

A(X − Y ) = A(hXRD
1/2Z) = h2X

(
RD1/2Z

)′
Σ−1

(
RD1/2Z

)
= h2XZ

′D1/2R′Σ−1RD1/2Z = h2XZ
′Z

Thus, ignoring the minimum in (3.1.6), the logarithm of the acceptance
function can be written

log a(X,Y ) = log

(
π(Y )

π(X)

)
+ d log

(
hX
hY

)
− 1

2
Z ′Z

((
hX
hY

)2
− 1

)

for the vector Z in (3.1.9).

3.1.3. Multiplicative random walks. It is sometimes useful to have mul-
tiplicative updates

{Y | X = x } ≈ xW (3.1.11)
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instead of additive updates (3.1.2). This allows proposed values Y to
be larger when X is larger and smaller when X is smaller. It follows
from (3.1.11) that

E
(
ϕ(Y )

∣∣ X = x
)
= E

(
ϕ(xW )

)
=

∫
ϕ(xy)fW (y) dy

=

∫
ϕ(y)q(x, y) dy = (1/x)

∫
ϕ(y)fW (y/x) dy

for ϕ(y) ≥ 0, where fW (y) is the density for W . Thus the proposal density
is

q(x, y) =
1

x
fW

(y
x

)
The proposal function q(x, y) is said to define a symmetric multiplicative
random walk if W ≈ 1/W , which is equivalent to fW (y) = (1/y)2fW (1/y).
(Exercise: Prove this.) In that case

π(y)q(y, x)

π(x)q(x, y)
=

π(y)(1/y)fW (x/y)

π(x)(1/x)fW (y/x)
=

π(y)(1/y)(y/x)2fW (y/x)

π(x)(1/x)fW (y/x)
=

π(y)y

π(x)x

Thus the acceptance function for an arbitrary symmetric multiplicative ran-
dom walk is

a(x, y) = min

{
1,

π(y) y

π(x)x

}
(3.1.12)

3.2. Independence sampling. If the value proposed for Xn+1 is inde-
pendent of Xn, that is, if q(x, y) = q(y), then the MH algorithm is called an
independence sampler . The acceptance function becomes

a(x, y) = min

{
1,
π(y)q(x)

π(x)q(y)

}
= min

{
1,

π(y)/q(y)

π(x)/q(x)

}
(3.2.1)

That is, givenXn = x and k(y) = π(y)/q(y), the proposed value y is accepted
if k(y) ≥ k(x) and accepted with probability k(y)/k(x) if k(y) < k(x). Again,
we do not need to know the normalizing constants of either π(y) or q(y).

It is very important for independence samplers that q(y) not be lighter-
tailed than π(y) for large values of y if X is noncompact, nor than q(y)
be lighter tailed at a singularity of π(y). That is, we should NOT have
k(y) = π(y)/q(y) ≫ 1 either for large y or at a singularity of π(y). In that
case, large values of Y (as measured by π(y)) are rarely proposed and it is
easy to find examples in which the independence sampler has truly horrible
convergence properties. That is, while

lim
n→∞

1

n

n∑
k=1

F (X∗
k) =

∫
X

F (x)π(x)dx a.s. (3.2.2)
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the left-hand side of (3.2.2) is a reasonable approximation of
∫
F (x)π(x)dx

only for extremely large values of n. Even worse, the averages in (3.2.2) may
appear to converge but to an incorrect value, even for n ≈ 106 or n ≈ 107

One way to make this less likely for heavy-tailed π(y) for large y is to
use a proposal distribtion q(y) that has a power law (q(y) = max{1, 1/ya})
or a Student-t distribution, but one would have to make sure that π(y) is
not more heavy-tailed yet.

If we know how to generate random variables Xn+1 whose distribution
is exactly equal to π(x) = Cg(x) and set q(x) = π(x), then a(x, y) = 1. In
this case, there are no wait states and the independence sampler is the same
as classical Monte Carlo sampling.

3.2.1. Von Neumann’s rejection sampling. The independence sampler
is similar in spirit to the “rejection method” of von Neumann (1951), which
can be used to generate random variables with an arbitrary distribution π(x).
Von Neumann’s rejection method assumes

π(x) = cA(x)q(x) (3.2.3)

where 0 ≤ A(x) ≤ 1 and that we know how to generate random variables with
distribution q(x). The algorithm is to sample values Y from the proposal
distribution q(y) and accept Y with probability A(y). If the value is rejected,
the algorithm continues to sample from q(y) until a value is accepted. The
final accepted value of Y has distribution that is exactly π(x). (Exercise:
Prove this.)

In contrast with von Neumann’s method, the independence sampler does
not have retrials. If a value is rejected, the previous value is used. The
Markov chain values Xn have π(dx) as a stationary distribution, but in
general do not have the distribution π(dx) themselves.

If we know how to generate random variables Xn+1 with distribution
exactly equal to π(x) = q(x), then we can take A(x) = 1. In this case, there
are no rejections and the method is again the same as classical Monte Carlo
sampling.

3.3. Random mixtures of update proposals. A random mixture of
proposals qa(x, dy) with mixture weights wa > 0 is defined by, first, choosing
an index a with probability wa, and second, choosing a proposed value y ∈ X
with probability qa(x, dy). Random mixture updates on the same set of co-
ordinates could be useful if no one proposal function has good properties for
all of x. Choosing the proposal based on x ∈ X as in Section 3.1.2 might
be more efficient in this case, but the random mixture model would have a
simpler acceptance function and would be easier to implement.
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Given a random mixture, we have two possible ways of defining the
acceptance function and the combined Metropolis-Hastings Markov chain
p(x, dy). The first (and generally simplest) way is to forget that the index a
came from a random choice and use the acceptance function

aa(x, y) = min

{
1,

π(y)qa(y, x)

π(x)qa(x, y)

}
(3.3.1)

to define the chain pa(x, dy) as in Theorem 2.4.1. Then

π(dx)pa(x, dy) = π(dy)pa(y, dx) (3.3.2)

for pa(x, dy) defined by

pa(x, dy) = aa(x, y)qa(x, dy) +Aa(x)δx(dy),

Aa(x) = 1−
∫
z∈X

aa(x, z)qa(x, dz)

Since a was chosen randomly with probability wa, the unmixed (or marginal)
Metropolis-Hastings Markov chain has transition function

p(x, dy) =
∑
a

wapa(x, dy)

Thus by linearity p(x, dy) also satisfies the detailed balance condition

π(dx)p(x, dy) = π(dy)p(y, dx) (3.3.3)

and π(x)dx is a stationary measure for p(x, dy).
The second method is to use the combined proposal function

q(x, dy) =
∑
a

waqa(x, dy)

with the corresponding acceptance function

a(x, y) = min

{
1,

π(y)q(y, x)

π(x)q(x, y)

}
(3.3.4)

This also leads to the detailed balance condition (3.3.3) and hence p(x, dy)
also preserves π(x)dx. Due to the nonlinearity of the acceptance functions
(3.3.1) and (3.3.4), there is no simple relationship between the update tran-
sition functions pa(x, dy) in (3.3.2) and p(x, dy) from (3.3.4).
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3.4. Metropolis-Hastings and importance sampling. A useful tech-
nique to improve the efficiency of any Monte Carlo technique is the following.
Suppose in the limiting approximation (2.5.1) in Theorem 2.5.1

lim
n→∞

1

n

n∑
k=1

F (X∗
k) =

∫
X

F (x)π(x) dx (3.4.1)

that F (x) is small on a portion of the state space X that has significant
weight under π(x).

Then the Markov chain Xn (with stationary distribution π(x)dx) may
spend most of its time in parts of the state space X that contribute little
to the sum and hence little to the estimation of the integral. In general,
importance sampling refers to changing any Monte Carlo method so that,
first, the sampling is biased towards parts of the state space that are more
important for the sum or integral being estimated and, second, corrections
are made for the resulting biased sampling.

Let H(x) ≥ 0 be a function on X that is small where F (x) is small and
relatively large where F (x) is large. Of course, H(x) = F (x) satisfies this
criterion, but we assume that H(x) easier to work with than F (x). Let Xn

be the Markov chain defined in Section 2 with transition density q(x, y), and
let Y ∗

n be the corresponding Metropolis-Hastings Markov chain (see Theo-
rem 2.4.1) with the acceptance function defined withH(x)g(x) (orH(x)π(x))
instead of g(x) or π(x). (Recall that

∫
π(x)dx = 1 but that g(x) is unnor-

malized.) Specifically, we use the acceptance function

a(x, y) = min

{
1,
H(y)g(y)q(y, x)

H(x)g(x)q(x, y)

}
(3.4.2)

instead of the same acceptance function with H(x) = 1. If q(x, y) corre-
sponds to random-walk or independence sampling, then (3.4.2) is of the same
form with H(x)g(x) in place of g(x). Then Theorem 2.4.1 implies that Y ∗

n

has the stationary probability density

gH(x) = CH H(x)g(x) where

∫
X

gH(x) dx = 1 (3.4.3)

instead of π(x). Since Y ∗
n does not have g(x) dx as a stationary distribution,

it cannot be used to estimate integrals of the form
∫
F (x)π(x) dx directly,

but by the ergodic theorem for Y ∗
n we do have

lim
n→∞

1

n

n∑
k=1

F (Y ∗
k )

H(Y ∗
k )

=

∫
X

F (x)

H(x)
gH(x) dx (3.4.4)

= CH

∫
X

F (x)g(x) dx =

∫
X
F (x)g(x) dx∫

X
H(x)g(x) dx

(3.4.5)



Metropolis-Hastings Algorithms and Extensions . . . . . . . . . . . . . . . . . . . . . . . . .18

since CH = 1
/ ∫

H(x)g(x)dx. The ratios F (Y ∗
n )/H(Y ∗

n ) in (3.4.4) should
spend less time in the parts of X where F (x) is small since Y ∗

n has stationary
distribution cHH(x)g(x)dx instead of π(x)dx. Similarly, since H(x) resem-
bles F (x) more than a constant function, the terms in the sum in (3.4.4)
should have smaller variance than the corresponding terms in (3.4.1).

