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Abstract

This is the first complete study of regulator maps on motivic cohomology
from the standpoint of complex algebraic geometry. The classical Abel-
Jacobi map is used to geometrically motivate the construction of maps from
Milnor K-groups KM(C(X)) to Deligne cohomology. These maps are given
in terms of some new, explicit (n — 1)-currents. We study their behavior in
families X; and prove a rigidity result for the image of the Tame kernel, using
techniques from the theory of variations of Hodge structure. This leads to
an astonishing vanishing theorem for very general complete intersections.

The Milnor current formulas generalize to regulator maps (defined on
the level of algebraic cycle complexes) on all the cubical higher Chow groups
CHP(X,n), whose projections to real Deligne cohomology are (by involved
computations) shown to be compatible with the Beilinson regulator on niveau-
graded pieces. Connections with polylogarithms and higher Bloch groups are
explored in several ways: for example, (1) by means of higher residue maps
arising as differentials in relevant local-global spectral sequences, and (2) by
way of a new approach to computing certain relative regulators.

We generalize the Milnor currents in another direction to produce ex-
plicit integrals detecting rational inequivalence to zero, for 0-cycles in the
Albanese(= AJ) kernel on a product of curves; concrete examples are pro-
vided. More generally, we combine and extend the work of Green-Griffiths
and Lewis on higher Abel-Jacobi maps V;, and show that the above integrals
compute (essentially) quotients of the invariants ¥;(Z).



Preface

Complex algebraic geometry is the study of varieties, or the solution sets
of algebraic equations (possibly many at once), whose coefficients belong
to C. A classical question, which has seen a resurgence of interest (e.g.
[Grl], [GGS5], [L2], [RS]) in recent years, is that of rational equivalence of
algebraic cycles on a smooth projective variety X/C. For instance, suppose
we take two collections Z; and Z3 of N points (or 0-cycles) on X. When
can we algebraically parametrize, in one variable, a “path” (essentially n
simultaneous paths) between the two collections? That is, writing O :=
PL \ {1} for affine space, when does there exist an algebraic 1-cycle W €
Z1(X x O) such that

Z—Zy=aX(W - X x{0}) =75 (W - X x {o0}) ?

For dim¢ X = 1, this is just the question of when Z; — 25 = (f) for f €
C(X), and it is “solved” by Abel’s theorem (see §5.2.1 for a brief review).
In fact, this holds in higher dimension provided codimyx Z; = 1: the two
invariants ¥, :=cycle-class map and ¥i:=Abel-Jacobi map still completely
detect # 0.
rat

One of the “holy grails” of the subject of Algebraic Cycles /C, then, is
the explicit description of a series of Hodge-theoretically determined, higher
AJ-type maps ¥; (defined on ker(¥; 1)) which “completely capture” ratio-
nal equivalence classes (modulo torsion) of codimension p (> 2) cycles on a
smooth projective variety X. That is, their successive kernels should give a
descending filtration exhausting CHP(X(C))g. As in the p =1 case we can
define ¥y and ¥y, which are then summarized (see |[Gr3|) in the Deligne
cycle-class map

cp: CHP(X (k) ® Q — HF(X,Qp)), kCC

This is injective (a) for p = 1 (by Abel), and also (b) for k C Q (conjecturally,
according to Bloch-Beilinson). Otherwise its kernel may be huge, and so one
is naturally led into the arithmetic world in dealing with the field extension
k/Q. One can in fact exchange this for additional geometry by “spreading”
X D ZP/k over the generic point ng of some projective S/Q with Q(S) =
k, obtaining X D (P/Q. We shall usually assume for simplicity that the
coefficients of the defining equation of X belong to , so that one has X =
X X ns-
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Provided one is willing to assume a Bloch-Beilinson conjecture for quasi-
projective varieties (of which X x ng is a limit),

‘ep : CHP(X x 15(Q)) ® Q = H (X x g, Qp)).

Following [L2] and [GG5], in §5.1 we produce a series of invariants ¥, by
placing a Leray filtration on |a suitable modification of] H%p (X xns,Q(p)),
and composing the resulting “graded pieces” of ‘cp with the act of spreading.
So intuitively, the idea is to use the product structure of X x ng to chop up
the cycle- and AJ-classes of the spread ¢ of Z. The difficulty is in finding
explicit formulae for the resulting maps

U, : Gri, CHP(X (K)o — GriHZ (X x ng,Q(p)).

Incidentally one should not take the assumption of even the Bloch-
Beilinson conjecture lightly. There are very simple cases where it is not
known. For example, say we present a K3 surface X as a double cover of P2
branched over a smooth sextic curve with affine equation f(z,y) = 0. Then
for any z,y € Q not solving f,

Zx:y = ($7y7+ f($7y)) - ($7y7 Y f($7y)) € ker(c'D) g CHQ(X(@))a

since h1"?(X) = 0; but we are not aware of any proof that (some multiple
of) Z,, = 0. If BBC fails (for quasi-projectives) then the series U; is still
rat
(well-)defined but their kernels do not exhaust CHP(X (k))g. So without the
aid of conjectures, at present the best we can hope for is to detect Z # 0
rat

when ¢p(Z) = 0, by showing e.g. ¥o(Z) or ¥3(Z) # 0. Some concrete
examples are given at the end of §5.3.

More generally, what we find in Chapter 5 is that we can motivate a
very explicit recipe for (quotients of) the graded pieces [AJ(];, which is
moreover computable for X a product of curves, by studying AJ( in the
degenerate situation! X = (O",00") — where all but one Leray graded
piece is zero. We can compute this piece exactly, essentially by “pushing
it down” to integration of a current over integral cycles on the “base” ng
of the spread. These “regulator currents of Milnor type” define cohomology
classes (or at worst differential characters <= Deligne classes) on ng; and
the general philosophy of “pushing down” [AJ(]; to i-currents on the base is
what extends to X smooth projective.

Sticking with the degenerate situation now, which is to say relative cycles
on ( C ng x (O™, 90", we backtrack a bit from Chapter 5 to Chapters
2-3 and change notation ( — Z, and replace ng by any quasi-projective
(possibly projective) variety Y/C, so that we are now dealing with [Z] €
CHP(Y x (O",00"))g or (equivalently as far as cycle classes are concerned)

laffine n-space relative its faces. This is equivalent to projective n-space relative the
coordinate hyperplanes, or even essentially to the singular variety given by the union of
the coordinate hyperplanes in P"T!.
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with higher Chow cycles CHP(Y,n). (In fact, in the text we write X in place
of Y; we warn the reader that X has changed sides in the product.)

Again in this situation we can give formulas for AJ maps on CHP(Y,n)q
in terms of explicit currents “on the base” Y, Z +— (Tz,Qz, Rz) (where in
many cases one can omit all but the Rz). These are interesting in their own
right (rather than just as preparation “in the degenerate case” for Chapter
5), since they may be interpreted as realization functors or “regulators” on
motivic cohomology

[CHP(Y,n)g =] HY"(Y,Q(p) — HZP (Y, Qp)),

and so are referred to alternately as AJ and R. So we derived a formula
for these maps (§2.4), whose geometric motivation is given in §1.3 — 2.3
(for n = p) and §5.1.1 (for n # p). According to §3.1 our formula gives a
C/Q(p)-lift of the real regulator maps (see [Be| or [Ra])

HY " (Y,Qp) — HY (Y, R(p))

for which Goncharov wrote explicit real currents® in [Gol]. (The Abel-
Jacobi map given there was not correct.)

A very specific instance of these maps occupies our attention in Chapter
4 and most of 1 and 2 — namely, that given by setting p = n, Y = nx (or
Spec(C(X))), and usually dimg X = n — 1. The resulting invariant

R
K (C(X)) 2 CH"(nx,n) — Hp(nx,Z(n)) = H" " (nx,C/Z(n))

is called the “Milnor regulator” (see §1.2 for a definition of the Milnor K-
groups). Since the generators {f1,...,fn} of KM(C(X)) involve explicit
meromorphic functions f; € C(X)*, this is where we can really get our hands
on the regulator currents “ R¢’; in fact, the original motivation in Chapter 2
for the construction of Rz for Z € ZP(Y,n) with p # n, comes out of the
desire to get our hands on the so-called “higher residues” ResRy¢ for i > 2
and interpret them in terms of polylogarithms and Bloch groups.

Here is a concrete example of what a Milnor regulator current loooks
like, for n = 3. If f, g, h € C(S) are meromorphic functions on an algebraic
surface, let Ty = f~!(R™) (where R~ is considered as the directed path fToo]
on P!) and log f = the branch with imaginary part € (—x, 7] and jump along
Ty, and so on for g and h. On the other hand dlogf will mean df/f; they
are related by d[log f] = dlogf — 2midr,. Then if C is a “topological” 2-chain
(dimg C = 2) on S avoiding |(f)|U|[(g)| U|(h)], the period of Ry 4} on C is
by definition

/log fdlogg A dlogh + 27m'/ log gdlogh — 4r? Z log h(p).
c

CNTy PECNTNTy

*More precisely, we show our regulator lifts Goncharov’s exactly, while Goncharov’s
formula is known to agree with the Beilinson regulator on niveau graded pieces of
CHP?(X,n)q.
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These currents (as well as the formulas of §2.4) generalize and bridge the gap
between several maps in the literature, see [GG1]|, [L4], [C1], [Es]|, [MS1],
etc.

Nontrivial periods of Milnor regulator currents are very hard to compute
in practice, except when X is a relative variety like those considered in §3.2,
or when the periods come from residues. In fact, in Chapter 4 we prove a
vanishing theorem for the “residue-free” part of the map when X is smooth
and sufficiently general in its moduli space, which is to say any interesting
periods of the “holomorpic part” of the Milnor regulator arise arithmetically
and not geometrically, except for n = 2 and X and elliptic curve. This in
particular is a really beautiful result.

A Brisk Outline

We have been going backwards; let’s now reverse course and give a
section-by-section guide. This should be useful for the first three chapters in
particular; a coherent but somewhat stream-of-consciousness style seems to
have resulted from the desire to focus on not so much a series of results as a
web of interrelationships. At the outset (in Chapters 1-2) we wish to extend
the classical AJ maps to relative quasi-projective varieties X x (00", 000").
Why? Because these maps have the aforementioned motivic interpretation,
and motivate an understanding of AJ on spreads (and thus the ;).

In §1.1-2 we introduce the higher Chow groups CH?(X,n)|qg, which

are just a geometric realization of Hﬁf’l_n(X, Q(p)) in terms of cycles on
X x (O™, 00™), and specialize to the case n = p. In order to understand the
situation algebraically and analytically in terms of meromorphic functions on
X and its subvarieties, we proceed in two steps. We first break CH" (X, n)
into coniveau-graded pieces linked by geometric “residue” maps. The pieces
are subquotients of [[,cyi CH'(C(z),n — 1) and one has successive Res'
mapping (ker(Res’) C) CH"(C(X),n) into them. Second, to “explain” the
first two graded pieces we introduce the Milnor K-groups and the graph
isomorphism

n

KM (C(X)) ; CHMC(X),m),

and define the “holomorphic” or “residue free” subgroup

dim(X)

KM(X) =~ (im{CH"(X,n) - CH™(C(X),n)}) =7 '( ] ker(Res’)).
i=1

By partial degeneration of the local-global spectral sequence one shows that

it is enough to take ()}, where y = min{dim X, [%]}. Finally, after inter-

preting Res! in terms of the “tame” map of [BT], in §1.2.4 we attempt to
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arrive at a similar understanding of the Res’ on KM (C(X)) directly (alge-
braically rather than geometrically); we see the first exciting (but conjec-
tural) connections with polylogarithms and Bloch groups (of C(z), = € X*).

In §1.3 we start developing our geometric approach to the realization
functors (or regulators) Hyy "(X,Q(p)) — Hyy "(X,Q(p)) that will culmi-
nate in §2.4. We establish precisely the sense in which relative cycle-class
and AJ maps on relative cycles in X x (", 00") are possible, by turning
them into limits of topological cycles avoiding X x 90" Now computing
AJ(Z) always involves integrating forms over chains I' with OI' = Z. The
computational key here is that there is a standard way to write down I’
as a “geometric collapsing sum” (Z) (taking advantage of the fundamental
domain of C*) plus a membrane term T X (n-torus)C X x (C*)™; the rest
of the argument consists of Hodge-theoretic considerations. This procedure
has its roots in Chapter 8 of Bloch’s book [B1], where he does n = p = 2.
One can visualize 6 as a homotopy contracting the fundamental domains of
the various factors (=copies of C*) to {1}, one after the other.