If the denominator of (3.4.5) is known or is easy to calculate, this should
give a more efficient way to estimate

∫
X
F (x)π(x) dx.

3.5. Component-wise Metropolis-Hastings sampling. In many typ-
ical MCMC applications, the vectors x ∈ X and density π(x) are multidi-
mensional and often highly multidimensional. However, it is usually possible
to find Markov chain update X∗

n where each update of X∗
n consists of several

substeps, each of which updates one component or one group of components
of x.

If x = (x1, . . . , xd) and we have d potential updates, where the ith

update changes only the ith coordinate of x and is ergodic in the sense of
Section 2.1 on the line through x parallel to the ith coordinate axis, then
the overall Metropolis-Hastings Markov chain Xn will be ergodic on X. (See
Theorem A.3 in Appendix A.) This means that we can use long-term averages
of X∗

n to estimate components of X∗
n or functions of components of X∗

n as in
Section 2.5.

We call changing or updating one coordinate or group of the coordinates
of x ∈ X a component move. By components-in-sequence MCMC we mean
updating a Markov chain Xn on X by a sequence of substeps that each
update one or more coordinates of X.

Assume for definiteness that x,Xn ∈ X ⊆ Rd and that we have d one-
dimensional proposal functions of the form

qi(xi, y) = qi(xi, x−i, y), x ∈ Rd, xi, y ∈ R, x−i ∈ Rd−1 (3.5.1)

Here x−i ∈ Rd−1 are the components of x ∈ Rd other than the ith compo-
nent xi, which are viewed in (3.5.1) as parameters of the one-dimensional
proposal density qi(xi, x−i, y).

Given (3.5.1), we update the Markov chain Xn in such a way that
each full step of Xn (that is, Xn → Xn+1) consists of d consecutive one-
dimensional substeps in turn. The acceptance function for the ith substep
is

ai(xi, x−i, yi) = min

{
1,

πi(yi | x−i) qi(yi, x−i, xi)

πi(xi | x−i) qi(xi, x−i, yi)

}
(3.5.2)

where

πi(xi | x−i) = π(x | x−i) =
π(xi, x−i)∫
π(z, x−i)dz
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is the conditional distribution of xi given x−i. The denominators of πi(yi |
x−i) and πi(xi | x−i) in (3.5.2) cancel out, so that in fact

ai(xi, x−i, yi) = min

{
1,

π(yi, x−i) q(yi, x−i, xi)

π(xi, x−i) q(xi, x−i, yi)

}
(3.5.3)

By convention, π(y | x−i) = qi(x, x−i, y) = 0 unless yj = xj for j ̸= i, so that
the extended measures π(dx | x−i) and qi(x, dy) on R

d are concentrated on
the line through x parallel to the ith coordinate axis.

The corresponding one-dimensional Metropolis-Hastings transition mea-
sure

pi(xi, dy) = a(xi, yi)qi(xi, y)dy +Ai(x)δxi(dy) where (3.5.4)

A(xi) = 1−
∫
z∈X

a(xi, z)qi(xi, z)dz, xi, y, yi ∈ R1

(with x−i suppressed) has πi(xi | x−i) as a stationary measure on R1. Each
pi(xi, x−i, dy) on R1 extends to a transition measure pi(x, dy) on X that
has π(x) as a stationary measure (see Appendix A). Since each of the d
transition measures pi(x, dy) preserve π(x), so does the Markov chain Xn.
If each of the proposal functions (3.5.4) is ergodic in one dimension in the
sense of Section 2.1 for each fixed x−i, then Xn is also ergodic and can be
used to estimate components of π(x) (see Theorem A.3 in Appendix A).

There is no reason why each of the component substeps (3.5.4) that make
up a full step in Xn has to be one dimensional, although that is the most
common case. If coordinates of π(x) are highly correlated, it may be more
advantageous to update groups of coordinates simultaneously, or overlapping
groups of components. See Chapter 3 for some examples.

In the more usual case of d one-dimensional substeps in sequence, we
can use oversampling for any components of x for which the trajectories
of the Markov chain are unusually autocorrelated, have an unusually low
acceptance rate, or perhaps are just less expensive to compute in terms of
computation time. By oversampling, we mean that proposals (3.5.1) with
the acceptance functions (3.5.2) are repeated a fixed number of times in each
Markov chain iteration (for example, 5 or 10 or 100 times) and only the last
value is used. Oversampling can improve the efficiency of Metropolis and
Metropolis-Hastings updates.

3.5.1. Random component updates. There is no requirement that the
component steps in the MH algorithm should always be done in the same
sequence. We could carry out the updates (3.5.4) in a random order, so that
each update of Xn updates a single randomly-chosen component of x. This
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is a special case of a random mixture of updates in Section 3.3, which we
can call random-component-update MCMC (see Appendix A below).

In this case, the updates do not satisfy the assumptions of the
Metropolis-Hastings theorem (Section 2.4), since the proposal density

q(x, dy) =
∑
a

waqa(x, dy)

is concentrated on a one-dimensional subset of Rd, specifically the union of
the coordinate axes through x and so does not have a density with respect to
d-dimensional Lebesgue measure. However, the detailed-balance condition
still holds (Section 3.3).

3.6. Gibbs samplers. In many cases, the individual conditional distribu-
tions π(xi | x−i) are easy to describe even when the structure of π(x) is
complex.

If we know how to generate random variables with the conditional dis-
tribution π(yi | x−i), then we can use

qi(xi, yi) = qi(xi, x−i, yi) = π(yi | x−i) (3.6.1)

as a proposal function in (3.5.1). Given x−i, this is equivalent to in-
dependence sampling from the conditional distribution of xi. Since then
ai(x−i, xi, yi) = 1 in (3.5.2), there are no wait states or rejection steps. This
is called a Gibbs sampler or a Gibbs sampler step for π(x | x−i). If d = 1,
there is no dependence on x−i and this is the same as classical Monte Carlo
sampling.

(Exercise: Explain carefully why there is no benefit for oversampling a
Gibbs sampler substep.)

In practice, Gibbs sampler updates tend to be much more efficient than
other Metropolis or Metropolis-Hastings updates. The rate of convergence
of a components-in-sequence or random-component-update MCMC is often
a function of the proportion of updates that are Gibbs samplers.

3.7. Knowing when to stop. Often MH trajectories that start in differ-
ent parts of the parameter space may stay diverged for a very long period of
time. One way of measuring the extent to which this may happen is the Gel-
man scale reduction factor (Gelman et al. 2003, Gilks et al. 1996, specifically
Section 8.4 in Chapter 8, p136–139).

In some cases, computation of the function values f(Xn) is more expen-
sive than generating the values Xn, or we want to assume that the sampled



Metropolis-Hastings Algorithms and Extensions . . . . . . . . . . . . . . . . . . . . . . . . .21

values f(Xn) are approximately independent, or we want to store fewer val-
ues for later estimation of medians and credible intervals. In these situations,
we can sample values f(Xn) only every Kth step. This is equivalent to over-
sampling the full Markov chain Xn. In this case, we distinguish between
samples or sampled values and the steps or iterations of the MC Markov
chain.

For definiteness, suppose that we run J trajectories each of (iteration)
length nK, so that each trajectory has n samples. We assume 1 < J ≪ n and
K ≥ 1. These could be either different runs with different starting positions
or else consecutive blocks of values in a single run of length nKJ iterations.

For a particular parameter of interest, let ψij be the (iK)th iteration (or
the ith sampled value) in the jth trajectory, where 1 ≤ j ≤ J for separate
runs and 1 ≤ i ≤ n within each trajectory. (That is, ψij = F (XiK,j) for a
function F (x) and J copies Xj(i) = Xi,j of the MH process in Section 2.)
Let

aj =
1

n

n∑
i=1

ψij = ψ+j , 1 ≤ j ≤ J

be the sample mean of the jth trajectory. Let bj = E(ψij) be the corre-
sponding theoretical mean. Then

B =
n

J − 1

J∑
j=1

(aj − a)2 for a =
1

J

J∑
j=1

aj

is the numerator of the one-way ANOVA F -test of H0 : bj = b0, which we
can call B = MSMod. In particular

E(B) = σ2 +
n

J − 1

J∑
j=1

(bj − b)2 for b =
1

J

J∑
j=1

bj

if each set of sampled values ψij (1 ≤ i ≤ n) are approximately uncorrelated
with variance σ2. We call B the between-sequence variance. Similarly

W =
1

J

J∑
j=1

s2j for s2j =
1

n− 1

n∑
i=1

(ψij − ai)
2

is the denominator MSE of the same one-way ANOVA test. It satisfies
E(W ) = σ2 if each trajectory ψij is uncorrelated for fixed j. This is called
the within-sequence variance. Then

E(B)− E(W )

n
=

1

J − 1

J∑
j=1

(bj − b)2 = s2b (3.7.1)



Metropolis-Hastings Algorithms and Extensions . . . . . . . . . . . . . . . . . . . . . . . . .22

is the sample variance of the J theoretical trajectory means bj . Gelman’s
scale-reduction factor is

ĜR =
W + B−W

n

W
= 1 +

(B −W )

nW
= 1 +

(F − 1)

n
(3.7.2)

=
n− 1

n
+

F

n

where F = MSMod /MSE is the one-way ANOVA test statistic. This can
be viewed an estimator of (σ2 + s2b)/σ

2 = 1 + s2b/σ
2 in (3.7.1).

Note that one can have ĜR < 1 or B −W < 0 due to sampling vari-
ation. In fact, if the MH Markov chains converges very strongly, then ψi,j

for i = 1, 2, . . . will be negatively correlated in i due to their being bound to
this stationary distribution. In this case, B can understate the variance σ2

resulting in B < W .
If ĜR is close to one, this may be an indication that all J trajectories are

sampling from the stationary distribution in an unbiased manner. Gelman
suggests, “In practice, we generally run the simulations until the values of
[GR] are all less than 1.1 or 1.2” (Gelman 1996, p138). Of course, the same
calculation must be done for every sampled function f(x) of interest, since
some parameters in an MCMC simulation may converge much faster than
others.

A related measure is

R2 =

n
J∑

j=1

(aj − a)2

J∑
j=1

n∑
i=1

(ψij − a)2

=
(J − 1)B

J(n− 1)W + (J − 1)B
(3.7.3)

For statistical regressions, this is called the “proportion of the total vari-
ability of the ψij” that is “explained” by the subchain or trajectory means.

Typically R2 is small if and only if ĜR is close to one. Often ĜR < 1 and
R2 is tiny when an MCMC Markov chain converges strongly.

4. Skew Transformations.

4.1. Introduction. In some cases the components of x are highly corre-
lated and π(dx) is stiff (that is, rapidly changing) as a function of x. In
that case, the Metropolis-Hastings algorithm is likely to accept only small
changes in individual components of x. This can cause the MC Markov chain
to take an extremely long time to converge.
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If this happens, one way of improving convergence is to use a proposal
function that is, for example, jointly normal in x with a covariance matrix
that is estimated from a preliminary run. Another way (which is the point
of this section) is to update key components of x and then make an parallel
deterministic changes in other components in an attempt to preserve the
values of π(x).

For definiteness, assume x = (x1, x2) where x1 ∈ Rd, x2 ∈ Rm, and
x ∈ Rn for n = d + m. Consider a Markov transition proposal function
q(x, dy) defined in terms of random variables by

X =

(
X1

X2

)
→
(

Y1
h(X1, X2, Y1)

)
(4.1.1)

where h(x1, x2, y1) is a deterministic function of x1, x2, and y1. We assume
that the random motion X1 → Y1 depends only on X1 and not on X2.
Specifically,

P
(
Y1 ∈ dy1

∣∣ X0 = (x1, x2)
)
= q(x1, y1)dy1

where q(x1, y1) is a d-dimensional density. We call (4.1.1) a skew transfor-
mation of X ∈ Rn, since a change from X1 to Y1 in Rd is accompanied by a
deterministic change in X2 that is a function of Y1.

The Markov chain block updates that we have considered so far have
been fairly simple: That is, the proposal distribution maps a subinterval of a
one-dimensional subspace of Rn into the same subinterval with the remaining
coordinates viewed as a parameter. In contrast, (4.1.1) maps a d-dimensional
subspace of Rn into a possibly different d-dimensional submanifold of Rn.

The mapping (4.1.1) is very similar to a transformation that changes
only X1 in a different coordinate system, and then changes coordinates back
to the original coordinates. These reparametrization updates are a subset
of the skew transformations (4.1.1) (see Section 4.3 below). While it is not
known whether all transformations (4.1.1) can be obtained by reparametriza-
tion in this manner, reparametrization updates are often the easiest to find
and work with.

The cases d = 0 and m = 0 are not excluded in (4.1.1): The former is a
purely deterministic move in Rn and the latter a mapping of full rank in Rn.
Note that the transformations of X1 and X2 in (4.1.1) cannot in general be
done independently or in sequence: Update proposals must be Markov, X1

would not be available after updating X1, and Y1 is not available until X1 is
updated.

For smooth functions h(x1, x2, y1) in (4.1.1), we now find general suffi-
cient conditions for the existence of an acceptance function a(x, y) such that
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the corresponding update transition function p(x, dy) satisfies the detailed
balance condition (2.3.3).

Let J2h(x, y) = J2h(x1, x2, y1) be the absolute value of the m×m Jaco-
bian matrix of h(x1, x2, y1) with respect to x2 and let π(x) be a nonnegative
integrable function on Rn. Then

Theorem 4.1.1. Let p(x, dy) be the transition function of the Markov pro-
cess corresponding to the proposal distribution q(x, y) defined by q(x1, y1)
and (4.1.1) and the acceptance function

a(x, y) = min

{
1,

π(y)q(y1, x1)

π(x)q(x1, y1)
J2h(x1, x2, y1)

}
(4.1.2)

Then a sufficient condition for p(x, dy) to satisfy the detailed balance condi-
tion (2.3.3) in Section 2.3, or equivalently

π(x)dx p(x, dy) = π(y)dy p(y, dx) (4.1.3)

is that, for (x1, x2, y1, y2) ∈ R2n,

y2 = h(x1, x2, y1) if and only if x2 = h(y1, y2, x1) (4.1.4)

We will prove Theorem 4.1.1 in Section 4.2. A useful sufficient condition
for (4.1.4) is

Corollary 4.1.1. A sufficient condition for (4.1.4) is that there exists a
function R(x) = R(x1, x2) on R

n such that

y2 = h(x1, x2, y1) if and only if R(x) = R(y) (4.1.5)

Exercise: Prove Corollary 4.1.1 given Theorem 4.1.1.

We will see in the next section that the class (4.1.4)–(4.1.5) contains a
large class of updates defined by temporary reparametrization.

Given (4.1.5), the Jacobian J2h(x1, x2, y1) in the acceptance func-
tion (4.1.2) can be expressed directly in terms of R(x). For fixed (x1, y1)
and y2 = h(x1, x2, y1), (4.1.4) and (4.1.5) imply

R(x1, x2) = R
(
y1, h(x1, x2, y1)

)
By the chain rule for Jacobians

J2R(x1, x2) = J2R(y1, y2)J2h(x1, x2, y1)
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and thus

J2h(x1, x2, y1) =
J2R(x1, x2)

J2R(y1, y2)
for y2 = h(x1, x2, y1) (4.1.6)

In this case, the acceptance function (4.1.2) can be replaced by the more
symmetric relation

a(x, y) = min

{
1,
π(y)q(y1, x1)J2R(x1, x2)

π(x)q(x1, y1)J2R(y1, y2)

}
(4.1.7)

It is possible that, for any smooth function h(x1, x2, y1) satisfying (4.1.4),
there exists a function R(x) satisfying (4.1.5). As far as I know, this is an
open question.

We give two examples before proving Theorem 4.1.1.

4.1.1. Examples. (1) Assume d = 1, n = m + 1, and x = (x1, x2) for
x1 ∈ R1 and x2 ∈ Rm. Define a random walk in Rn with an arbitrary step
in x1 and

h(x1, x2, y1) = x2 + (y1 − x1) (4.1.8)

in (4.1.1). This corresponds to a random motion X1 → Y1 in R1 followed
by a parallel shift by the same amount in each component of X2. Note that
by (4.1.8)

y2 − h(x1, x2, y1) = y2 − y1 − (x2 − x1)

= −
(
x2 − h(y1, y2, x1)

)
= R(y)−R(x)

where R(x1, x2) = x2 − x1 shifts x2 ∈ Rm by x1. Thus h(x1, x2, y1) satis-
fies (4.1.4) and is also of the form (4.1.5). Since

J2h(x1, x2, y1) = J2R(x1, x2) = 1

the Jacobian does not appear in the acceptance function (4.1.2).
(2) Assume d = 2 and n = m+ 2 and write

x = (x1, x2) = (x11, x12, x2), x2 ∈ Rm

Define a random walk by an arbitrary step in x1 = (x11, x12) and

y2 = h(x1, x2, y1) = y11 + (y12/x12)(x2 − x11) (4.1.9)
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in (4.1.1). This views x11 and x12 as like a mean and standard deviation for
the components x2i of x2, and updates x2 → y2 accordingly after changes in
x11 and x12. In this case

y2 − h(x1, x2, y1) = y2 − y11 − (y12/x12)(x2 − x11)

= −(y12/x12)
(
x2 − h(y1, y2, x1)

)
= y12

(
R(y)−R(x)

)
where

R(x) = (x2 − x11)/x12

is the normalizing transformation for x2 ∈ Rm. Thus h(x1, x2, y1) is also of
the form (4.1.4) and (4.1.5). In this case

J2h(x1, x2, y1) = (y12/x12)
m

and the acceptance function (4.1.2) is

a(x, y) = min

{
1,
π(y)q(y, x1)(y12/x12)

m

π(x)q(x, y1)

}
(4.1.10)

Since J2R(x1, x2) = (1/x12)
m, we obtain the same result from (4.1.6).

4.1.2. Domain-dependent steps in skew transformations.
Suppose that the update X1 → Y1 in (4.1.1) is defined by a random walk
with a position-dependent step size as in Section 3.1.2, so that

X =

(
X1

X2

)
→
(

Y1
k(X1, X2, Y1)

)
=

(
X1 + hXW

k(X1, X2, X1 + hXW )

)
(4.1.11)

where hX > 0 and W is a random variable with distribution fW (x). The
transformation X1 → Y1 has transition function

q(x1, y1) =

(
1

hx

)d
fW

(
y1 − x1
hx

)
(4.1.12)

as in (3.1.5). Since k(x1, x2, y1) in (4.1.11) does not depend explicitly on hx,
the Jacobian factor in (4.1.2) is unaffected. Thus the random walk satisfies
the detailed balance condition with acceptance function

a(x, y) = min

{
1,
π(y)q(y1, x1)J2k(x1, x2, y1)

π(x)q(x1, y1)

}
(4.1.13)

= min

{
1,

π(y)

π(x)

(
hX
hY

)d fW ((x1 − y2)/hY
)

fW
(
(y1 − x2)/hX

)J2k(x1, x2, y1)}
as in (3.1.6).
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4.2. Proof of Theorem 4.1.1. The proposal transition function defined
by (4.1.1) can be written

q(x, dy) = q(x1, y1)dy1 δ[h(x1,x2,y)](dy2) (4.2.1)

where (4.2.1) means that the measure q(x, dy) on Rn satisfies∫
y∈X

ϕ(y)q(x, dy) =

∫
ϕ
(
y1, h(x1, x2, y1)

)
dy1

for measurable functions ϕ(y) ≥ 0.
The Markov chain with transition function p(x, dy) defined in Theo-

rem 2.1.1 for q(x, dy) and a(x, y) is the chain that, for a given value of x, “pro-
poses” a value y with distribution (4.2.1) (which implies y2 = h(x1, x2, y1))
and then either “accepts” the value y and moves to that point, which takes
place with probability a(x, y), or else “rejects” the value y and remains at
the point x, which takes place with probability 1− a(x, y). This means

p(x, dy) = a(x, y)q(x1, y1)dy1 δ[h(x,y1)](dy2) +A(x)δx(dy)

where

A(x) = 1−
∫
a(x, y)q(x, dy) = 1−

∫
a
(
x, y1, h(x, y1)

)
q(x1, y1)dy1

We now find sufficient conditions on h(x1, x2, y1) in (4.1.1) and a(x, y)
in (4.1.2) for the detailed balance condition (4.1.3).