In §1.4 we just restrict to nx x (0" d0"), and take AJ of the “multi-
graph”® 7 in the same spirit as we did for Z C X x (0% 00") in §1.3. the
result can be interpreted as a map KM (C(X)) — H%(nx,Z(n)) called the
“Milnor regulator”. Using the “standard homotopy” € we can compute (eqn.
1.4.1) this very explicitly in terms of a current on X (in its first, very prim-
itive form). So for the first time we have pushed an AJ map on a “product”
down to integration against a current on the “base” nx. We can tie all this
to the local-global considerations of §1.2 by asking: how are the AJ maps
on different coniveau “stitched together”? At least for codimension 1 (good
enough for n = 2, 3) we can answer that

[ATx (v)](d@) = 2mi[ ATy (Yrame()] (@)

using the Tame symbol. (Here & is an extension to X of a form « on divisor
V C X.) We can’t do codimension 2 residues for a while yet, because we
won’t have A.J formulas for CH" '(F,n — 1), n —i # n — 1 until §2.4.

In the first three sections of Chapter 2 we gradually abstract the milnor
regulator from the AJ map. First of all, however, in Chapter 1 we only
defined a map

o
& LPYx) \ 0,00} — Hp(nx, Z(n));

we must now show it kills the Steinberg relations (by which KM (C(X)) is
the quotient). We do this first in §2.1 geometrically and then in §2.2 more
analytically by exhibiting Rf, for f €Steinbergs, as coboundary-currents. In
§2.3 we discuss how to pair the local-global spectral sequences for coho-
mology of X via (a) currents and (b) compactly supported C*°-forms on
codimension-i points, in order to understand residues; the formula for Res!

3here f € ®"Z[IP%(X) \ {0, 0}] is a formal sum of “multifunctions”.
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takes the form Res!R} = QW\/—IR’Tame(f). Finally we introduce the notion
of the “holomorphic” part of the Milnor regulator

KM(X) — im{H" Y(X,C/Z(n)) — H" Y(nx,C/Z(n))}.

Now that we have pushed AJ on CH"(nx,n) down to a current on X,
in the last section §2.4 we write currents Rz for all [Z] € CHP(X,n); that
these do arise analogously from an AJ procedure similar to that in §1.3.4
is discussed at the beginning of §5.1. In order to define AJ on the level
of complexes z™(X,e), Deligne homology (|Ja], [L2])cannot be avoided. A
formula

' Re’Ri=R,

(2m/—1)i £ “"Rest(y)
for higher Res’ of Milnor regulator currents makes sense now, and there are
more conjectural connections with polylogarithms (as in §1.2.4). In §2.4.4 we
propose a simple procedure that would use these results to “lift” the single-
valued real cousins of the Li, (the generalized Bloch-Wigner functions £,,)
to C/Z(n)-valued cousins on ker(d) C B, (C).

That this lift works for n = 2 is proved in §3.1 as an application of the
main result there: that the composition

p

AJ TR
CHP(X,n)g — HZ(X,Q(p)) — HZ"(X,R(p))

identifies with Goncharov’s real regulator map r, and so with rge on
GriCHP(X,n). The other application of this fact is an interpretation of
the “vanishing theorem” of Chapter 4 in terms of real regulators. So lifting
rBe t0 a C/Z(n)-valued regulator, from this point of view, allows us to apply
infinitesimal-invariant theory to prove rigidity results that end up having
implications for the original real regulator.

§3.2 comprises some bizarre, but at points inspiring, attempts to compute
some periods of “Milnor regulators” on simple relative varieties. In §3.2.1-
2 we set up (in a rather ad hoc fashion) “relative Milnor K-groups” and
“relative regulator maps”

EM(C(X,Y)) = H" (x4, C/Qn)) . KM(X,Y) = H" (5 ,, C/Q(n))

by appealing (for motivation) in the case (X,Y) = (O"~!,00"1) to AJ
on CH™(C,2n — 1). In §3.2.3 we modify the relative KM-groups of the
(On—1,00"~1) so that linear factorization of terms is possible (in 'K™M); the
terms of the regulator become (classical) polylogarithms and we compute
an example. (The problem with 'K is that for n > 2 it involves getting
rid of the a A (1 —a) A ... Steinberg relations, which is perhaps somewhat
too ad hoc.) Now in analogy to §2.4.4/3.1.2, we show in §3.2.4 (for n = 2
and X = (P!, {0,00}) that if f satisfies certain conditions then its “abelian
symbol” Nt € By(C) actually lives in ker(st), and § [;° Re = L2(Nf) where
Lo is the Bloch-Wigner function. Finally in §3.2.5 we exhibit the Catalan
constant (a famous transcendental number) as a relative regulator period.
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In §3.3 we compare our regulator to yet another construction, by means
of a nice sheaf-cohomology computation in a double complex. It is shown
that over ny, taking sections of the Milnor-sheaf regulator K%X — Hh(n)

(defined using the product in the Deligne cohomology ring) gives a map
equivalent to the Milnor regulator we have defined, making ours “compatible”
in a certain sense with the product structure. The sheafified version has
appeared for instance in [Ra] (for n = 2) and [Es].

The last two chapters are far more linear in organization. Chapter 4
is a study of the “residue free” part of the Milnor regulator essentially on
families of varieties; by monodromy arguments the results have consequences
for fixed, very general (arithmetically uninteresting) elements of the family.
§4.3 is its heart, where the main theorems are proved for hypersurfaces (i.e.
codimension 1 complete intersections) in P™: roughly speaking, that a family
of symbols

{f;} € ker(Tame)[= H’(X;, K}',)]

has rigid (flat) regulator image, and that for o very general in PH(P", O(D)),
{ti,} € K, (X1,) C ker(Tame) C K, (C(X))
has trivial regulator image in
im{H""" (X, C/Q(n)) = H" ™' (nx,,, C/Q(n))} = Hyz! (X, C/Q(n)).

§4.1 and §4.2 are background on the theory of variations of mixed Hodge
structure. §4.5 extends the results to arbitrary codimension, in which form
they are stated right on the very page of the chapter. Here we used recent
work of Nagel and Dimca (see [N]), which extends Griffiths’ “residue repre-
sentation” (in [G1]) of the cohomology of a smooth projective hypersurface
by quotients of polynomial rings (=Jacobi rings), to smooth complete in-
tersections in any toric variety. §4.4 does codimension 2 in slightly greater
depth using results of Green [Gr2] on pseudo-Jacobi rings.

Finally we come full circle to the higher AJ maps and Chapter 5. Start-
ing again with relative affine space X = (O",00"), we introduce the use
of spreading to produce invariants — in this case for CHP(X (k)), via R
on CHP(X x ng(Q)). These invariants are just the Milnor regulator for
p = n (the spread of a zero-cycle on this X just being a multigraph ~y¢)
but e.g. for 1-cycles in CH3((0*, 00%)(k)) already we have something inter-
esting. Changing gears in §5.1.2, we take X smooth projective, and recall
Mumford’s theorem ([Mul], generalized by [Ro]) which implies the “infinite-
dimensionality” of the targets for the higher AJ maps ¥;. We summarize
Lewis’ construction (in [L2|) of the targets as limits of fimite-dimensional
Hodge-theoretically defined objects, and relate his approach to that of Grif-
fiths and Green (in [GG5]). In §5.1.3 we switch back to X =relative affine
space, formally compute Lewis’ target spaces and tie this to the maps in
§5.1.1.
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It doesn’t take much imagination to extend the computations for X =
(O",00") to X' = (P!,{0,00})™ — the considerations are just “combina-
torial”. However this turns out to be an important step, since X’ can be
thought of as a product of degenerate elliptic curves. §5.2.1-2 is a reworked
version of a talk where it is proved directly that Gr?CH?((P!, {0,00})%(k)) &
KM (k), and argued by degeneration why this is relevant to Gr2C H?(X) for
X smooth; §5.1.3 extends this to the case n > 2. In both cases the only real
depth comes from Suslin reciprocity, a simple proof of which is included as
an appendix. In §5.4 we make use of our formal computation of the targets
for the graded pieces of AJ (of the spread), argue that these are just more
Milnor regulators, and that they can be interpreted as differential characters
arising from membrane integrals.

This latter property then becomes a definition when we pass back to
X smooth projective in §5.3, for maps into (essentially) quotients of the W;-
targets GreH ?f (X x 1s,Q(p)), which look like Deligne cohomology groups
on ng with coefficients in a lattice (given by periods of holomorphic forms
on X). For X=C; x ... x C), a product of curves we find we can chop the C;
into (contractible) fundamental domains and produce a homotopy 0 exactly
as we did for C* x ... x C* in §1.3. This standardizes the computation of the
differential character, and Hodge-theoretic considerations let us push it down
to a current on the base ng. We apply this to £ x E (and E x E x E) for an
elliptic curve with complex multiplication (and defining equation /Q), and
exhibit O-cycles in the Albanese kernel which we can now prove are #* 0 by

rat

integrating a current (doing calculus) on the base of the spread.
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CHAPTER 1

Graphs as Algebraic Cycles

1.1. Introduction

Define over any infinite field k& the algebraic n-cube

Of = (B \ {1})" = (Bp)" \ 17,

with faces
o0y = Jpf.Op 1,
i,e
e1...e
11...]
sions pf : EIZ*1 — OF send (21,... ,2p—1) = (21,-..,€,... ,2n-1) , and so
1

and more generally subfaces p *DZ*E , where for e = 0, 0o the face inclu-

on. The n-cube is also equipped with projections m;, . ;, : L — DZ_K where,
e.g. for £ =1, m; sends (21,...,2n) — (Z1y--+ Ziy--- »2n). When the field is
clear we will omit the subscript k.

Let X/C be a smooth quasiprojective variety and f = {fio} € C(X)* a
collection of meromorphic functions; they make sense as maps into P! over
the generic point F = SpecC(X) = @{U C X Zariski open}, with the
caveat that the limit only makes sense under some functor like CH. Let
If| = U|(fi,o)| and consider the graph cycle in Z™({X \ |f|} x O")

Ve = Zna(fla,... s frna) ==

(D alids fras - s faa)ds (XN IED] 0 (X \ I} < 0.

In the next section we develop some infrasructure for understanding and
attacking the following basic questions:

(a) Under what conditions can the closure on X x " (of a suitable modifica-
tion) of ¢ be completed, by addition of more algebraic cycles, to a “relative”
cycle I'? Roughly speaking, this means that there should be a continuous
family of closed cycles I'¢, compactly supported on X x (O"\ N(oO")),
with lim._,o '« = I in such a way that fFe w — [pw for certain forms w.

(b) In that case, can we define an algebraic invariant similar to the Deligne
class for the completed cycle, and if so, what geometric information does it
carry? (For instance, graphs arise as spreads of zero-cycles on the relative

14
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variety ((J",00") and one may care about rational equivalence classes of
these.) This question is treted in §1.3-1.4, and motivates much of the subse-
quent work (Chapter 2).

(c¢) Can the conditions in (a) be expressed “algebraically”, in terms of rela-
tions on the functions or their “residues” — that is, can we avoid the geometry
of the graph?

Regarding (a), the following example (although trivial) is instructive
and gives a concrete feel for what is going on. The philosophy here is that,
provided components of a cycle I' € Z™(X x O") intersect subfaces X x
pf*D”*k (of all codimensions) properly, “cancellation” of their intersections
with (codimension 1) faces X x 900" should be sufficient for I" to be a relative
cycle.

ExampLE 1.1.1. Let X be a projective surface with f, g, h € C(X)*,
and consider a Zariski open neighborhood U of a normal crossing of compo-
nents Vi and V5 of |(g)o| and [(h)o|, respectively. That is, all other compo-
nents of |(f)], |(g)|, and |(h)| are tossed out from X, to get U. Henceforth
we also write V; for V; N U, and write p = Vi N V5 for the normal crossing.
Consider, over U \ V; U Vs, the cycle

’YU = (f7g7h) - (hvag)

(the superscripts indicate codimension of support). Its closure on U to 0 €
Z3(U x [3?) intersects all subfaces properly: over Vi \ {p},

P N [(Vi\ {p}) x 00°] = (£,9,0) = (0, f.9)
and this may be cancelled there by the addition of

=220 - (1,5 220 € 20\ (o)) x O

where for example the second term means

(faxsr.5 222) (@G < )| 0 (040 ) <)
counted with multiplicity —1. Similarly, over V5 \ {p} one has
0 [(Va \ {p}) x 00%] = (£,0,) = (b, £,0) = =3, N [(V2 \ {p}) x 9]

where we define

o (2 ey e

).

e = Tz z—1

z

Tz (z=fh)(z—1)
(There are other choices.) Now 7_‘1/2 and 'y—‘l,l intersect subfaces properly, but
there is more to cancel at {p}: writing a = f(p),

9, 1 zZ—a zZ—Q zZ—aQ
('Y‘l/l +'Y‘1/2) N (p X 6D3) = (Z,Zj,()) +(Z,0, )—|—(0,Z, e

z—1 -1
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= (v = {p x (21,22,23) | (1 = 21)(1 = 22) (1 — z3) = 1 —a}) N (p x OO?)..

SoputI' :=~0 + 7‘1/1 + 7‘1/2 + ’yg on U; as a cycle, I' has zero intersection with

all faces of the algebraic cube (components of U x 0(1*), and the supports
of all of its components intersect all subfaces properly. This is what we are
after. We were lucky here, because closures of cycles intersecting subfaces
properly do not in general retain this property: one needs to “move” them by
adding a “trivial” cycle before closing them in this case. In order to pin this
statement down we introduce two presentations of (cubical) higher Chow
groups.

1.2. Extending Graphs to Higher Chow Cycles

1.2.1. Bloch’s higher Chow groups. For any smooth quasi-projective
X/k define

c?(X,n) :=the subgroup of ZP(X x ") generated by subvarieties inter-
secting all subfaces X x p?*D"*l properly,

i.e. in the right codimension. (Note that anything can happen at 1" if
one looks at the closure of such a cycle on X x (P')".) We will sometimes
refer to these cycles as “admissible”. Let

dP(X,n) :=the subgroup of ¢?(X,n) generated by subvarieties pulled back
from X x O0"! by some ;.

We neglect these cycles and write
ZP(X,n) =P (X,n)/d?(X,n),

which forms a complex with differential
n .
O ==Y _(=1)" (p5°* = pi*) : ZP(X,n) = ZP(X,n — 1);
i=1
in particular note that dgodp = 0 so we have a complex (the Bloch complex).
Define (after [B3]) the higher Chow groups as its homology:

CHP(X,n) := H,{ZP(X,)}.

Our cycle groups and Chow groups are always ®Q (i.e. modulo torsion); we
write ZP(k,n) for ZP(Spec(k),n), and note in particular that ZP(C(X),n) =
ZP(nx,n) is where the graph cycles 4 live. Since they are trivially dz-closed
they define elements [y°] € CH™(C(X),n). In general a “dg-cycle” or “higher
Chow cycle” on X will mean a dp-closed element of ZP(X,n).

There is a subcomplex of “antisymmetrized” cycles with the same ho-
mology groups (|[MS2|). Let ¢ € S, x (S2)®" act on " by permut-
ing, then inverting coordinates (this is consistent with composition in the
semidirect product), and let sgn : S, x (S2)®" — {£1} = Zs be given by
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the product of characters sgn - [[sgn;. There is an idempotent operator
Alty, : ZP(X,n) — ZP(X,n) given by the formula

1

Alt, Z = Sl Z sgn(o)c* Z.
TES X (S2)®n

Let CP(X,e) C ZP(X,e) be the subcomplex generated by the image of Alt,,

with the differential induced by inclusion. Alt, commutes with the differen-

tial:

Alt, 1052 = O Alt, 2,

and so not only the inclusion above but also the projection ZP(X,e) Alte,

CP(X,e) give maps of complexes.

PROPOSITION 1.2.1. (Levine) The inclusion CP(X,e) — ZP(X,e) is a
quasi-isomorphism of complezes.

The content of this statement is that closed cycles are equivalent (modulo
a boundary) to an antisymmetrized cycle: 9sZ =0 =— Z =032' +C. In
fact, applying Alt to both sides one has AltZ = dgAltZ' +C = 0gAltZ' +
(Z2-0Z') = Z+ 02", whe Z'=(A2) -2

COROLLARY 1.2.2. (a) 082 = 0 = [Z] = [AltZ], from which it
follows that
(b) The projection ZP(X,e) Alte, CP(X,e) is quasi-isomorphism.

Writing pf* for intersection with the corresponding face, notice that
2n - pi* Altn Z = Alty,_10 2,
and so if Alt,Z =C € CP(X,n) is Op-closed, then

1 1
0= —0pAlt,Z = —Alt,,_108Z = p* Alt, Z = pi*C
2n 2n

and so C N 90" = 0 “on the nose” (as a cycle), which is of course stronger
than 9gC = 0. This observation will be useful later in obtaining “relative
cycles” in X x (O", 000").

Now we introduce the coniveau filtration. From now on X denotes a
smooth projective variety (unless otherwise specified). Writing |Z| for the
support of a cycle (its underlying subvariety), let

N'ZP(X,n) = {Z € ZP(X,n) | codim|r}Z|>i }.

Note that N'ZP(ny,n) = 0. We will also use the notation “N’X” and
“X\ N'X” to denote lim ;3 xi(UTa) and lim 1, 3o xi (X \ UTa), with the
same caveat as in the case of nx(= X \ N'X). (This will be useful when
we want to ignore the behavior of a higher Chow cycle over subvarieties of
codimension > 7 in X.) It seems attractive to think of our example in 1.1 as
a cycle in a double complex: writing y' = 7‘1,1 + 7‘1,2 and Grﬁv = N*/NitL,
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Gr{ Z3(X,3) — GryZ%(X,2) —— 9570 = —9py!
GryZ*(X,3) — Gr¥ Z%(X,2) YL ———— Oyl = 09572
Gri Z3(X, 3) 0 7?2

REMARK 1.2.3. We should be cautious here: one can’t get by with a
double complex picture in general (all we have is a filtered complex). The
horizontal differentials are not always defined, though they are defined on
the kernel of the vertical differentials. More generally, by a snake-lemma
type argument on the sequence

i
Ntk
(which is exact on each term of the complex, not in the derived category),
one obtains maps:

Ntk Z(X, ) = N'Z(X, ) — ZP(X,e)

N’ ;
Hy (s 2" (X, 0) = H,(N"*kZP(X, o))
from what appear to be “diagonal chains” in the double complex (which have
zeroes in the first ¢ columns and look like cycles up to the (i 4 k&)-th column),
to the (i+k+1)-st column. In the simple normal-crossing situation of the ex-

ample above, the map H3(%—2Z3(X, o)) — H3(N2?Z3(X,e)), which is a priori
only defined on 49 +~1, reduces to a horizontal differential on y. How-
ever, one can certainly imagine a situation where 49 = (f, g,h) — (h, f, g)
has essential singularities and is still admissible — e.g., if components of
1(F)ol, 1(f)eol, and |(g)o| all interesect in a point. Consequently dy° can
have a nontrivial N2Z3(X,2) component. (On the other hand 49 will not
be admissible when |(f)ol, |(g)o], and |(h)o| all intersect in a point.)

EXAMPLE 1.2.4. It turns out that 79 + ! + 2 is also a boundary: in
terms of the “double complex” picture,
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Gri Z3(X,3) ~°
Grl Z3(X,4) — GriZ3(X,3) n° Yot (n +78) ="
Grk Z3(X,4) — Gr% Z3(X,3) Nt —————————

Here we put

o ) (2 )

(4 =0 —w) = (=R Lo (=21 -w) —(1-g)
”"’“””‘[(f”’ (z — W)(w — ) )Vﬁ(f”’ G~ 9)(w—9) )V]

H{eumaol [Ta-==-0-n},].

88770 = [(f’gﬂh) - (h’f’g)] +

1 [ 2=y =9
8877a—[(f,2,z_1>‘/1 <f,z,z_1>vr2

and (9377,} = — {(21,22,23” H(l —z)=(1- f)}p + (Z’z%

<z,ﬂ, (Z_f)(z_h)> ] =70+,
2 "

and we are working modulo d*(X,e). So 70 + ! ++2 = 95(n° + n') and
this example is “trivial”; there is a great deal of cancellation of cycles in
the computations. Their messy nature certainly motivates the work below,
which will enable us to see by merely glancing at 4° that this example was
trivial to start with.
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1.2.2. Moving lemma, the local-global picture and “residue”
maps. In the event that a graph 4° € Z"(nx,n) has inadmissible closure 9,
we want to be able to modify 7° by addition of a “trivial” cycle in Z"(nx,n),
in order that its closure meet subfaces properly (and so yield an element of
Z™(X,n)). Im(0p) gives us a concrete subgroup of trivial cycles to work
with, and there is the following standard result, for any quasi-projective
k-scheme X.

PRrROPOSITION 1.2.5. [Moving Lemma (Bloch)|. Let U C X be Zariski
open, and let r, : ZP(X, o) — ZP(U, ) be the restriction. Then the complex
ZP(U,e)/im(r, ) is acyclic.

COROLLARY 1.2.6. The map ZP(X,)/ZP(X —U, ) — ZP(U, o) induced
by v, is a quasi-isomorphism.

PROOF. ( —> in the d.c.): If Zy € ZP(U,n) is a Og-cycle then the
lemma = 2y =r,Z+0Jgpf. Apply Op to this = 0 =052y = 0pr,Z =
r,082. 50 0gZ =0 (mod Y).

(—— inthed.c.): If I' € ZP(X,n) has image a boundary [r,I' = dpz|
then the moving lemma = z =r, 2+ 038 = r,I' =0z =r, 082
and sor, (I' —0pZ) =0 = I' =032 (mod Y) [is itself a boundary]. O

REMARK 1.2.7. In particular one could take X = X D (X \ N'X) =U
or (as in our applications below) X = N*X D (N'X \ N1 X) =U.

More concretely, if Zy € ZP(U,n) has 02y =r, I, for I' € ZP(X,n—1) [e.g.
if Zy is dp-closed on U], then there are § € ZP(U,n + 1) and Z € ZP(X,n)
such that

Zy =050 + ’I“UZ.

Notice that (one may choose Z so that) the “moved” cycle r,, Z has admissible
closure Z on X and the same dp-boundary as Zy (over U). Applying Alt,
to both sides gives immediately an identical moving lemma for C?(U, e).

REMARK 1.2.8. In fact Bloch [B4] proved this lemma for cycles in the
simplicial complex, where (O™, 900") is replaced by

( Z:{(to,...,tn)eAZ+1|Ztizl} : 8&”:U{zi:0}>,

but the cubical version also follows from the homotopies constructed there.

We can now use the coniveau filtration and the moving lemma to pro-
duce “residues” of 4° which will be obstructions to completing its “move” to
a higher Chow cycle. Associated to N* there is a 4""-quadrant! spectral se-
quence with Ef'™(r) = Gri, Z"(X,q—p), EV"(r) = HP9(Gri, Z" (X, —e))

'For consistency with the literature ([B3] in particular) we now switch to cohomo-
logical indexing, by simply placing the higher Chow complex in negative degrees; e.g.,
CH®(X,3) is now H™3(Z%(X, —e)) instead of H3(Z*(X,e)).
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and converging to E% I(r) =: Gri, CH"(X,q — p). We sketch how this is
constructed. The sequence

0— NHZ'(X,—e) = N'Z"(X, —e) = GriyZ" (X, —e) =0
induces an exact triangle (for every 1)

i
ag

H*(N'™Z7(X,~e)) ~ H*(N'Z"(X,~9))

" i
By '(r) = HY(GriyZ"(X, —e),do = 35)

where the connecting homomorphism 7% again comes from a snake-lemma
argument (and we increase * by 1 when applying it, and thus with each trip

around the triangle). Then d; : E{’*_l - Ei“’*_z is given by ﬁi“ o 'yi and
one has a “derived” triangle

H*(N'"T1Z7(X, —e)) i H*(N'Z"(X, —e))
U * U
Im(af™) Im(at)

v By

Ey*™'(r) = HY(EY" ", d)

where b, 85, ¥4 are induced (respectively) by of, B! o (ad)~1, 4i. (Now
1 itself increases by 1 around the triangle, namely with each application of
f5.) So dy is essentially B2 o () Loyt (since we are now only operating
on elements which ; take to the image of o), taking B3 ™" — E;+2’*_Z_1.
Iterating this process gives the successive pages of the spectral sequence (e.g.,
see [HS]), which does not degenerate at E. (Also this demonstrates that
one needs, in addition to (E1,d;), some global “patching” information to
obtain ds.)