First, note that the two measures π(x)dx p(x, dy) and π(y)dy p(y, dx)
in (4.1.3) are measures that are concentrated in (n+d)-dimensional subman-
ifolds of R2n. We first require that these two manifolds be the same. The
first measure is concentrated on the set of points

D1 = { (x1, x2, y1, y2) : y2 = h(x1, x2, y1) } (4.2.2)

while the second measure is concentrated on

D2 = { (x1, x2, y1, y2) : x2 = h(y1, y2, x1) } (4.2.3)

The condition D1 = D2 is exactly the symmetry condition (4.1.4).
As in the proof of Lemma 2.4.1, the detailed balance condition (4.1.3)

follows from the relation

π(x)dx a(x, y)q(x, dy) = π(y)dy a(y, x)q(y, dx) (4.2.4)
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In general, two measures µ1(dxdy) and µ2(dxdy) are the same in R2n if and
only if ∫∫

ϕ(x, y)µ1(dxdy) =

∫∫
ϕ(x, y)µ2(dxdy)

for all measurable functions ϕ(x, y) ≥ 0. The integral of ϕ(x, y) with respect
to the left-hand measure in (4.2.4) is∫∫

ϕ(x, y)π(x)a(x, y)q(x, dy)dx

=

∫∫∫
ϕ
(
x1, x2, y1, h(x1, x2, y1)

)
π(x1, x2) (4.2.5)

× a
(
x1, x2, y1, h(x1, x2, y1)

)
q(x1, y1) dx1dx2dy1

The integral with respect to the second measure in (4.2.4) is∫∫
ϕ(x, y)π(y)a(y, x)q(y, dx)dy

=

∫∫∫
ϕ
(
x1, h(y1, y2, x1), y1, y2)

)
π(y1, y2) (4.2.6)

× a
(
y1, y2, x1, h(y1, y2, x1)

)
q(y1, x1) dy1dy2dx1

The substitution x2 = h(y1, y2, x1) (y2 = h(x1, x2, y1)) in (4.2.6), view-
ing (x1, y1) as fixed, implies∫∫

ϕ(x, y)π(y)a(y, x)q(y, dx)dy

=

∫∫∫
ϕ
(
x1, x2, y1, h(x1, x2, y1)

)
π
(
y1, h(x1, x2, y1)

)
× a
(
y1, h(x1, x2, y1), x1, x2)

)
q
(
y1, x1

)
J2h(x1, x2, y1) dx1dx2dy1

=

∫
D1

ϕ(x, y)π(y)a(y, x)q(y1, x1)J2h(x1, x2, y1) dx1dx2dy1 (4.2.7)

where J2h(x1, x2, y1) is the Jacobian function in (4.1.2). It follows from
(4.2.5) and (4.2.7) that the two measures in (4.2.4) are the same if

π(x)a(x, y)q(x1, y1) = π(y)a(y, x)q(y1, x1)J2h(x1, x2, y1) (4.2.8)

for all (x, y) ∈ D for D = D1 = D2 in (4.2.2)–(4.2.3). I now claim that

a(x, y) = min

{
1,
π(y)q(y1, x1)J2h(x1, x2, y1)

π(x)q(x1, y1)

}
(4.2.9)
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in (4.1.2) satisfies (4.2.8). By (4.1.4)

h
(
x1, h(y1, y2, x1), y1) = y2

and the chain rule for Jacobians with x2 = h(y1, y2, x1) implies

J2h(x1, x2, y1) J2h(y1, y2, x1) = 1 (4.2.10)

It follows from (4.2.9) that

π(x)a(x, y)q(x1, y1) = min {π(x)q(x1, y1), π(y)q(y1, x1)J2h(x1, x2, y1) }

and hence

π(y)a(y, x)q(y1, x1) = min {π(y)q(y1, x1), π(x)q(x1, y1)J2h(y1, y2, x1) }

Hence by (4.2.10)

π(y)a(y, x)q(y1, x1)J2h(x1, x2, y1)

= min {π(y)q(y1, x1)J2h(x1, x2, y1), π(x)q(x1, y1)}

The relation (4.2.8) follows from the fact that the right-hand sides of the
first and third of the three equations above are the same.

It follows as in the proof of Theorem 2.4.1 that the maximal pointwise
solution of (4.2.8) for functions 0 ≤ a(x, y) ≤ 1 is the acceptance func-
tion (4.2.9).

Remark. The notion of skew transformation is similar to the ideas of
partial resampling and generalized multigrid methods discussed in Liu and
Sabatti (2000) and in Sections 8.1 and 8.3 of Liu (2001). See also the remarks
at the end of the next section.

4.3. Temporary reparametrization as a skew transformation.
Let x = (x1, x2) for x1 ∈ Rd, x2 ∈ Rm, and x ∈ Rn as in the previous
section. In principle, a natural way to carry out a transformation

X =

(
X1

X2

)
→
(

Y1
h(X1, X2, Y1)

)
(4.3.1)

where P (Y1 ∈ dy1 | X0 = x) = q(x, y1)dy1 is to change coordinates in Rn

in such a way to fix the first d components, then carry out a component
update of the first d coordinates only, and then change coordinates back.
Specifically, let

S(x) = S

[(
x1
x2

)]
=

(
x1

S2(x1, x2)

)
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be a one-one continuously-differentiable nonsingular mapping ofRn into itself
that fixes the first d coordinates. Suppose that we make a proposal X1 → Y1
that changes only the first d new coordinates:

S

[(
X1

X2

)]
=

(
X1

S2(X)

)
→
(

Y1

S2(X)

)
(4.3.2)

Set S22(x2;x1) = S2(x1, x2) when we view S2(x1, x2) as a transformation
of x ∈ Rm with x1 ∈ Rd as a parameter. Then the mapping (4.3.1) in the
original coordinates is

X =

(
X1

X2

)
→ S−1

[(
Y1

S2(X)

)]
=

(
Y1

S−1
22

(
S22(X2;X1) ;Y1

)) (4.3.3)

This is a skew transformation of the form (4.1.1) for

h(X1, X2, Y1) = S−1
22

(
S22(X2;X1); Y1

)
(4.3.4)

If Y2 = h(X1, X2, Y1), then by (4.3.4) and (4.3.3)

S2(Y1, Y2) = S22

(
h(X,Y1);Y1

)
= S22(X2, X1) = S2(X1, X2)

Since S(X) is one-one, this implies that if Y2 = h(X,Y1) for Y = (Y1, Y2)
if and only S2(Y ) = S2(X). In particular, the function h(x1, x2, y1) in the
reparametrization transformation (4.3.3) satisfies the symmetry conditions
(4.1.4)–(4.1.5) for R(x) = S2(x). It then follows from Theorem 2.1.1 that

Theorem 4.3.1. Let q(x, dy) be the proposal distribution defined by
(4.3.3) for the reparametrization (4.3.2). Then the associated Markov tran-
sition function p(x, dy) for a density π(x) and the acceptance function

a(x, y) = min

{
1,
π(y)q(y, x1)J2S(x1, x2)

π(x)q(x, y1)J2S(y1, y2)

}
satisfies the detailed balanced condition (4.1.3). In particular, the Markov
chain associated with (4.3.1) has π(x) as a stationary measure.

Remarks. (1) If h(X,Y1) in (4.3.3) is replaced by a Gibbs sampler step
from the density π(x) restricted to the “fiber”

{Y : S2(Y ) = S2(X) } (4.3.5)

then (4.3.1)–(4.3.3) is essentially the same as the covariance-adjusted Markov
chain of Liu (1998) (referenced in Chen et al. 2000).
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(2) Liu and Sabatti (2000) define a similar procedure called Grouped
Move Multi-Grid Monte Carlo by Chen et al. (2000). Here (4.3.5) are the or-
bits of a locally compact group G acting on X. The transformation h(X,Y1)
in (4.3.3) is either a Gibbs-sampler step from the measure induced on (4.3.5)
by π(x)dx and Haar measure on G or else related Metropolis-Hastings up-
dates (Chen et al. 2000, Liu 2001). See Liu and Sabatti (2000) for examples.
Possible choices of the group G for X = Rn would be the Lie group Rm

itself or the nilpotent Lie group of shift and scale transformations acting
on Rm. This in fact is the same as the examples (4.1.8)–(4.1.10) except that
the transformations in Section 3.1 are deterministic within fibers rather than
random.

5. Bayesian models in statistics.

5.1. Introduction. The Metropolis-Hastings algorithm is often used in
Bayesian analyses in statistics. In fact, the MH algorithm is large part of the
reason for the increased popularity of Bayesian methods in the last 50 years.