Invoking the corollary to the moving lemma with (formally) X = N*X,
U= (N'X\N"X) =[1,cxi 1w, we have HP~4(Grk Z"(X, —e)) = HP~9(Z"P(U, —e))
and therefore

Byt = [] OHP(C@).q ~p).
TEXP

With this replacement, the first triangle laid out flat is a special case of the
“localization sequence”; Eqg'® is often called the “local-to-global” spectral se-
quence. For the 0" page we can also write Eb™9(r) = Heexr 27 P(Clz), q—
p) (with do = OB), so that “E]"* = E;"”; this gives the connection with graph
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cycles, which live in ker(Ep) C Eg’_n(n) = Z"(C(X),n), and it is on these
cycles that we now proceed to describe d; and dy explicitly.

Write r; for the restrictions to X \ N**1X (rq restricts to nx). As 4% €
Z™(C(x),n) is trivially dg-closed, the moving lemma applies to yield ' €
Z™(X,n) with rgT? = 1 —058, well-defined up to N' Z"(X,n)+05Z" (X, n+
1) . Again since dgy® = 0, 95I'° lands in N'Z"(X,n — 1)/0gN'Z"(X,n);
passing to the quotient Gr]lv would give di[['°]. In view of the corollary to
the moving lemma one obtains an equivalent class by restricting to (N')X \
NZ2X: this class in [Heext CH" Y(C(z),n — 1), represented by r, 0z, is our
definition of Res![y"]. Alternatively,

Res'[y] := [r1.05(+° — 956)].

In the event that this is trivial (7 € ker(d;)), i.e. 95I'° = 0in Gri Z™(X,n—
1)/0gN'Z™(X,n), we have 9gT'° = 95"t (mod N?) for some 't € N1 Z"(X, n).
So we have a dg-cycle T’ —T'! € %—SZ”(X, n), well-defined up to ambiguities
ogZ™(X,n + 1)+ {cycles on %—;} + N2Z"(X,n). Clearly dg(I'° —T'!) lands
in N2Z"(X,n — 1); passing to (a subgroup of) Gr% modulo the image of
the ambiguities should give a class d3[G]. In fact, dg(cycles on %—;) is just

a codimension 1 version of the construction in the last paragraph and so
= 4m(dy), while 95 N2Z"(X,n) = im(dy). The corresponding element of

[T cE"*(Cy),n - 1) / Res' | [[ CH"'(C(z),n) | ,

yeEX? reX?

represented by r205(I'° — '), is denoted by Res?[y°]. In a (not entirely
correct) picture:

Res

o opI? 40 Res'y®
0%
R
Il (0 - T z ® . Res?y"
(modcyclesW (modRes

withogW = 0) ofcyclesW)
More generally, there is a series of maps

Res’ : ker(Res' ') ¢ CH"(nx,n) —

[ cE(Cx),n — 1) /im(Res") + ... + im(Res" ),
TEX
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and we define
ThesCH™(nx,n) := ker(Res").

The process begun above for Res? for v € ‘7:f1{es tells us how to take Res'*! of

70 € Fk.o Inductively we obtain I°—~T'+.. . £T" dz-closed in NNi—ilZ”(X, n);
we take its Jp as an element of Z"(X,n) and pass to Griy'. At some
point this process must terminate because dim X < oo; if all Res’ are 0 and
70 € ) Fies then clearly one has IO —T'' 4. .. £ 1M X gy _closed in Z(X, n)
restricting to [yY] on nx, and we say that [y°] € imCH™(X,n).

That is, ﬂ}"ﬁes is just an explicit description of the “top-graded piece”
of CH™(X,n) under the coniveau filtration, or equivalently its image under
the edge-homomorphism (which is simply restriction to 7yx).

We can improve the bound on “termination” of the Res’. With the re-

minder that we work ®Q (mod torsion), according to [MS2] there is the

CONJECTURE 1.2.9. |Beilinson-Soulé|. CHY(F,m) = 0 for 2¢ < m
(where F is a field).

The version with any smooth (quasi-)projective X replacing F would
then follow from the moving lemma and spectral sequence above. We post-
pone the proof for the known cases ¢ = 0,1 until it is relevant in an example
below. An obvious consequence of the full conjecture is triviality of the Res®
on CH™(nx,n) for 2(n —4i) <nm—1ori> (n+1)/2; in other words we have
the

COROLLARY 1.2.10. Ifn >2, F&t CH"(nx,n) = imCH"(X,n) fori >
min{25} dim X + 1}. (This is a conjecture for n >5.)

1.2.3. Interpretation of codimension-1 residues via the Tame
symbol. For n > 2 let KM(F) denote the quotient of the abelian group
Q"Z[PL \ {0,00}] by the Steinberg relations: the subgroup generated by all
permutations of

1R ®...0a, + 1 Rwu®...0a, — 01f1QRas®... R ay,

R®a®...0a, + @ ®...0a, woQ(l—a)®...0a,.

(For n < 2 just put KM(F) := F* and K} (F) := Z.) We shall write
elements of ®"Z[P!\ {0, 0o}] additively (e.g., a or a1 ®...®aqy) but elements
of the quotient (“symbols”) multiplicatively (e.g. {a} or {ai,... ,an}). A
fundamental result of Totaro [T] says that the graph homomorphism

7 @"Z[P'\ {0, 00}] —=+ Z"(nx,n)
given by

f:Znaf1a®---®fna'_>7f
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descends to a well-defined map on Milnor K-theory and in fact induces an
isomorphism:
— . M = n
7 KM (©(X) — CH" 1)
Pulling the ffi{es back to Milnor K-theory along 7, for n > 2 we write (the
first “=" conjecturally for n. > 5)
Flalgm (C(X)) =7~ (imCH"(X,n)) = KM (X).

Res™™n

Applying the moving lemma to ¢ we obtain v := ¢ —d5 with good closure
fy_§ € Z™(X,n). Since vy is surjective, there isa g = > 0g1a ® - .. ® gna with
Vg = 0B, and Totaro’s result == g is a Steinberg relation. So one may
move {f} by a Steinberg relation in such a way that the closure of its graph
intersects subfaces of O™ properly (simultaneously at all divisors of the f;, —
though one should note that subtracting g may both remove and introduce
divisors).

EXAMPLE 1.2.11. On P! = X we can modify 2@z by (-1)®z -z Q2.
This is a Steinberg relation because {z,z}{-1,2} ' = {-z,z} = {%,2} =
ha)t = {1 - 3,3} = Lin K)/(C(P)).

T
We summarize:

PROPOSITION 1.2.12. For every f € ®”Z[IP’(1C(X) \{0, c0}] there is a Stein-
berg relation g ({g} = 1 in KM(C(X))) such that, with f' = f — g,
N € Z™(X,n). This may be completed to a (0p-closed) cycle in CH™(X,n)
ezvactly when {f} € KM(X) c KM(C(X)).

In light of this, it would be extremely useful to have an “intrinsic” descrip-
tion of KM(X) (and F KM (C(X))) via kernels of (higher residue) maps
defined directly in terms of the functions {fin} € C(X) (rather than the
associated graph cycles). We can do this immediately for .7-}1{88; it turns out
to be very difficult beyond this, though we will sketch one possible approach
following the examples below.

Using the last proposition it is easy to define the “Tame symbol” ([BT],
[Goz2], [L4))

Tame) : K)(C(X)) » [] KM 1 (Clx)).
reX!?

We can always choose representatives of a class in KM in good position, like
f’ above. Fix & € X! corresponding to an irreducible divisor component of
one (or more) of the f! . No two functions in the same term (= «) of such
an f’ share = as a divisor component, unless another function in the same
term is = 1 there. These latter terms will get mapped to 1 € KM | (C(x))
(that is, thrown away as regards residue at this z). Otherwise we map

flcz®--~®fncz’_>(_]-)iord:L‘(fioc)'flcz|ﬂc ®---®f/lijl®"'®fna|ma
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where (for each ) ord,(fia) is nonzero for at most one 7. Repeating this for
all z gives the map; see [Go2] for a more algebraic (equivalent) definition.?
From the form of this definition it is immediate that the diagram

amel
KM (C(x)) — I] 5 (C))
reX!t
|y =~ [y
Res!
CH"(nx,n) IT e (neyn - 1)

reX!

commutes. Combining this with the corollary to Beilinson-Soulé, we have
the big non-conjectural point of this section:

PROPOSITION 1.2.13. Forn = 2o0r3, KM (X) = ker(Tame'): that is, v¢
can be moved and completed exactly when {f} has trivial tame symbol.

We give a series of “examples”; the third one demonstrates this latter
proposition.

EXAMPLE 1.2.14. The cycley? = (f,g,h)—(h, f, g) of the introduction is
e for {€} = {f,g,h}{h, f, 9} " = {f, 9, h}{f, h,a} = {f, 9, h}{f,9,h} " =
1. Totaro’s result says v° is automatically trivial (in im(dg)), at least on
CH?3(nx,3), or equivalently (since it has good closure) mod N, in view of
the moving lemma.

EXAMPLE 1.2.15. Let X/C be a surface and set n = 4; choose f, g, h, k €
C(X)* and Vi and V3 irreducible components of |(f)o| and [(g)o| (respec-
tively) with normal crossing, so that v° = (f, g, h, k) has good closure I'° on
U = X \ {all other divisor components}. It is assumed V; and Vi are not
components of [(h)| or |(k)]. (As in the previous example we now simply
“replace” X by U, V; by V;NU, so that V1NV, = {p} isa n.c.) Then we have
[representatives] Res!y? = (9,0, B) gy, — (fshsk)lny, € Haex 7Z3(C(x), 3),
and ;70 = V1 {(g,h, )|y } — 2 {(f, h, k)|, }[€ N523(U, 3)]. Suppose next
that g @ h ® k and f ® h ® k are Steinbergs — say, g = 1 — h on V; and
f=1—hon V5. Then (using Totaro) there are cycles 'in € Z3(ny,,4) with
837Y1 = (g, h, l<:)|,,v1 = Res%/l'yo and 83’)/{/2 = (f,h,k)|m,2 = Res%/ﬂo. Since,
e.g., (g,h, k)|m,1 =Ty, diI'%, the moving lemma says we could have chosen

®The point is that one can write down a map T : A7 C(X)* = [[,cx1 Ay~ Clz)

inducing Tame'. If G = 0 cuts out Z locally, then it follows from the definitions in [Go2]
or [BT] that

n — £ ITI_, orda (i)
Tx{fly,fn}:H H {lea---7F]$13"'7_17"'7Ff} )
j=1,1<ky .. kj<n

where the —1 occurs in the spaces ko, ... ,k; and F* := m |z
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4% to have good closure T'} (and we assume they do). So dz(I'° —T'1 +T}) €
N2, which in this simple case means the cycle (which is Res?y?) lives over
{p}. Also in this case 9gI"” makes no contribution, so by abuse of nota-
tion ()% are not dp-closed) one could write formally Res%/mvgzp('yo) =

Res:,l) (’yYZ) - Res:,l) (’le), which suggests 6BRes?,70 = 6Res},’y¥2 - 8Res};y¥ =
Res}ﬂ’y{/2 — Res},@’y{/l = Res},Res%/2 70 — Res},Res%,lfyU = Res! o Res'y? = 0.
This is what the proof that Res?y? is closed would look like in a double com-
plex, and it is essentially the right proof for this example. So we get a class
in (a subquotient of) CH?(p,3) = CH?(C,3); an example of a nontrivial
class in CH?(C,3) (though unfortunately trivial in the subquotient, being

in im(Res')) is 4(2,1 — 2,1 — £) + (=, %, 1 — i), parametrized by z € P!

EXAMPLE 1.2.16. For X a surface we will be more interested in n = 3
and KJ!(X) than in the n = 4 situation above. Let f = fi ® g1 ® hy — ho ®
f2 ® g2, where |(f1)o| and |(f2)o| share a divisor component V' (ordy fi =
ordy fo = 1). Assume that v¢ has good closure and Tamey {f} = 1; this
latter is equivalent to saying that g1 ® h1 + hy ® go =: Oyf (temporary
notation) is a Steinberg. We will now complete 75 along V directly. To
take Og of 7f along V', write 75 N 90, = (0,91, h1) — (h2,0,g2) and pull
these back (with correct signs) along the face maps (z1,22) — (21,0, 22)
and (z1,22) = (0,21, 22) to obtain (087¢)ly, = (91,h1) + (h2,92) = 7, -
Since dyf is a Steinberg, Totaro’s result immediately hands us a cycle in
Z2(C(V),3) that kills (85%¢)|p, , but we will instead show how to do this
slightly more directly. Since CHQ(EI?C(V),aEI?C(V)) =~ KM(C(V)) (see ap-
pendix), we can find a set of meromorphic functions on curves {C;, F;} in
D?C(V) with 305 (F;) = (g1, h1) + (h2,g2) and F; = 1 on C; N 902, Recall
that m3 sends (z1,29,23) — (z1,22); pulling back (C;, F;) along w3 gives a
collection {C; x DES,Fi = Fi(z1,22)} on D?C(V). Defining G, := 2= and

z3—1
. 1
’YY = EL%XD (G;) € Z*(C(V'),3), one finds that 637¥ = (g1, h1)+(h2, g2).
Now one might consider another V' as in the last example, and compute
Res?)evmvf’)/f € CH'Y(C,2). But in fact the following

LEMMA 1.2.17. CHY(C,n) =0 (Vn > 2).
ensures us that we will have no difficulties in killing this class and finishing
the completion of y¢ to a higher Chow cycle.

PROOF. For [Z] € CH(C,n), recall that 952 =0 = [Z] = [Alt, Z],
where Alt,Z N 0O" = 0 as a cycle. The point is that we can replace Z by
a divisor Y n;W; on 0" with cancelling face-intersections. Now either by

n .
Lefschetz (1, 1) applied to > niWi—i—{ Ezriiiog; Elaszzdidet; (IPI’{IIIL E;ﬁ } or
by thinking of (0" as A™, there is a rational function F' cutting out »  n;W; =
(F). Since for each face 0 = p&O" 1 N Y n;W; = pf*(F), F restricts to
a constant function F o pf on each face. Were these constants different
for distinct faces, the components of |(#')| would not intersect properly the
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subfaces where these faces meet. So one may assume F' = 1 on d0". Let
G = et FEnein) o (et then it follows that d(G) = (F) = Alt, Z =

Zn+1—1

Z + ogl. ]

REMARK 1.2.18. It is entirely possible that the curves C; intersect cor-
ners (say 21 = 2o = 0) of d00? in the above “rational equivalence”. Since
F; =1 at such an intersection, the construction of 7}/ then — 23 =1 at
its corresponding corner intersection, so it is perfectly admissible.

1.2.4. Interpreting the higher codimension “residues”. Now we
outline a conjectural strategy for achieving objective (c) of the introduction,
namely an alternate description of the }"}i{esKiV[ generalizing what we did
above for ¢ = 1. For any field F', the Goncharov complex (see [Go2] or
[Go3])

5 n—2 5 n

G"(F,8) :=By(F) —> By 1(F) @ F* — ... — By(F)® J\ ,F* —— N\, F*
(where the last term is G™(F,n), situated in degree —n) gives a projective
resolution of KM (F). Each B;(F) is a quotient of Z[PL] by a subgroup of re-

lations R;(F) on the i*" real (single-valued) polylogarithm £; (=generalized
Bloch-Wigner functions). For {z}; € B;(F), o({z}i Ayi A ... Nyj) =
{z}ici®@xz Ayt A... Ayjfori>2and (fori=2) d({zlo @y A... Ayj) =

(1=xz) Az Ay A...Ay; is just the standard map st (whose image gives the
remainder of the Steinberg relations).

Assuming the Beilinson-Soulé conjecture, the subcomplex

S™(F,0) := Alty YN cuEHNCT(FG) + D 9CHF ) N\ C(F,S)
0<2i<j<{ 0<2i<j<t
(iaj)_*_(il’jl):(n’e) (’i,j)—l—(’il,jl):(n,f—i-l)

of C™(F,e) (consisting of certain decomposable elements) is acyclic, so that
the homology of the quotient complex

A*(F,e) :=C"(F,e)/S"(F,e)
still computes the higher Chow groups. For example, for n = 2
S*(F,e) = ... » CY(F,1) \ C(F,3) — CY(F,1) \ C*(F,2) —» C'(F,1) \ 95C(F, 2).

“Extending” work of Gangl, Miiller-Stach, and Zhao ([GM], [Zh]) we con-
jecture that the following formulas give well-defined maps of complexes
pn(e) : G"(F,e) — A"(Fe):

pn(l) {x}e—nt1 ® Y1 A ... Ayap_¢1) := parametrization by (IP)I)K_” of

29 Zo—n z
j:Altn (1_Z171__7"'71_ 7]-_ 7z17"'7Z€—n7y17"'7y2n—€—1>7
21 Zl—n—1 Zl—n
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and  pp(n) (Y1 Ao Ayn) = Altn(y1,- .. 1Y),

where p, (¢ — 1) o6 = dp o py(¢). Note that these formulas are really only
defined apriori on the level of representatives t ® y1 ® ... ® Yo, ¢ 1 €
@2 *Z[PL\ {0, 00}], so it would be more proper to say that there are maps
pn(f) inducing (conjecturally) well-defined p,(£); the reader may check di-
rectly that p commutes with differentials. We also note that the map py,(n)
gives the same class in CH™(nx,n) as the graph cycle when F' = C(X).

REMARK 1.2.19. It’s quite impossible to get a map on the level of com-
plexes G"(F,e) — Z"™(F,s) (even p,(n) would fail to be well-defined be-
cause relations y; @ y2 + ¥} @ y2 — Y1y @ y2 do not go to zero — they go to
C'(F,1) \ 9gC*(F, 2)).

More conjectures arise in the attempt to employ a local-global argument
to induce out of this a global picture on X. According to Goncharov ([Go2]|,
[Go3]) we want ideally to work with a double complex

GM(C(X),0) — [] 6" ' (Clz),0 —1) — [ ¢"*(Cly),e —2) — ...
rzeX?! yeX?

—e.g., forn =4 and X a 3-fold,

3 T 2 T
A CXx)* IT Ac@): IT Acw)— ] c=)*

3 ~— reX! yeX? z€X3
——
5 (5 ) {5

L

2
By(C(X)) ® A\ C(X)* = [1 B:(C(x)) ® C(x)* = [T B:(Cy)

A zeX!? yeX?

5 [5

T

B3(C(X)) ® C(X)* IT Bs(C(x))
I zeX!t
)
B4(C(X))

— and take G™(X, ) to be the associated simple complex® with differential
d &= T and natural filtration “by columns” 'N*. For example, entries in the
boxed terms would give an element of 'N'G*(X,3). 'N* would then induce

3To fix intuition here, H™{(G"(X,—e))g is then supposed to be isomorphic to
griKi(X)o = Hiy ™' (X, Q) = CH"(X,i)(q)
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the spectral sequence ('Eqs’®) of this double complex, which has d; = T, ds
given by the dotted arrow, and more generally

Tame’ :=d; : {ker(di_1) C K}'(C(X)} = [] 6" (C(z),n — 1) /| Jim(d;)

reXt j<i
We want to compare the filtration Ft,  KM(C(X)) := ker(Tame’) with
Fhess Dy showing Res’ o p,(n) = p,—i(n — 1) o Tame® in the appropriate
sense. This would follow from the existence of a (commuting) map of exact

triangles (and thus of spectral sequences):

H*('N"'G*(X, —e)) — H*('N'G* (X, —e)) H* (N1 Z*(X, —e)) — H*(N'Z*(X, —e))

NSNS

=[] #°(G*(C =[] cuE*(C
rEX? rEX?
Here the map on FEj’s is supposed to be induced by the maps p. So the
problem reduces essentially to constructing maps: H*('N'G*(X,—e)) —
H*(N'Z*(X,—e)). We first indicate very explicitly how this should go and
then point out the (rather serious) technical obstacles concerning the defini-
tion of the maps 7" and thus of G*(X, e).

We begin with a cycle [= (§£T)- closed] in'N'GP(X,n) consisting of rep-
resentatives &', ¢, ... of classes on diagonal terms [[, . yvi GP*(C(z),n),
[yexin GP~ =HC(y), n), ... in the double complex. Since §¢! = 0, dp(p(£Y))
0in JT,cxi AP *(C(z),n — 1) and so dp(p(¢')) = s* = 9ps’ = 0, which
(with acyclicity of S*) == 3 §* so that dg(pé — S*) = 0; applying the
moving lemma gives 1’ := p&¢! — S + 95C* with n¢ € N*CP(X,n). We con-
jecture a moving lemma now for “fractional linear cycles” (= im(p)), saying
that we may choose C* and S’ so that ° = p('¢?) for some '¢' = €' — §¢* +
{relations in [[GP~/(C(z),n)}. Set j =2(p—i)—n—1, k=n—p+i+1,
and assume for simplicity that T is smooth. If '¢L = {flx @ g1 A ... A gj,
then on X \ N**2X, 9pnilz = dpp('EL)

Zk—1 /
7]-_ 7Z17"'7zk—17917"'7gj>
k-2 k-1

:83Alt<1—z1,...,1—

T

= Alt (1—21,... ,1——,21,... ,Zk,Q,f,gl,... ,gj>

k-2 =z

J
f .
+ZZordy(gl)Alt <1—z1,... ,1—i,z1,... s Zh—13G1s -+ 1 Gls -+ 1 Jj
y

2l
yeT =1 k—1
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= p{(0+T)("¢L)}, and since we knew the generic part over = was 0 to begin
with from our choice of '¢* above (£¢ won’t do), this is just pT'("¢%). More
generally dgn’ = Opp('€t) = pT'("¢") (in an ideal world where all T are smooth
at all y); the main point is that p commutes with residues.

Next let ¢! 1= £ £T¢", and consider p("'¢™") € [T, c xi+1 CP7 71 (Cly), n).
Since §("¢" 1) £ T("¢") €relations “in” [yexi+ GP~=1(C(y),n — 1), we have
Dup('€+1) = pd(1€HY) = SHILT (%) = 571 £0p(8), 50 that I (£p(€)+
p("€t1)) = s'! and we once more use acyclicity of S* and the moving
lemma to write an element n't! = p("¢'t!) — §¥*1 + 95C**! with good clo-
sure, and dg(£ni £ nt1) = 0. Again, assuming n**! can also be chosen so
that 7't = p("¢it1) = p('€'*! — §¢+1 4 relations), one should obtain on
X\ N3 9g(nt £ itl) = pT("¢+1), and so on. If not from the previous
argument, it is clear from the course of this one that p should induce a map
of spectral sequences commuting with all the d; (as well as homomorphisms
from H™"('N'GP(X,—e))g — H"(N'ZP(X, —e)) for all 7). Consequently
we would have T%ame - }"}i{es (if not 22, which was shown for ¢ = 1); although
at present the theoretical picture is unsound, this is still a working principle
for doing computations.

Referring back to the picture of the weight 4 “double complex”, the first
problem arises in defining the map

3 2
7: JT AC@)* - J] Acw*

reX1 yex?2

Suppose z contains the codimension 2 point y and is singular there; writing
N : Z — 7 for the normalization, the components of N'"!(y) =: Uy; give
coverings y; — y. In order to take the residue Ty (fi A fa A f3), one first
computes T}, on 7 and pushes the results down to y using norm maps. But
these are only available on the level of Milnor K-theory: in the appendix we
will show explicitly how to construct homomorphisms

Nenyew @ K (Cwi)) = KES(C(y));

this also follows abstractly from the existence of a transfer as in [BT]. In
general (for the whole “diagram”) it is expected that T is defined on at least
vertical cohomology; Goncharov (in [Go2|) hints that one can then still
proceed with the above constructions in the derived category, but we have
not pursued this. The much more serious problem is the conjectural status
of norm maps on the remainder of the complex G*(F, e) (even in the derived
category, again see Goncharov), so that e.g.

7: [ B2(Cl@)) © Cla) — [ Ba(Clw))
zeX! yeX?

is not defined as such. However, we emphasize that for purposes of intution,
as well as computation in specific examples (where T is smooth at y for all
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codimension 1 and 2 points concerned), this picture is still quite useful (e.g.,
see the end of §2.4).

1.3. Abel-Jacobi for Relative Cycles

1.3.1. An excision lemma for relative cycles. Define the subgroup
ZP(X x (Om,00™) C ZP(X,n) of relative (algebraic) cycles Z by the
requirement that Z N 00" = 0 as a cycle (sometimes written Z - 90" = 0);
that is to say, the face intersections cancel (and Z intersects all subfaces
properly). Besides 1.1.1 we have the following

ExXaMPLE 1.3.1. (a) For any higher Chow (dp-)cycle Z € ZP(X,n),
Alt, Z provides a relative cycle representing the same class in CHP(X,n).
(For instance Z might come from moving and completing a graph cycle if
the Res’ vanish.)