For definiteness, assume that one has an observation of a vector-valued
random variable X (which might, for example, be repeated observations
of vector-vectored random variables of lower dimension). Assume that the
distribution of X depends on a parameter θ that we want to estimate. Both
X and θ may be vector valued. Assume for definiteness that the theoretical
distribution of X is given by the density G(X, θ), so that

E
(
f(X)

)
=

∫
f(x)G(x, θ) dx (5.1.1)

for functions f(x) ≥ 0. “Likelihood methods” in statistics for estimating θ
are based on the idea that, for given observed data X, those values of θ for
which G(X, θ) is relatively large are more likely to be close to the “true”
value of θ that generated the random data X. This approach assumes that x
inG(x, θ) is held constant at the observed valueX and that the parameter θ is
the true variable. To emphasize this difference in viewpoint, we use the term
“likelihood” instead of “probability density” and generally use a different
letter for G, for example

L(X | θ) = G(X, θ) (5.1.2)

Note that, strictly speaking, (5.1.2) is an abuse of notation, since “|”
in (5.1.2) usually denotes conditioning with respect to a random variable
and θ in (5.1.1) is a parameter, not a random variable.
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The Bayesian approach is to go one step further and, in fact, set up a
structure in which θ can be treated a random variable instead of a parameter,
and more specifically in such a way that θ and X are random variables on
the same probability space. To do this, we first introduce an arbitrary “prior
distribution” or “prior density” π0(θ) for θ and write

L(X, θ) = π0(θ)L(X | θ) (5.1.3)

Then

(i)

∫
L(x, θ) dx = π0(θ)

∫
L(x | θ) dx = π0(θ)

∫
G(x, θ) dx = π0(θ)

(ii)

∫∫
L(x, θ) dxdθ =

∫
π0(θ) dθ = 1

Thus (i) L(x, θ) in (5.1.3) is a joint probability density for two random vari-
ables X and θ (more commonly X and θ are random vectors) and (ii) for
the joint density L(x, θ), the marginal density of θ is L(θ) = π0(θ). By the
usual formula for conditional density

L(X | θ) =
L(X, θ)

L(θ)
=

π0(θ)L(X | θ)
π0(θ)

= L(X | θ)

Thus, in this framework, L(X | θ) in (5.1.2) is indeed a conditional density.
Given L(X, θ), it is natural to consider the conditional distribution of

the random variable θ given the observed data X, which is

π1(θ | X) = L(θ | X) =
L(X, θ)∫
L(s,X) ds

(5.1.4)

=
π0(θ)L(X | θ)∫
π0(s)L(X | s) ds

= CX π0(θ)L(X | θ)

where CX depends only on X.
The function π1(θ | X) = L(θ | X) in (5.1.4) is called the posterior

density of θ given X. The basic idea of Bayesian statistics is to make infer-
ences about the unknown value of θ given data X based on this conditional
density. For example, given (5.1.4), the Bayes estimator of θ is the average
of θ over π1(θ | X), or equivalently

θ̂ = θ̂B = E(θ | X) =

∫
θ π1(θ | X) dθ (5.1.5)

= CX

∫
θ π0(θ)L(θ,X) dθ
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An important advantage of Bayesian methods is that recipes like (5.1.5) give
you well-defined estimators of unknown paraments almost without thinking
in situations in which a classical estimator is not clear, or even worse if
there are multiple conceivable classical estimates that give widely different
answers.

The main disadvantage of Bayesian methods is that all inferences de-
pend on the prior π0(θ). Only in rare cases is there a natural candidate
for π0(θ). In principle, inferences should always be done for more than one
choice for π0(θ). If the resulting inferences are not close, then the problem
should be rethought, or else you should gather more data.

The degree of confidence that one might have in a Bayesian estimator
such as θ̂B can be measured by the distribution of π1(θ | X) about θ̂B . For
example, if Q is a set of values of θ such that

θ̂B ∈ Q and

∫
Q

π1(θ) dθ ≥ 0.95

then we can say that we are “95% posterior sure” that Q contains the true
value of θ. A set Q with these properties is called a “95% credible region”
for θ. This is the Bayesian analog of the classical 95% confidence interval
or confidence region, in which θ is treated as a parameter and not as an
unobserved value of a random variable. However, the terms “credible region”
and “confidence region” are sometimes used interchangeably.

5.2. “Improper” priors and quasi-stability. An alternative justifica-
tion of Bayesian methods can be given as follows. Given a statistical model
and data X, the likelihood L(X | θ) should give most of our information
about θ. Classical (non-Bayesian) statistical methods are often based on the

Maximum Likelihood Estimator (MLE) of θ, which is that value θ̂ = θ̂(X)
at which L(θ,X) attains its maximum value over θ.

An alternative approach might be to consider the measure L(θ,X)dθ
instead and ask where most of the mass of this measure is concentrated.
This leads to the measure

π2(θ)dθ = π2(θ | X) dθ = L(X | θ) dθ (5.2.1)

instead of π1(θ) = π1(θ | X). The measure π2(θ)dθ is called the “Bayesian
posterior with uniform improper prior” if

∫
X
dθ = ∞ and “with uniform

(proper) prior” if
∫
X
dθ <∞ (within the normalization constant

∫
X
dθ). In

general, MCMC in the sense of

lim
n→∞

1

n

n∑
k=1

F (Xk) =

∫
X

F (θ)π2(θ) dθ a.s.
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will fail if ∫
π2(θ) dθ =

∫
L(X | θ) dθ = ∞ (5.2.2)

If Xn is ergodic, (5.2.2) implies that Xn is null recurrent with

lim
n→∞

1

n

n∑
k=1

F (Xk) = 0 a.s. (5.2.3)

whenever
∫
|F (θ)|π2(θ)dθ < ∞. When this happens, the Markov chain Xn

is said to “converge to infinity”.
If in fact (5.2.2) is the case, then any estimator of a function of θ based on

Bayesian methods can be considered to be an artifact of the prior π0(θ), since
the closer that the prior π0(θ) is to the “uniform improper prior” π0(θ) = 1,
the closer that the estimator is to the situation (5.2.3). Note that (5.2.3)
implies that median estimators of θ are infinite as well as mean-based esti-
mators. However, it is still possible for a well-behaved classical MLE θ̂(X)
to exist.

An argument against the improper prior (5.2.1) or against uniform priors
in general is that “dθ” in (5.2.1) is not invariant under changes of variable
unless it is a discrete measure. For example, if ψ = θ2, then θ =

√
ψ and

L(θ)dθ = L(ψ)dψ/2
√
ψ. Then the “natural” measure dθ has been changed to

dψ/2
√
ψ. This problem does not arise with the posterior distribution π1(θ) =

π0(θ)L(X | θ) as long as one views the prior and posterior distributions
π0(dθ) and π1(dθ) as measures instead of as functions.

Of course, the strongest argument against an improper prior (5.2.1)
with (5.2.2) is (5.2.3). In that case, if n is sufficiently large, all parameter
values estimated by the sample-path averages (5.2.3) will be zero.

It often happens in practice that (5.2.3) appears to converges to reason-
able values for most components of a high-dimensional Xn with an improper
prior. This is because the components of Xn often converge on different time
scales. That is, some component or components of Xn converge to infinity,
but other components are nearly independent of the first set of components,
and adjust themselves to the first set of components in a fast enough time
scale that the averages (5.2.3) give stable reasonable estimates for those com-
ponents. Phenomena of this sort are called quasi-stability .

A related problem is that an improper prior for one component, for
which the likelihood is obviously integrable without a normalizable prior
distribution, can mysteriously lead to unstable behavior in other components
even for other components with normalized priors. This is another aspect of
quasi-stability.
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5.3. Sampling from the prior. Given the form of the distribution g(θ) =
π0(θ)L(X | θ) in (5.1.4), a plausible choice for updating θ in the MH algo-
rithm might be the proposal function

q(θ, y) = π0(y)

This is independence sampling from the prior distribution for θ (where we
now assume

∫
π0(θ)dθ = 1). The acceptance function (5.1.4) becomes

a(θ, y) = min

{
1,
g(y)/q(y)

g(θ)/q(θ)

}
= min

{
1,
L(X | y)
L(X | θ)

}
This nicely separates the effect of the prior distribution π0(θ) and likelihood
L(X | θ) on the Markov chain Xn.

5.4. Conjugate priors. The joint density π0(θ)L(X | θ) takes a simple
form in many important cases in statistics. For example, suppose that X
has a Poisson distribution with mean θ, so that the likelihood is

L(X | θ) = e−θ θ
X

X!
, X = 0, 1, 2, 3, . . . (5.4.1)

Suppose that we choose a gamma density with parameters (α, β) for the prior
density π0(θ):

π0(θ) =
βα

Γ(α)
θα−1e−βθ , 0 ≤ θ <∞ (5.4.2)

We can write π0(θ) ≈ G(α, β) symbolically. Then the posterior density

π1(θ | X) = CXπ0(θ)L(X | θ) = CX θα−1e−βθe−θθX

= CX(α, β) θX+α−1e−(1+β)θ

is also a gamma distribution. Symbolically

π1(θ) = π(θ | X) ≈ G(α+X,β + 1)

In particular, if L(X | θ) is the Poisson likelihood (5.4.1) and π0(θ) is the
gamma density (5.4.2), then the posterior density π1(θ) is a gamma density
with different parameters.

When this happens for an arbitrary family of densities (here, the gamma
densities (5.4.2) ), we say that family of densities is a conjugate prior for the
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likelihood, here for the Poisson likelihood (5.4.1). Colloquially, we say that
the family of gamma densities is a conjugate prior for Poisson sampling.
There are only a few cases where conjugate priors for likelihoods are known,
but they cover many of the most important distributions in statistics (see
e.g. DeGroot 1989, Chapter 6).

As a second example, suppose that π0(θ) is the beta density

π0(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 for 0 ≤ θ ≤ 1 (5.4.3)

(Symbolically, π0(θ) ≈ B(α, β).) If we toss a biased coin n times with prob-
ability of heads Pr(H) = θ and observe X = k heads in a particular order,
then the joint density of (θ,X) is

π0(θ)

(
n

X

)
θX(1− θ)n−X = C(α, β, n,X) θX+α−1(1− θ)n−X+β−1

Thus π1(θ | X) ≈ B(α+X, β + n−X). This means that the family of beta
densities is a conjugate prior for binomial sampling.

It follows from a similar argument that the family of Dirichlet densities

π0(θ) =
Γ(α)∏d

i=1 Γ(αi)

d∏
i=1

θαi−1
i , αi > 0,

∑
i=1

αi = α (5.4.4)

where θ = (θ1, . . . , θd) with θi > 0 and
∑d

i=1 θi = 1 is a conjugate prior for
multinomial sampling :

Pr(X = i | θ) = θi, X ∈ { 1, 2, . . . , d } (5.4.5)

(Exercise: Prove that (5.4.4) is a conjugate prior for the likelihood (5.4.5)).
The advantage of conjugate priors in the MH algorithm is that if one

knows how to generate independent random variates θn efficiently from the
prior famility (for example, the gamma density (5.4.1) or the beta den-
sity (5.4.3) ), then one can do Monte Carlo sampling from the posterior
density for any observed X.