(b) More specific: if {f} € ker(Tame) C K34(C(X)), for X a curve, Bloch
[B1] showed how to complete ¢ to a relative cycle (in a slightly expanded
sense) without moving. In fact we lose nothing by moving (or for that matter
a more restrictive definition of relative cycles), which gives us ¢ € Z%(X,2),
which we complete to a dg-closed I'. Now add degenerate cycles (€ d?(X,2))
to “transfer” face intersections from oo to 0. Calling the result IV, dgI" =0
combined with p*(I") = 0 = p*(I" N ({p} x 02)) = pB* (1" N ({p} x 02);
that is, the face intersections at z; = 0 and z9 = 0 are identical over each p €
X. For a particular p, say we have TN ({p} x 000?) = {(a,0) + (0,a)} x {p};
then subtracting {p} x (2, 1=%) = {p} x {(1 = 21)(1 — 22) = (1 — @)} cancels
this intersection. We’ll have more to say about this technique toward to end
of the section.

NoTATION 1.3.2. (“The Lefschetz-dual perspective.”) Let
0" = (P!, {1})" = ((B")",I"),

orr = J pt.cr!
i,e

(warning: 0 in what follows usually means topological boundary; the above
formula is an exception!). We will want to recast relative algebraic cycles as
limits of topological (9-closed) cycles with compact support on X x ((1" \
8@”). These topological cycles can still have boundary at X x I™; all dif-
ferential forms we shall use pull back to 0 there. (Note also: sometimes [
will be written in lieu of (P!)™.)

MORE NOTATION. Let € > 0 be “small” and
- - 1
N (oO") = {(zl,... ,zn) € 0" | 2| < eor > —for some z}
€

Now set

0" = 0"\ N.(00In);
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this is an important bit of notation since Z N (X x () indicates throughout
the “excision” of Z (Z minus its intersection with a closed e—neighborhood
of the faces). We also write

Br = 0"\ N,(00")  and

T2 .= THO0") := ON.(9CI) = aCIn.

1, e=0
-1, e=

This is a union of tubes around faces: set p(e) = { . Then

7! =UT! ( j > where

7;1(?>:{(Z17 7Zn)€|jn

looks like S! x (17!, Their intersections look like 2-tori (S1)? x 172 over
the subfaces:

(5 ) =m () (5 )saemem—ome () e

Notice that (77, TZ+1) ~ ((S1) x (Ot 900" %)). Finally, define

o]
N} (f) ::{(zl,... ,2y) € O

o o
= 7;})(‘7’) and N! :=U N} (§>#NE(6D”)\8D”,

1
P =6 nd <l < o g £
€

1
0< |zi|p(e) <€ and € <|z;| < - for j;«éz}
€

o]
N? ( “ e ) = {(zl,... ,2y) € O7 ‘0 <z, [PLe) = |z, [Ple2) < e, etc.}

o o
o €1 €2 1 €1 1 €2
0<er<e
o

with N2 their union, and so on. We write mx and m for the obvious
projections from X x o (possibly composed with the inclusion of Z); d will
always denote dim X.

LEMMA 1.3.3. Let Z € ZP(X x (O",00")) be a relative cycle, where X
is compact. Then for eg > 0 sufficiently small there is a continuous family
{Zc}ec(0,e0) Of topological cycles such that
(a) Z. has support on X x I and is O-closed as an object on X x ((1"\ 901").
(b)) Z2=Z. on X x O (i.e. modulo chains with support on X x N.(9CI")).
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(c) writing (by (b)) Z. = ZN (X x EI_?) +We, [y, A" dlogzi Ay — 0 as
e = 0 for all C*®°-forms a € Q?;(prn)(X).

Sketch of Proof. The idea is to construct the chain W, € C.(X x T2) so
that W, = d(ZN[X x 7)) = ZN(X x T}) =: R, i.e. with boundary just
the intersection of Z with the tube. (Note that this is reasonable since R}
is at least a topological cycle — as Z and (X x T}) both are.)

For ¢y > 0 “sufficiently small” we give an heuristic procedure for “shrink-
ing” R!, to zero. Filter the chains C.(X x 7.1} by subgroups Cy(X x T!) so
that the graded pieces are Cy (X X (T, TEH))i= Co(X X T2) /Co(X X TET)].
Since Z intersects the subfaces of LI properly, all intersections with subfaces
p«0"~% come from first intersecting with some face p,[0"~! ¢ 0" (no “cor-
ners” are allowed). By taking €y > 0 sufficiently small we can ensure the
same thing for intersecting with the 72) Therefore it is enough to kill Rio
as a cycle R, on X x (T,72), and deal with any “residues” that arise
from additional boundary (in X x 72) of the chain we use to kill it. Since
R} ~ St x {cycle} on each “component” of X x (7:,72), the resulting
“residue” cycle in X x 72 will be homologous to S} x S x {cycle}, and so
on. Since the “toric” factors of the resulting classes are uninteresting for all
i (this is essentially a consequence of proper intersection), all that is at issue
are the “X x 0"~% factors, the support of which will tend to ZN (X x O0"~%)
as we let € — 0. So it makes sense to try to “project” this shrinking back out
to 7'6’0 and use this to produce the bounding chain that “pushes” our cycle
into the next T+,

More precisely, there are maps (for 0 < €1 < €)

pg(e_>;<o,q]x7g(e_>% N ()
1 1 1

e\ P
€ (Z1yene s Ziyoen y2n) »—>(zl,...,(—> Ziyeov s 2n)
———
|zi|p(e) =€

which we summarize by

defined by

Pl (0,e] x T2 = NL .
Let

o

W! =Pl (Z2n(X x NL ));

since supp { Z N (X x T})} tends to S¢ x {Z N (X x 90")} as e — 0 (bring-

ing + and — components together) we must have W} = Rl + R? , where

R? € C.(X x T72). This is a cycle since both W/, and R}, are; also, as
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1 — 0 its support — S x SL x {Z N (X x Up, 0" 2)}, which is of lower
dimension (this is in lieu of the 4+/— pair annihilation above). Writing (for
0<e < 60)

R, = |J R,
0<er<es
define
o
P2 (0,e] x T2 — N2
by analogy to Pell, and let
VVEQ2 = PG%*(RZSE2);

then OW?2 = R? + R2. If, say, R® = 0, then we put W, := W} - W2 so
oWl =oW! —W?) = Rl = Zn (X x T!) exactly, for any 0 < € < ¢p. In
general W, = W! — W2 + W3 — .. proving (a) and (b).

Now let V' be any (irreducible) algebraic subvariety of X x O™ intersect-
ing all subfaces properly, and let V. =V N (X x ﬂ?"”) Then

m
/ /\ dlogz; A7y
Ve

for 8 a C*°-form on X, because the proper intersection condition prevents
A" dlogz; from having worse than log poles (since no two z;’s share a di-
visor component). (One can then use a polar [ argument locally to show

lim < 00
e—0

convergence.) From the previous discussion, W! may be treated as (S!)? x Ve,
where V is essentially the product of such a V; with a narrow band (of width
bounded by a positive power of €). Therefore

1 n
m/vw/\dlogzi/\ﬂ}a R~ eq/ w —0

where w has at worst dlog poles by essentially the same argument as above.

Finally we sketch how to deal with (sub)face intersections at 1", which
may not be proper. In the proper case, a component Y of supp(Z) inter-
sects a face 0" !, e.g. 2o = 0, at say z; = 1. let mY be the projection
of Y to {1 = 1} C (P)™; we construct a chain WO by letting z; vary
slightly on 7! between Y N 7! and mY N T!. Integrating A" dlogz; A «
first in the 2z;-direction then on S!(23) we get (2my/—1)e x {convergent [}
as before. If Y intersects (improperly) a subface (0”72, e.g. 2o = 23 =
0, at z; = 1, then we have no residue because the S! enclose a double
pole. O

In fact the sublemma we used above on V. is so important we restate it
for reference in subsequent sections.
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LeEMMA 1.34. If Z € ZP(X,n) is a higher Chow cycle and X is compact,
then lim,_,q fzm(XxE]n) A" dlogz; A T« is convergent for any C-form c.

REMARK 1.3.5. If X is quasiprojective then we must take « to be com-
pactly supported. (We may also be able to get by with “holomorphic vanish-
ing at the boundary™ if X = X — Y then these are the Q¢ (nullY) forms of
King.) Intuitively, this is because we must treat the original Z as a “relative
cycle”: to understand the cohomology class

[2] € H((X —Y) x (O",00"))
we compute the dual homology class
[ZE] € HZ(d—I—n—p)((X’Y) X (|jn \ 8|jn))’

in order to do this we must integrate forms representing classes in H?~"(X,Y)®
H™(O" \ o0™) on Z, (which now involves an extra “residue” component
around Y'). We'll do this carefully in the next section for graph cycles over
nx-

1.3.2. The basic homotopy. Now we establish the basic dictionary
for what will be essentially a reworking and generalization of Bloch’s regu-
lator construction in Chapter 8 of his book [B1], which corresponds to the
casen=2,p=2,d=1 (X a curve).

...AND MORE NOTATION. The lemma gives us an homology class

[Ze] € H2(d+nfp)(X X (|jn \ 8|jn)) = H2d7(2pfn)(X) ® Hn(((C*, {1})71)’
clearly
Z. ~cyclex x (8™ + stuff on 17,

and this homological equivalence will be provided by an explicit homotopy
below. Let T denote the branch cut in logz on C* along the negative real
axis R~ (the point is to avoid {1}). Sometimes 7' will also indicate its
closure, which defines the generator of Hy(P' — {1}, {0,00}) dual to [S'] €
H,(C*,{1}). Define a “topological normalization”

N:D—C

where D is just the closure C* \ T" with the left and right-hand limits not
identified, so that Z := N ~'(z ¢ T) is one point* while N=!(z € T) =

*Generally speaking, Z always denotes one point € ds with V(%) = z, even for z € T
(2 would mean 2zt or z7); this Z is our notation for definitions. The “tilde” notation
generally means one lift; the main exception is T =T+ —T~. However when one has a
lift 77 of a graph and specializes to the part of the lift over, say, those x € T, it becomes
necessary to write f(z) = f(z)* — f(x)~, breaking the above rule. This is just to forewarn
the reader.
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{zT,27}; that is, N (T) consists of the two disjoint open segments T+
and T'~. We write

R N

T:=0D=T"-T + 0.
In this simple case (n = 1) the homotopy is given by choosing any C°° map

0:0,1] xD—C
sending
0,Z—2z and 1,z2—1
so that 0(z) = 0(t, z) gives a path from z to 1 in C*. Also observe that the
chain 0(z%) — 0(27) =: 61 (2) — 0~ () is a circle (S!), where we have defined
maps
6F :[0,1] x T — C*.
Most importantly, we write formally “06(D) = 0(9[0, 1] xD)+6([0, 1]x0D) =
C*+01(T)—60~(T)” (ignoring stuff at {1}as we shall usually do) which means
that for a topological (0-closed) cycle I' with compact support on C*
IT)=T+07(CNT)—-6(I'NT)

where I := N'~1(I) is its lift to I.

More generally (working on (C*)™ for n > 1) let T, be branch cuts for
log z; along C* x ... x R™ x ... x C*. Writing D" for the formal closure of
(C*)™ \ UT;, as above (this should be thought of as a sort of fundamental
domain for (C*)™), we have maps

N:D" — (C)”
taking
N
T T — Ty
so that

o = S (1T - 1) = S (1),
which (as a chain) is taken to 0 by A/. We define various maps/chains
0iy..ip + [0,1]F x D" — (C*)"
by formulas

91(21,... ,én) = (9(t1,21),z2,... ,Zn),

912(21,... ,2n) = (9(151,21),9(152,22),23,... ,Zn),

and so on (note that we often omit the parameters ¢; in the argument).
Again certain restrictions descend to subsets of (C*)™, e.g. by restricting 619
to 7,7 NT,, we have

05 :[0,1)% x (To, NTs,) — (C*)"
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and more generally 0;'"7F =: #%. For z € Ty, N...NT, , the formal sum

01000
(considered as a chain)

Y (=nlies(z)
81yeeeySp=+,—

yields a topological k-torus (S1)¥. Since all these constructions may be
crossed with X, it makes sense to take the preimage Z. of Z. under ' and
make the following

CLAIM 1.3.6. 301(Z) = Z. + 0, (2. NT,,) — 07 (2. N'Ty,).
We just have to interpret the terms of
061(Z) = 61(Zc N D" [x[0,1]]) + 61 (Z:[ND"] x ({0} — {1})),
the second obviously being Z. (mod I™). The first term is
S(-1i0(Z N T,) = S (1) {91(26 NTH) — 61 (2, mTZ;)} .
i i
for i # 1 the Z-coordinates (on D") of Z. N T," and Z.N T, are the same:
so (0(t, 21) Z9...,2p) is the same on the two (z; annihilates the difference
between z; and z; ). On the other hand for i = 1 this is 0, (Z. N T,,) —
0, (2 ﬂTzl) as promlsed.

Similarly, one writes formally (mod I") “9612(D") = 612(9D" ) +612(D" x
00, 1]%) = 32,(=1){012(T5) = 012(T5 ) } +601(D*) —62(D")". Again, this only
makes sense when arguments are intersected with a compactly supported
topological cycle. As above, the 7 # 1,2 terms of the sum are zero. Now the
cycle we “intersect with” is not Z, but Z.NT,, and similarly 6,(Z.NT,,) =
02(Z. NT) — 02(2Z.NT;;) = 0. Therefore

6912(26 N T21) =60 (Z~€ N Tzl) + 912(2,;5 N Tz1 N Tzz),
and similar reasoning yields

00123(Z N Ty N Tsy) = 012(Z N Ty NToy) — O23(Z NT, NTy)
+013(Z. N Ty, NTy,) + 0193(Z. N Ty, NTo, NT,)
= 012(Z.NT,, NT,,) +Z Wsies,.(Z.nT,, NT,, NT,,).
If n =3, then adding
01(Z:) — 012(Z NTy,) + 0103(Z NTo, NT,) =: 0(Z2),

we have
90(Z.) = Z. +Z W03, (Z.NT,, NT,, NTy,)

Let T,, = T,, N...N 1T, , so that [T,] represents the one nontrivial class
H.(O" 00") = H,([P* — {1},{0,00}]"). Then we have established the
following general formula (modulo 1™):
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(Z) =2+,

—

-1)%65 . (Z.NT,), where

9(26) =t (Z~e) + Z?:1(_1)i 91...(i+1)(ée N Tzq n...n le)

In words, € pushes Z, down to z; = 1, with discrepancy arising from Z.NT},
which we then push down to z; = 1, and so on (I" serves as a sort of topo-
logical trashcan). In a picture over R,

.+
. . 1
original graph - - - =, <- - - circle
gets "pulled to" - - - —gﬁ
Z1:1 _____

AN

“circle is "pulled
to". ..

.. .22=1 (and so on)

We’ll record what exactly the boundary is at 1" for some specific examples
later.

1.3.3. Triviality of the cycle-class map. We now enter the Hodge-
theoretic part of the section. Topologically,
Y (=106 (2 NT) ~ mx (2N Ty) x (ST =: Tz, x (SH)",

l..n
S
where T'z_ is clearly a (topological) cycle on X (Z, avoids “0T;,” as the latter
is contained inside 000™). Specializing now to the case p = n, if Z, = T,
comes from a graph completion I' € Z"(X x (O",00")), then we will show
Tz is in fact a topological boundary. We do this by proving that I'c has
trivial cycle class on X x ((J" \ 900"), i.e. that for all closed C°° forms
o€ Q2 M(X),

n
/ /\dlogzi Amya = 0.
re

In fact it is sufficient to show

/ /\ dlogz; Aty — 0
(X xr)
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/ 2/ o+ — 0
T. rn(xx0e) We

by the lemma, and we have the following simple rigidity argument: as the
homology class of I, is not changing, neither is the integral, so it must be 0
for small € > 0.

Now we split « into types: o = ag + a1 (both d-closed), where

ag € Qi(_og’d(X) and «; € FT Q2N (X)),

as € — 0 since then

Since all pieces of [the support of] I' N (X x ﬂ?) are algebraic,

n

/ A /\ dlogz; A ka1 =0
n(X x0Or)

by Hodge type. On the other hand, I' itself splits into “two” parts:
D=7+ 7
i>1
where the 4* are localized over codimension ¢ > 1 points € X*. However,

-k (dfnad) —
Iy 0 =0

(since d = dim X') by Hodge type and so

/\ dlogz; A Ty, = 0.
)

€

/(Zi>1 yHN(X <07

Therefore, writing

n
/\ dlogf := Z mjdlogfi; A ... Adlogfy;

and
X€:= X \ supp {ﬁ'fﬂ (X X NJ@@”))}

(note all the aforementioned z € X" are contained in the compliment X\ X¢),
it suffices to show®

/ /\ dlogz; A g = / Adlogf A ag — 0
FeN(X x[17) ¢

for all 9-closed «q of pure type (d — n,d).

Now recall that any h = Y mjhi; ® ... ® hp; may be brought into
general position h’ by addition of a Steinberg relation g (our f already is
but it doesn’t hurt to develop the addtional theory now). For such an h’,
A" dlogh’ = 3~ m;dloghy; A ... Adlogh;,; has log poles along codimension 1

’The “~” means we are throwing out integrals over pieces of v¢ which are supported
over X \ X¢ but not in X x N, (8L0™). This only happens when the graph has multiple
components, and these irrelevant integrals obviously go to 0 with e. Anyway, what we
now show is the thing in the box.
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points z € X!, while A" dlogg = 0 since dloggAdlog(1—g) = ﬁdg/\dg =
0. So without even having to choose our representatives (or move h), one
may define a dlog map on the level of ®”Z[IP’(%(X) \ {0, 00}] that descends to
a map on Milnor K-theory

Adlog : K'(C(X)) = lim  H°(2%(log D)) =: H"(Q% (log))
DcX

(abbreviated “dlog”) and commutes with Tame:

dlog

KN (C(X) H(Q% (log))

Tame Res

I1 KM (@) 2% ] 7002 (0g)).
reX! reX!

Since I above was a graph completion of 7, {f} was already in ker(Tame)
and so A" dlogf has zero residues. Therefore by duality it defines a class
[A"dlogf] € H™(X,C) = H™™4(X,C)V.
In particular, if « = df € le(_o?’d(X) is exact, then

lim A"dlogf AdS = —lim A"dlogf A 8
€0 [ xe e—=0 Jgxe

=~ lim ;1 /m Res, (A"dlogf) A it = 0.

Now obviously any form in the image of dlog has, on 5y, periods in
Z(n) = (2n/—1)"Z; in fact we can verify the stronger statement that the
class

[A"dlogf] € H™(X,C) N H"(X,Z(n)),

as follows. If da = 0, then (working away from the singularities of A"dlogz;)

0= / A"dlogz; Ad(nya) = / A"dlogz; A Ty«
() a0(Tc)

= / A"dlogz; AN mya £+ / A"dlogz; A Ty«
Te (S1)xTp,

:/ A'dlogf A o + (27r\/—1)n/ a.

I,
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So the class [A" dlogf] defined by integrating against A" dlogf, is equivalent
to integration over an integral chain (times (27y/—1)").%

Now consider the periods of a (d-closed) holomorphic form representing
this class: [w] = [A" dlogf] € H™Y(X,C) N H*(X,Z(n)), where w € Q"(X).

If we assume [w] # 0 then wy = —-——w and its conjugate @y repre-

@rv-1)"

sent nontrivial classes in H™(X, C) contained, respectively, in the subspaces
H™(X,C) and H%*(X,C). Since H™® N H®" = {0}, these classes are dis-
tinct. But the periods of wy are integral, so wy’s (conjugate) periods are
the same, and so they represent the same class in H" (X, C), a contradiction
= [w] = 0 = [A\"dlogf]. So its class on ny must also be 0, and since
H°(Q%(log)) — H"(nx,C) it follows that the form A" dlogf is identically
zero. (Note that for d = dim X < n this was clear to begin with.) This
completes the proof that Tp, is a boundary (which implies, incidentally, that
its limit 7t is one as well).

In fact we might have showed above that A" dlogf had to extend to a
holomorphic form as follows: otherwise,

n
iy w— /\dlogf e H°(Q% (log)) — H"™(nx,C)

gives a nontrivial class, which is impossible since on X we have [w] =
A" dlogf], which = [i; w]n,) = [A" dlogf],).-

For later purposes (in §1.4)we give a proof (see the corollary below) that
A" dlogf = 0 starting from the weaker hypothesis that {f} € ker(Tame)
(so that A" dlogf € ker(Res)), i.e. v¢ € ker(Res'). (Above we've assumed
more, since the existence of I'¢, and .". of Tt , assumes completability of g,
i.e. ¢ € ker(Res') for all i.) It will help to keep in mind the following
localization exact sequence for cohomology (where V' is an arbitrary union
of divisors):

- @H‘T}(X) G_y, Hn(X) i:;X Hn(nX) Res hﬂH{;—H(X)
U U
F”H”(X) F”H”(nx)
e ()
HO(QY) = lim HO(@% (log V) —2 {im(Res) € [ (22 (log))
reX!

Since we don’t assume normal crossings (where it is well -known that ()
is an isomorphism) in the divisors we remove, we explain why (*) has to
at least be injective, a fact we need for 1.3.8 below. In fact we may blow

5We repeat that we are working under the assumption that {f} € K2(X), so that ¢
comes essentially from restricting a relative cycle I' over all of X to the generic point. In
particular, this is the only reason we can work with « supported on all of X (and not just
a compact subset of X°¢).
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up to obtain from V' C X a divisor V C X with normal crossings, via a
holomorphic map F : X — X restricting to a biholomorphism

~

X-V — X-V

Now by a result of King [Ki], Q% (log V') forms pull back to Q% (log V) forms
under F*, and so the diagram

H(Q%(logV)) — H"(X - V)

0 . .
H(Q% (logV)) & H"(X = V)
assures us that the top map has to be injective too.

LEMMA 1.3.7. For X compact, let ¢ eF"H"(X,C) be a class whose re-
striction iy £ € F*H"(nx,C) N H"(nx,Z(n)). Then £ ~ 0.

PROOF. Assume ¢ = 0. If (2ry/—1)"w is a representative of ¢, d-closed
of pure type (n,0), then @ and w give distinct classes in H™?(X)®H""(X) C
H"(X,C). Since the image of the Gysin map in the localization sequence is
contained in H» ' @ ... ® H ™! it follows that

i*
H™(X) ® H*"(X) = H"(nx)
i w] # iy, @]. On the other hand, since 4 w has integral periods,
@ has the same periods, which is a contradiction. ]

and so |
T

REMARK. Note that Z(n) in the above Lemma could just as well have
been replaced by Q(n) or R(n).

COROLLARY 1.3.8. Ifn € H°(Q% (log)) has class [] € {ker(Res) C H"(nx,C)}N
H"(nx,Z(n)) then n = 0.

-k

ProOOF. By the localization sequence, ker(Res) = im(i; ) and so [n] =
iny & but it does not immediately follow that £ can be chosen in F"H" (X, C).
To force this we once again argue by duality that lime o [ xeN A a kills
coboundaries (Resn = 0) as well as F4"+1H24=n(X (), so that integration
against n gives the desired class (and one can even argue as before that 7
extends to a holomorphic form on X). The lemma then shows & ~ 0 so that
[n] = iy, 0 = 0; injectivity of the vertical map into H"(nx) (sending n ~ [n])
then shows n = 0. O

REMARK 1.3.9. We offer a brief interpretation from the more sophis-
ticated point of view we develop in §2.4 (where we write down maps from
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ZP(X,e) to the complex computing Deligne [colhomology, descending to reg-
ulator maps from CHP(X,n)). The integrals

n

n
/ /\ dlogz; A mya := lim /\ dlogz; A my«
z €20/ zn(xXx012)

interpreted in this section as functionals in
<H2d—(2p—n) (X, (C)/Fd—p-i-l H2d—(2p—n)> v ~ FpHZp—n (X, (C),

correspond to the cycle-class map [-] :

HY™"(X,Q(p))

cp

CH'(X,n) - FPH?™(X,C) N H*"(X,Q(p))

though later we will interpret this map as pushing A" dlogz; down (via 7x.
applied to its pullback to Z) to a [singular| current of pure type (p,p —n)
on X. In the lemma, (c) says roughly that this class corresponds to the ho-
mology class of Z,, which we computed to be (2my/—1)" times [Tz, —|Tz =
mx(Z NT,). Though we only work with relative cycles here, for 9gZ = 0
these are always the same class. If n = p, our last argument says that this
class is zero for X compact (or if we can otherwise determine that the cycle
class has trivial residue, as in the case of v¢ on nx, f € ker(Tame)). This is
not surprising since the target space above is 0 in that case.