This means that we always have available at least one numerically effi-
cient candidate for MH sampling. If θ is one part of a larger parameter vector
and the prior family is the conditional distribution, this would be a Gibbs
sampler step. Efficient methods are available for simulating independent
random variables with arbitrary gamma, beta, normal, uniform, and expo-
nential distributions. See for example Devroye (1986), Press et al. (1992),
and Fishman (1995) in the references.
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6. Hidden Variables.

In many applications, the likelihood L(X | θ) is complex but would be much
simpler if an unobserved random variable Z could be observed or treated as
data. More generally, assume

L(X | θ) =
∫
z

G(X, z, θ) dz (6.1.1)

for some function G(x, z, θ) ≥ 0. Then∫
x

L(x | θ) dx =

∫∫
G(x, z, θ) dzdx = 1

so that G(x, z, θ) is a probability density in (x, z) for fixed θ, and can be
viewed as the joint probability density of two random variables, X and Z.
Note that we might not have thought of Z as a potential random variable
before noticing the relationship (6.1.1.)

If we use the same prior density π0(θ) for θ as for L(X | θ) in equa-
tion (5.1.3) in Section 4.1, then

L(x, z, θ) = π0(θ)G(x, z, θ) (6.1.2)

is a joint probability of three random variables X, Z, and θ. With respect
to this joint density,

(i) L(X,Z | θ) =
L(X,Z, θ)

L(θ)
=

π0(θ)G(X,Z, θ)

π0(θ)
= G(X,Z, θ)

(ii)

∫
z

L(X, z | θ) dz =

∫
z

G(X, z, θ) dz = L(X | θ)

(iii) L(Z | θ) =

∫
x

L(x,Z | θ) dx =

∫
x

G(x, Z, θ) dx

Thus (i) G(X,Z, θ) is the likelihood of (X,Z) as a function of θ, (ii) the
marginal density of X with respect to L(X,Z | θ) is L(X | θ), and (iii) the
marginal L(Z | θ) can be calculated in terms of G(x, z, θ).

The variables Z in (6.1.1) and (6.1.2) can be viewed as either unobserved
data or else as additional parameters, although (6.1.1) may be more sugges-
tive of unobserved data. The process of going from data X with likelihood
L(X | θ) to (X,Z) with likelihood L(X,Z | θ) is often called data augmen-
tation. A formula that connects two senses of the hidden variables Z, as
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possible parameters or as unobserved data, can be found in the following
result.

Lemma 6.1.1. Let the likelihood L(X | θ) and joint density L(x, z, θ) be
defined by (6.1.1) and (6.1.2), and use the same prior density π0(θ) for both
X and (X,Z). Then the posterior density

π1(θ, Z | X) = L(θ, Z | X) = CX L(X,Z | θ)π0(θ) (6.1.3)

Remark. This formula connects the posterior density π1(θ, Z | X), in
which Z is viewed as a parameter, with the likelihood L(X,Z | θ), in which Z
appears as unobserved data.

Proof.

π1(θ, Z | X) = L(θ, Z | X) =
L(θ,X,Z)

P (X)
=

L(X,Z | θ)π0(θ)
P (X)

= CX L(X,Z | θ)π0(θ)

Remarks. (1) The Metropolis-Hastings Markov chain Xn = (θn, Zn) gen-
erated from (6.1.2) provides not only estimates of θ but also provides esti-
mates of the conditional distribution of Z given X. That is, any MCMC that
treats a “hidden variable” Z as a parameter also provides estimates of Z.
If the hidden variable Z is of high dimension, as is often the case, this can
provide a great deal of additional information.

(2) The right-hand side of (6.1.3) can be found either directly or through
the identity

P (X,Z | θ) =
P (X,Z, θ)

P (θ)
=

P (X | Z, θ)P (Z, θ)
P (θ)

(6.1.4)

= P (X | Z, θ)P (Z | θ)

(3) The Metropolis-Hastings Markov chains W
(1)
n = (θn, Zn) and

W
(2)
n = θn can both be used to estimate the posterior density of θ. An

important difference is that W
(2)
n = θn requires us to carry out the integral

in (6.1.1) for each evaluation of the likelihood L(X | θ) while Wn = (θn, Zn)
does not.

By (6.1.1), each value Zn inW
(1)
n = (θn, Zn) is a Monte Carlo simulation

of the integral (6.1.1) for one value of z for the current value θn of θ. When
we would not normally evaluate an integral by a single Monte Carlo simula-
tion, the fact that we are averaging over a long trajectory {(θn, Zn)} usually
corrects for this. In practice, hidden-variable Markov chain Zn = (θn, Zn)
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are nearly always almost as efficient as the “integrated” chain W
(2)
n = θn

without the hidden variables Zn, and it is difficult to find examples in which
the chain (θn, Zn) provides a verifiably less efficient estimator of θ.

(4) Note the we do not need a prior for Z. This is not surprising if we
view Z as unobserved data. If instead we view Z as additional parameter(s),
one could say that its prior is implicit in (6.1.2). However, in any event,
supplying an (additional) prior for Z will lead to incorrect formulas.

(5) We still need an updating procedure forW = (θ, Z) . If the function
G(x, z, θ) is simple, this can often be done as a simple component update
of θ for fixed Z and then of Z for fixed θ.

Example. Suppose that we are given DNA sequence data D from n indi-
viduals from the same species. Assume that D depends only on the DNA
sequence of the most recent common ancestor (MRCA) of the n individuals
and the mutation rate on the pedigree that connects the n individuals with
their MRCA. Assume that there are no repeat mutations at the same site in
the pedigree and let X be the number of DNA sites in the sample that are
polymorphic; that is, at which there is more than one base in the n sequences.

Then, under reasonable assumptions about DNA mutation, including
the assumption that the DNA sequences are not subject to Darwinian se-
lection at the polymorphic sites, the likelihood L(X | θ) for the number of
polymorphic sites X is Poisson with mean θ Len(Z), where Z is the unob-
served pedigree of the n individuals since their MRCA, Len(Z) is the total
length of the pedigree Z, and θ is a scaled mutation rate. Given these as-
sumptions and the pedigree Z, the number of polymorphic sites is Poisson
with a mean proportion to the total length of the pedigree, so that

L(X | θ) =
∫
z

LP

(
X, θ Len(z)

)
g(z) dz (6.1.5)

where LP (X,A) in (6.1.5) is the Poisson likelihood (5.4.1) with mean A. The
integral g(z) dz is the integral over all possible pedigrees of a sample of n
individuals. This is very complex, but is easy to simulate using Kingman’s
coalescent algorithm.

If we could observe Z, then we could use the much simpler likelihood
LP

(
X, θ Len(Z)

)
. While Z is not known, we can consider it as a hidden

variable with joint likelihood

L(X,Z | θ) = LP

(
X, θ Len(Z)

)
g(Z)

and joint posterior density

π1(θ, Z | X) = LP

(
X, θ Len(Z)

)
g(Z)π0(θ) (6.1.6)
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by Theorem 6.1.1. Since Poisson random variables are easy to simulate,
we have Gibbs-sampler updates for both θ and Z and hence an estimation
procedure for θ given the number of polymorphic sites X.

Appendix A. Ergodic theory and random mixtures.

A.1. Ergodic theorems. As before, let Xn be a Markov chain with state
space X ⊆ Rd defined on a state space X. Assume (i) π(x)dx is a stationary
probability measure for a transition function p(x, dy) of Xn, (ii) Xn = Xn(ω)
are X-valued random variables on a probability space (Ω,F , P ), and (iii) X0

has distribution π(x)dx. Then by induction

E
(
f(Xn)

)
=

∫
X

f(y)

∫
X

π(x)pn(x, dy)dx =

∫
X

f(y)π(y)dy = E
(
f(X0)

)
(A.1)

for measurable f(y) ≥ 0, so that Xn also has distribution π(x)dx. The
Birkhoff ergodic theorem (see below for the exact statement and references)
implies that if

∫
X
|f(y)|π(y)dy <∞

lim
n→∞

f(X0(ω)) + f(X1(ω)) + · · ·+ f(Xn−1(ω))

n
= g(ω) a.s. P (dω)

(A.2)
Here in the following, a.s. (“almost surely”) and a.e. (“almost everywhere”)
mean with the exception of a set of probability or measure zero.

The Markov chain Xn is called ergodic if the limiting random vari-
able g(ω) in (A.2) is always constant. In that case, g(ω) = E(f) =∫
X
f(y)π(y)dy a.s.
To obtain more information about the limiting random variable g(ω),

we need more information about the probability space (Ω,F P ). By the Kol-
mogorov consistency theorem (Kolmogorov 1950, Chung 2001), it is sufficient
to assume that that Ω is the infinite product space

Ω = X∞ = {ω : ω = (x0, x1, x2, . . .) } (A.3)

with Xn(ω) = xn ∈ X and F = B(X1, X2, . . .). That is, Xn are the coordi-
nate functions on Ω and F is the smallest σ-algebra of subsets of Ω for which
the coordinate functions are measurable.

Given Ω in (A.3), we define the unilateral shift

θ( (x0, x1, x2, . . .) ) = (x1, x2, x3, . . .)

for ω ∈ Ω. Note that this implies X1(ω) = X0(θ(ω)) and, by induction,
Xn(ω) = X0(θ

n(ω)) for n ≥ 0.
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The random variables X0(ω) and Xn(ω) have the same probability dis-
tribution by (A.1). More generally, for any measurable set B ∈ F ,

θ−1(B) = {ω : θ(ω) ∈ B } ∈ F and P
(
θ−1(B)

)
= P (B) (A.4)

In this case, this is equivalent to the condition

(X0, X1, . . . , Xm) ≈ (Xn, Xn+1, . . . , Xn+m) for all m,n ≥ 0 (A.5)

for the (m + 1)-dimensional joint distributions, which follows from the fact
that Xn is a Markov chain with a stationary distribution π(x)dx.

A mapping θ : Ω → Ω for a probability space (Ω,F , P ) is called a
measure-preserving transformation (m.p.t.) θ−1(B) ∈ F for any B ∈ F
and (A.4) holds. The m.p.t. θ(ω) is ergodic if B = θ−1(B) implies either
P (B) = 0 or P (B) = 1. This is equivalent to the condition that if f(θ(ω)) =
f(ω) a.s., then f(ω) = const. a.s. (Exercise: Prove the equivalence.)

In general, let Tf(ω) = f(θ(ω)) for F-measurable functions f(ω) on Ω.
The full statement of the Birkhoff ergodic theorem (Halmos 1956, Garsia
2001) is

Theorem A.1. (Birkhoff Ergodic Theorem) Define Tf(ω) = f(θ(ω))
as above where θ(ω) is an arbitrary measure-preserving transformation on a
probability space (Ω,F , P ). Then

lim
n→∞

f(ω) + Tf(ω) + · · ·+ Tn−1f(ω)

n
= g(ω) a.s. P (dω) (A.6)

for any measurable function f(ω) with E(|f |) <∞.

Corollary A.1. The limiting function g(ω) in (A.6) satisfies Tg(ω) = g(ω)
a.s. The limit is a.s. constant for all f ∈ L1(Ω,F , P ) if and only if θ(ω) is
ergodic, in which case the limit is E(f).

The operator Tf(ω) = f(θ(ω)) in Theorem A.1 satisfies

(i) f(ω) ≥ 0 implies Tf(ω) ≥ 0 (A.7)

(ii) T1(ω) = 1 for 1(ω) ≡ 1

(iii)

∫
Ω

|Tf(ω)|P (dω) ≤
∫
Ω

|f(ω)|P (dω)

for all f ∈ L1(Ω,F , P ).
If Tf is an arbitrary linear operator on L1(Ω,F , P ) that satisfies (A.7),

we say that T is ergodic if Tf(ω) = f(ω) a.e. implies f(ω) is a.s. constant
on Ω. If Tf(ω) = f(θ(ω)) for a m.p.t. θ(ω), this is equivalent to θ(ω) being
ergodic.

The Hopf ergodic theorem (Garsia 2001) states that if (A.7) holds for
an arbitrary linear operator T on L1(Ω,F , P ), then the conclusions of The-
orem A.1 also hold.
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A.2. The von Neumann ergodic theorem. It follows from interpolation
theorems in harmonic analysis (Zygmund 1959) that (A.7) implies∫

Ω

Tf(ω)2 P (dω) ≤
∫
Ω

f(ω)2 P (dω) (A.8)

If g(ω) is the limiting random variable in (A.6), it follows from Minkowski’s
inequality and Fatou’s theorem that∫

Ω

g(ω)2P (dω) ≤
∫
Ω

f(ω)2P (dω) (A.9)

If Tf = f , then Tnf = f for all n ≥ 0 by induction and the left-hand side
of (A.6) is constant. This implies f = g, which of course implies equality
in (A.8). A very useful converse is contained in the following:

Theorem A.2. (von Neumann Ergodic Theorem) Let T be a linear
operator on a Hilbert space H such that ∥Tf∥ ≤ ∥f∥ for all f ∈ H. Then,
for any f ∈ H,

lim
n→∞

∥∥∥∥f + Tf + · · ·+ Tn−1f

n
− g

∥∥∥∥ = 0 (A.10)

for some g ∈ H. If ∥f∥ = ∥g∥, then Tf = f and f = g.

(Riesz-Nagy 1955, Garsia 2001, Halmos 1956).
If T satisfies the Hopf conditions (A.7), then it follows from the same

arguments that one has both almost-sure convergence in (A.6) as well as
quadratic-mean convergence (A.10) for H = L2(Ω,F , P ). The importance
of Theorem A.2 is the second conclusion: Namely, that if∫

Ω

g(ω)2P (dω) =

∫
Ω

f(ω)2P (dω)

in (A.6), then one must have had g(ω) = f(ω) almost surely and hence
Tnf = f for all n ≥ 0.

A.3. Ergodic families and products of contractions. A set of measure-
preserving transformations { θa(ω) } is called an ergodic family on a measure
space (Ω,F , P ) if, whenever θa(B) = B within null sets for all a and some
B ∈ F , then either P (B) = 0 or P (B) = 1 (Sawyer 1966; the idea also ap-
pears in Riesz-Nagy 1956). A generalization of the Birkhoff ergodic theorem
is
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Theorem A.3. Let T = T1T2 . . . Tm where Taf(ω) = f(θa(ω)) where { θa :
1 ≤ a ≤ m } is an ergodic family on (Ω,F , P ). Then, for any f ∈ L1(Ω,F , P ),

lim
n→∞

f(ω) + Tf(ω) + · · ·+ Tn−1f(ω)

n
= E(f) a.s. P (dω) (A.11)

Proof. Since Taf(ω) = f(θa(ω)) for measure-preserving transformations
θa(ω), Tf(ω) = f(θ(ω)) is of the same form for

θ(ω) = θm(θm−1(. . . θ1(ω) . . .))

Hence by the Birkhoff ergodic theorem

lim
n→∞

f(ω) + Tf(ω) + · · ·+ Tn−1f(ω)

n
= g(ω) a.s.

for a random variable g(ω) that satisfies g(θ(ω)) = g(ω) a.s. It only remains
to show that g(ω) is a.s. constant.

Since g(θ(ω)) = g(ω) a.s., h(ω) = ϕ(g(ω)) for a bounded measurable
function ϕ(x) also satisfies h(θ(ω)) = h(ω) a.s. and hence Th(ω) = h(θ(ω)) =
h(ω) a.s. Since ϕ(x) is bounded, h(ω) is also bounded. Hence

E(h2) = E
(
(Th)2

)
= E

((
(T1T2 . . . Tm−1)Tmh

)2)
≤ E

(
(Tmh)

2
)

≤ E(h2)

by multiple applications of (A.8). This implies E((Tmh)
2) = E(h2) and

hence Tmh = h a.s. by the von Neumann ergodic theorem (Theorem A.2).
By induction, Tmh = Tm−1h = . . . = T1h = h a.s. Since {Ta } is an ergodic
family, h(ω) = ϕ(g(ω)) = Cϕ a.s. for all bounded measurable functions ϕ(x).

In particular this holds if ϕ(x) = I(−∞,λ](x) for all real λ, which implies
that I(−∞,λ](g(ω)) = C(λ) a.s. For each λ, either C(λ) = 0 and g(ω) > λ
a.s., or else C(λ) = 1 and g(ω) ≤ λ a.s. Let λ0 = sup{ r : C(r) = 0 } for
rational r. Then g(ω) = λ0 a.s., which completes the proof of Theorem A.3.

A.4. Ergodic families and components-in-sequence MCMC. We
next show how Theorem A.3 applies to the components-in-sequence MCMC
defined in Section 12. In Section 12, Taf(ω) is the result of a one-dimensional
Metropolis-Hastings Markov-chain update of the ath component ofXn ∈ Rm,
treating the remaining components x−a ∈ Rm−1 as parameters. The up-
date is defined in such a way that the one-dimensional conditional density
πi(xi, x−i) is a stationary measure of the update.
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We first show that Ta acting on Rm has π(x)dx as a stationary measure.
By definition, Taf(x) is the Markov operator on R1 corresponding to the one-
dimensional transition function pi(xi, x−i, dy) in (3.5.4). The corresponding
transition function on Rm is

pi(x, xi, dy) = pi(xi, x−i, yi)dyi δ(x−i, dy−i) (A.12)

for x ∈ Rm. Then for measurable g(x) ≥ 0 on Rm∫∫
g(y)pi(x, x−i, dy)π(dx)

=

∫∫ ∫∫
g(yi, y−i)pi(xi, x−i, yi)dyi δ(x−i, dy−i)π(dx)dx−idxi

=

∫ ∫∫
g(yi, x−i)pi(xi, x−i, yi)πi(xi | x−i)dxi πi(x−i)dx−i dyi

=

∫ ∫
g(yi, x−i)πi(yi | x−i)πi(x−i)dx−i dyi

=

∫
x

g(x)π(x)dx

This implies that Ta is π(x)dx-preserving on Rm.
Hence by induction T = T1T2 . . . Tm also has π(x)dx as a stationary

measure. This implies that the limits in (A.11) exist a.s., but does not yet
prove that the limits are a.s. constant.

For this, we need to show that the Ta (1 ≤ a ≤ m) form an ergodic
family. By assumption, each operator Taf(x) is ergodic in the single variable
xa for fixed x−a ∈ Rm−1. (We assumed in Section 12 that the acceptance
functions Aa(x) > 0 a.s., so that the one-dimensional Metropolis updates are
ergodic if the one-dimensional proposals are ergodic.)

If Taf = f , it follows from Fubini’s theorem, for a.e. x−a ∈ Rm−1, that
f(x) is a.s. constant in xa. It follows by induction that if Taf = f a.s.
for 1 ≤ a ≤ m, then f(x) is a.s. constant. This completes the proof that
Ta (1 ≤ a ≤ m) form an ergodic family on Rm, and hence completes the
proof that Theorem A.3 applies to the components-in-sequence updates in
Section 12.

A.5. Ergodic families and random mixtures. Let { pa(x, dy) : a ∈ I }
be set of Markov transition functions on a state space X that have the same
stationary measure π(x)dx. Define a random process Xn on X by, at each n,
choosing a value of a ∈ I at random with probability wa > 0 and then Xn

by
P (Xn+1 ∈ dy | Xn = x, a) = pa(x, dy) (A.13)
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Since the values of a are chosen independently with probabilities wa at each n,
it follows that

P (Xn+1 ∈ dy | Xn = x) =
∑
a

wapa(x, dy) (A.14)

The sample paths {Xn(ω) } of the Markov chains defined by (A.14) and
implicityly by (A.13) are the same, but (A.13) can be used to define a Markov
chain { (Xn(ω), An(ω) } that also has information about the states a ∈ I.

We consider the Markov chain Xn modeled by (A.14) first. Since the
right-hand side of (A.14) also has π(x)dx as a stationary measure, it follows
from Theorem A.1 that, if Pr(X0 ∈ dx) = π(x)dx, then

lim
n→∞

f(X0(ω)) + f(X1(ω)) + · · ·+ f(Xn−1(ω))

n
= g(ω) (A.15)

almost surely for any f(x) with
∫
f(y)π(y)dy <∞. Then

Theorem A.4. Suppose that { pa(x, dy) } is an ergodic family in the sense
of Theorem A.3. Then the limit in (A.15) is a.s. constant, and in particular
equal to the constant E(f) =

∑
a wa

∫
f(y)π(y)dy.

Proof. As in Section A.1, it is sufficient to assume that Ω = X∞ is the
infinite product in (A.3) andXn(ω) = X0(θ

n(ω)) where θ(ω) is the unilateral
shift on Ω. Also, by Corollary A.1, g

(
θ(ω)

)
= g(ω) a.s.

Similarly, ϕ(g(θ(ω))) = ϕ(g(ω)) a.s. for any bounded measurable func-
tion ϕ(x). SinceXn is Markov with the transition function p(x, dy) in (A.14),

h(x) = E
(
ϕ(g) | X0 = x

)
=
∑
a

wa

∫
y

h(y)pa(x, dy) (A.16)

Now h(x) is bounded because ϕ(g) is bounded, and by Cauchy’s inequality∫
h(x)2π(x)dx =

∫ (∑
a

wa

∫
h(y)pa(x, dy)

)2
π(x)dx (A.17)

≤
∫ ∑

a

wa

(∫
h(y)pa(x, dy)

)2
π(x)dx ≤

∑
a

wa

∫∫
h(y)2pa(x, dy)π(x)dx

=
∑
a

wa

∫
h(y)2π(y)dy =

∫
h(y)2π(y)dy < ∞

since
∫
pa(x, dy)π(x)dx = π(y)dy for all a. Thus the inequalities in (A.17)

are all equalities, which implies

Tah(x) =

∫
h(y)pa(x, dy) = h(x) for π(x)dx a.e. x, all a (A.18)
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Hence h(x) = E
(
ϕ(g) | X0 = x

)
= C(ϕ) a.e. π(x)dx, since pa(x, dy) is an

ergodic family.
By a similar argument, if ψ(x0, x1, . . . , xn) is bounded,

E
(
ψ(X0, . . . , Xn)ϕ(g(ω))

)
= E

(
ψ(X0, . . . , Xn)ϕ(g(θ

n(ω))
)

(A.19)

= E
(
ψ(X0, . . . , Xn)E

(
ϕ(g) | X0 = Xn

))
= E

(
ψ(X0, . . . , Xn)

)
C(ϕ)

Since functions of the form ϕ(X0, X1, . . . , Xn) for all n are dense in
L2(Ω,F , P ), it follows from (A.19) that

E
(
ϕ(g)2

)
= E(ϕ(g))C(ϕ) = E

(
ϕ(g)

)2
(A.20)

and ϕ(g(ω)) = C(ϕ) a.s. for all bounded measurable functions ϕ(x). Since we
can take ϕ(x) = I(−∞,λ](x) for arbitrary real λ, we conclude g(ω) = C(g) =
E(g) = E(f) a.s. as in the proof of Theorem A.3. This completes the proof
of Theorem A.4.

We can also model the Markov chain Zn = (Xn, An) formed by the
Markov chainXn together with the choice of transition functionAn in (A.13).
First, we extend the probability space Ω in (A.3) by setting

Ωe = {w : w = (z0, z1, z2, . . .), zi = (xi, ai) } (A.21)

where xi ∈ X and ai ∈ I (Halmos 1956). Define Xn(w) = xn and An(w) =
an as before. The transition function p(z1, dz2) corresponding to independent
choices An = a ∈ I in (A.13) is

Pr
(
Xn+1 ∈ dy,An+1 = b | Xn = x,An = a

)
= pa(x, dy)wb (A.22)

Then A1, A2, . . . are independent with Pr(Ai = a) = wa, and the conditional
distribution of Xn+1 given Xn and An = a is given by (A.13) or (A.22).

It is easy to check that π(x)dxwa is a stationary measure for (A.22),
and thus by Theorem A.1

lim
n→∞

f(X0, A0)(w) + f(X1, A1)(w) + · · ·+ f(Xn−1, An−1)(w)

n
= g(w)

(A.23)
converges a.s. whenever

E
(
|f(X0, A0)|

)
=
∑
a

waE
(
|f(X0, a)|

)
< ∞

Note that the left-hand side of (A.23) depends on A even if f(x, a) does not
depend on a, since the components Ai of A for i < n determine the current
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value of Xn. By using similar arguments as in the proof of Theorem A.4, we
can show

Theorem A.5. Suppose that { pa(x, dy) } is an ergodic family in the sense
of Theorem A.3 or Theorem A.4. Then the limit in (A.23) is a.s. con-
stant, and in particular equal to the constant E(f) =

∑
a waCa for Ca =∫

f(y, a)π(y)dy.

Proof. If we define θ(w) on Ωe by θ( (z0, z1, . . .) ) = (z1, z2, . . .), then by
Corollary A.1 the limit g(w) in (A.23) satisfies g(w) = g(θ(w)) a.s. Define

h(x, a) = E
(
ϕ
(
g(w)

)
| X0 = x,A0 = a

)
as in (A.16) for any bounded real function ϕ(r) ≥ 0. Then h(x, a) is bounded
since ϕ(y) is bounded, and, since ϕ(g(w)) = ϕ(g(θ(w))) a.s.,

h(x, a) =
∑
b

∫
X

h(y, b)pa(x, dy)wb

=

∫
X

h(y)pa(x, dy) (A.24)

for h(x) =
∑

a wah(x, a). Since (A.24) is the same equation as (A.16), we
conclude h(x) = C(g, ϕ) a.s. by arguing as in (A.17)–(A.18), and by arguing
as in (A.19)–(A.20) that g(w) = C(g) = E(g) = E(f) a.s. This completes
the proof of Theorem A.5.

A.6. Random-components-update MCMC. In Section 12, Taf(ω) =
f(θa(ω)) is the result of a one-dimensional Metropolis-Hastings Markov-chain
update of the ath component of Xn ∈ Rm, treating the remaining compo-
nents x−a ∈ Rm−1 as parameters. The update is defined in such a way that
the one-dimensional conditional density πi(xi, x−i) is a stationary measure
of the update. Random-component-update MCMC is defined by, at each
time step, choosing a at random with probability wa > 0 and applying that
update.

This is exactly of the form described in the previous section, so that
Theorem A.4 applies if the set { θa(ω) } is an ergodic family.

If we generalize (A.22) to

Pr
(
Xn+1 ∈ dy,An+1 = b | Xn = x,An = a

)
= pa(x, dy)wb(y) (A.19)

then the proof of Theorem A.4 does not carry over, since in general∑
a

∫
π(x)wa(x)pa(x, dy)dx ̸= π(y)dy
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The arguments in the previous subsection would apply if we chose the ath

block of coordinates (or the ath coordinate) with probability wa > 0 and
then a particular update of those coordinates with probability wab(x−a),
since then the update in the ath block of coordinates would be ergodic by
Theorem A.4.

References.

1. Chib, Siddhartha, and Edward Greenberg (1995) Understanding the
Metropolis-Hastings algorithm. American Statistician 49, 327–335.

2. Chen, Ming-Hui, Qi-Man Shao, and J. G. Ibrahim (2000) Monte
Carlo methods in Bayesian computation. Springer Series in Statistics,
Springer-Verlag.

3. Chung, Kai Lai (2001) A course in probability theory, 3rd edition. Aca-
demic Press.

4. DeGroot, M. (1989) Probability and statistics. Addison-Wesley.

5. Devroye, L. (1986) Non-uniform random variate generation. Springer-
Verlag, New York.

6. Fishman, George S. (1995) Monte Carlo: Concepts, algorithms, and
applications. Springer Series in Operations Research, Springer-Verlag.

7. Garsia, Adriano (1970) Topics in almost everywhere convergence.
Markham Publishing.

8. Gelman, A. (1996) Inference and monitoring convergence. Chapter 8 in
Gilks et al. (1996).

9. Gelman, A, J. Carlin, H. Stern, and D. Rubin (2003) Bayesian data
analysis, 2nd edition. Chapman & Hall/CRC, Boca Raton.

10. Gilks, W. R., S. Richardson, and D. J. Spiegelhalter (1996) Markov
chain Monte Carlo in practice. Chapman & Hall/CRC, Boca Raton.

11. Halmos, P. R. (1956) Lectures on ergodic theory. Chelsea, New York.

12. Hastings, W. K. (1970) Monte Carlo sampling methods using Markov
chains and their applications. Biometrika 57, 97–109.

13. Kolmogorov, A. N. (1950) Foundations of the theory of probability.
Chelsea Publishing, New York.

14. Liu, Jun S. (1998) Covariance adjustment for Markov chain Monte Carlo
— A general framework and the covariance-adjusted data augmentation
algorithm. Technical Report, Bell Laboratories, Lucent Technologies,
reference by Chen et al. 2000.



Metropolis-Hastings Algorithms and Extensions . . . . . . . . . . . . . . . . . . . . . . . . .49

15. Liu, Jun S. (2001) Monte Carlo strategies in scientific computing.
Springer Series in Statistics, Springer-Verlag.

16. Liu, J., and C. Sabatti (2000) Generalized Gibbs sampler and multigrid
Monte Carlo for Bayesian computation. Biometrika 87 (2), 353–369.

17. Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
and E. Teller (1953) Equations of state calculations by fast computing
machines. J. Chem. Phys. 21, 1087–1092.

18. Von Neumann, J. (1951) Various techniques used in connection with
random digits. Monte Carlo Method, Applied Mathematics Series 12,
National Bureau of Standards, Washington, D.C.

19. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery
(1992) Numerical recipes in C: the art of scientific computing, 2nd edi-
tion. Cambridge University Press, Cambridge, England.

20. Riesz, F., and B. Sz.-Nagy (1955) Functional Analysis. Frederick Ungar
Publishing, New York.

21. Sawyer, S. A. (1966) Maximal inequalities of weak type. Annals of Math.
84, 157–174.

22. Tierney, L (1994) Markov chains for exploring posterior distributions.
Annals of Statistics 22, 1701–1728, with discussion 1728–1762.

23. Zygmund, A. (1959) Trigonometric series. Cambridge University Press.