1.3.4. Defining the Abel-Jacobi map. One of course expects that a
cycle-class map (if zero) should be followed by an “Abel-Jacobi” type map,
and returning to our simple point of view we explain this in the case n = p
at hand. Since the topological cycle T'z. (with real dimension 2d — n) is a
boundary on X, we may choose a bounding chain 8)_(1 (T'z,) ambiguous up

to a (2d — n + 1)cycle on X. We also choose a chain B on X x (" \ 601"
with

+0B = Z %05 (Z.NT,) — Tz, x (SH"
and 7y (B) supported over Tz, , and S! say the unit circle. Writing

0,12 = 0(2.) F 05 (Tz,) x (S)" — B

(notice that its boundary really is Z.), we are interested in the integrals

n
. ) *
!gr[l] /8512 /\dlogzl ANTxw
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for all d-closed C* (2d—n+1)-forms w on X. First off, we have [,; A" dlogz;A
miw = 0 just by noting that dimsupprxB < degw by 1 (so B can in fact
be ignored in future computations).

Next, for fixed 93'(Tz,) we claim this defines (by duality) a class in
H" (X, C). To begin with, if w = dng, we can (by Hodge theory) substitute
for ng a form n € Fd_"“Qgg;"(X) (that is, writing both as sums of forms
of pure type, n9 may have a (d — n,d) component while  does not). Of
course this does nothing (nor is it needed) in the case d < n. Now since
07! Z avoids faces 91",

/ /\ dlogz; A txdn = / d /\ dlogz; Awxn | =
otz otz

/ /\ dlogz; A mxn = / A /\ dlogz; Amxn + / /\ dlogz; A 7%
2z, Zn(Xx0p) We

The last integral goes to zero as € — 0 by the lemma. On the other
hand, A" dlogz; An € FIT1QO2L (X) and so its pullback to Z N (X x O7)
(which is algebraic) must vanish. So for exact w, the limits of interest
lime o [y-15 A" dlogz; A m%w are 0, establishing our claim.

Finally, the ambiguity in the choice of 93" (Tz,) (and .". of ;' Z) corre-
sponds to

/ /\dlogzi ANw = (27r\/—1)”/ w
(SHrxa A

where [A] € Hag_n1(X,Z),i.e. (as afunctional) an element of H"~1(X, Z(n)).
In summary, our relative cycle Z € Z™(X x (O",00")) has trivial cycle class
and so gives rise to a class

[AJ(Z)] € H" Y{(X,C/Z(n)) := H** "*Y(X,C)" /imHy_pn41(X,Z(n))

via the above limit of integrals. The target space is essentially an intermedi-
ate Jacobian. (We do not yet know that [AJ(-)] is well-defined on the level
of Chow groups or respects relative rational equivalence.)

REMARK 1.3.10. One may adopt an even simpler point of view by sub-
stituting for w singular homology (n — 1)-cycles ~, so that the AJ-map is
given by

lim dlogz; = lim
=0 ) 2)nmt () /\ Z

lim /\dlogzi mod Z(n),
™)

=0 9(26 ﬁﬂ';(l

which defines functionals in H"~1(X,C/Z(n)) := Hom (H,,_1(X,Z),C/Z(n))
on homology.
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Now we ask in anticipation of later work: what equivalence relation
on cycles Z can [AJ(Z)] be expected to kill? As we’ve hinted there are
two points of view here: relative cycles (modulo the equivalence relation
of “relative rational equivalence”) and higher Chow cycles (modulo im(9g)),
and in fact these coincide in a sense we now make plain. As usual X denotes
a quasiprojective variety.

First we say what relative rational equivalence is. The usual notion of
rational equivalence on ZP(X,0) = ZP(X) is given by taking for all W €
ZP(X,1), 0pWW = WnN (X x{0}) —WnN(X x {oo}). Now suppose we replace
X by a relative variety (X, = UD;), restricting to the case where the {D;}
are smooth with normal crossings. Then cycles in ZP(X,)) must intersect
D;, D; N Dj, etc. properly and have Z N D; = 0 as a cycle for all 7. To
produce the equivalence relation via dgWV, we require W C X x 0! to meet
once again all (intersections of) faces X x {0}, X x {oo}, D; x O! properly
and cancel at the D; x . (Continuing in this manner one could easily
define higher Chow groups for (X,))). More concretely, collections (V;, f;)
produce rational equivalences on X by > i.'(f;); the same goes for (X,)) if
fi =1 on V;NY (proper intersection is unnecessary because {1} ¢ O'), but
note that these are not the only possibilities.

In particular, if ¥ = X x 0" and ) = X x 900", then the boundary map
“coincides” with 0z on X x [O"t!: that is, the diagram

ZP(X,n + 1) 95 ZP(X,n)

ZP((X xO", X x 00"),1) % ZP(X x O" X x o0")

commutes. In fact the resulting maps
J« : CHP(X xO", X x 00") - CHP(X,n)

are isomorphisms. Clearly j, is surjective, since it hits all classes containing
an alternating cycle (which is to say, all classes). To approach the injectivity
issue, it’s convenient to slightly modify the bottom complex to ZP(X x
0" X x 0T0"), where 9T[0"is the union of all the faces but z, = 0; this
has CHP(X x O" X x 0O") as its homology groups for all n. Then we
try to invert j, in the derived category by adding special cycles to cancel
intersections of Z with all faces but z,, = 0. We can use degenerate chains

i (ZN pg’o*anl) e d’(X,n)
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to “move” intersections at z; = 0o to z; = 0, then move them from z; = 0 to
zp, = 0 with chains of the form”

{(z1---,2n) ‘(zl,...  2i150, 2415 oo s Zn_1,0) € Z0 p, 0" 1

(1=z)1—-2)=(1-a)}
Combining this with the more sophisticated point of view we will develop in
§2.4 gives as a composite

Homarr (Q0), H**~" (X, Q(p))) = W, FPH*P~"(X,C) N H~"(X,Q(p))

A

[]

HP (X, Q(p))

A

CHP(X x O", X x 00") L+ CHP(X,n)

AJ(f []=0)

Eertyry (QUO) HP ™" (X Q0= g vfij :;122)—(59 (X,Qp))

a generalized version of the maps defined in this section. It seems tempting
to extend the Bloch-Beilinson conjecture to ¥ o j, (that is, if X is defined
over (Q, this should be injective on the subgroup of relative cycles defined
over Q).%

In the next section we will consider the case X = nx, n = p, where

CH™OYx), 00 x)) = CH"(nx,n) = K" (C(X))
maps (according to the above) to HY,(nx,Q(n)) which is an extension of
Hompm (Q0), H* (X, Q(n))) = F"H"(nx,C) N H" (1x,Q(n))
and

Exthpr (Q0), H" 1 (X,Q(n))) = H" ' (nx,C/Q(n))

"There are technical problems here (it’s not as easy as it sounds) but one can get
around them with a result of Levine [Le]. The point is that since this “back map” = is
also a map of complexes, we should now have means of using either type of equivalence
relation to construct the other.

8In lieu of defining absolute Hodge cohomology (see [L2] for this), we have indicated
the short exact sequence in which it sits. It replaces Deligne cohomology when X itself is
quasiprojective (a situation we will have some use for below).

Formally, one would expect the target space of a “Deligne-class” map for the relative
Chow group, to be H;Z{p(X x (O%,00"),Q(p)) (if such an object is defined), and in-
deed by a completely formal computation with weights this comes out to H™(O",00") ®
H2P~™(X,Q(p)); since H™(O",80") is a trivial Hodge structure (in particular its weight
must be 0 to compensate for H"(()" \ 90"), which has weight 2n), this actually coincides
with the target space in the diagram.
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(no difference with Deligne cohomology in this case) and the proposed rel-
ative Bloch-Beilinson conjecture reduces to injectivity of regulator maps on
KM(Q(X)) (which brings us back to the world of more celebrated conjec-
tures).

1.4. Abel-Jacobi for Graphs

1.4.1. Motivation and setup; f-substrata. We return to the simple
case of a “function”

f= ijflj ®...® fnj € ®nZ[P(1C(X) \ {O’OO}]
J

giving rise to the associated data
€ Z"(nx x O"),

[’Yf] € CHn(nX’ A {f} H{flj’ .- 7fnj}mj € KéW(C(X)),

d d
Qf = A"dlogf = Y _m J{l” A A % e HY(Q% (log)) = F"H"(nx,C).
nj

For this section we make the assumption that either n > d = dim X or
{f} € ker(Tame), in order that Q¢ = 0.
For f = f;;, define
Vi =1l = f71({0,00}), Ty = f7H(R")
where the latter denotes the branch cut in log f (whlch by definition always

denotes the branch with arg € (—m,n]). Since it bounds on Vy, it yields a
class in

lim pex Hu(X, D; Z) =: Hi(Xrer, Z)
(where one may think of X,.; as a sort of Lefschetz dual to ny). Also
Tp:= Y m;Ty, N...0Ty, =X {70 (X x Tp)}
(recall T;, = NI, Ty, C O") gives a class
[T¥] € Hog—n(Xrel, Z).

It is convenient for our geometric computations here to use Steinbergs to
move f into “good” position: this means

(1) moving the divisors so that 75 € Z™(X,n) (i.e., its complex codimension
1 intersections with the faces do not hit corners) and, special to this section,

(2) moving by certain Steinbergs (fe€ — f —e) ® ... [i.e. replacing f
fet — e¥] which do not affect divisors, then taking a limit and ignoring €.
(We want Ty to hit only V¢, and not the other components of |f|, in real
codimension 1.)

Though strictly speaking one needs (2) for T¢ to make sense as an inter-
section product, it will become clear in the next chapter that these assorted
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assumptions are in fact unnecessary. We now write down some symbols asso-
ciated with the f-substrata of X and the system of neighborhoods associated
to them.

NOTATION 1.4.1. Generalizing “0L1"” we define for the codimension r
faces of 1"

e = | pf
ie

where i ranges over sets {(i1,... ,ix) |l <41 < ... < iy < n}; clearly 9'0" is
just 9™, We can pull these back to X to get the codimension r f-substrata:

V= (eram)
where for a set & ¢ ("
£71(S) = U;(id, frj, .-, fnj) (X x S);
we will write frequently
V=V =Ul(fiy)l, W=V
Extending “ N, (000")” in a different direction from that used above, let

NI := N (0"d") = U{(zl, 7)) € O (|2, P < eVE=1,... ,7’};

€
i,e

N} is just N.(80"), so that N} = 7! and 0* = (0" \ NI. The desired
“system of neighborhoods” is given by

N(V{) = £71(ND).
Sometimes it is convenient to work with only the generic parts of successive
substrata: recalling X, = X \ N(V'), we write

Vi =VE\VF NNV,
(and thus V, W,). We can take “neighborhoods” of these also, in the sense
of
N, (Ve,) := Ny (V) \ Ney (V) N Ne, (W)
and its obvious generalizations.

REMARK 1.4.2. The motivating idea for this section is this: we would
like to apply the “homotopy” 6 to 7, but we're in trouble if the Res’(v¢) are
nontrivial. In that case 7 is not completable to a higher Chow cycle on X,
let alone a relative cycle; applying Alt, does not change the situation. So
the conclusions of section 1.3, which assumed a compact base, do not apply
directly. Even if the Res’ are trivial, the completion is ambiguous by

im {CH" Y(V,n) - CH"(X,n)},
and so its AJ-image is ambiguous (see Chapter 2) by
im{Gy: HY*(V,Z(n — 1)) = Hp(X,Z(n))}.
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Everything tells us to repeat the AJ-construction directly over the generic
point (and we can actually compute the result; see eqn. 1.4.1). According
to remark 1.3.5, in order to do this we should view ¢ as giving an homology
class in

Haa (X, N(V)) x (0" \ 001")) = Hag (X, V) @ Ho(CF"\ 607")

— H2d7n(Xrel) 02y Hn(ljn \ aljn)

and integrate fw N\" dlogz; A 7%« to determine this class. Here « is d-closed

and compactly supported on X \ N(V), i.e. represents a class in
HY (X \ V)2 HT"(X,V) = H*> " (X,q).

The intuition for the AJ map will be similar. Note that under the assumption
(of this section) that Q¢ = 0, the above integral (and therefore the cycle-class
from this point of view) is trivially zero.

1.4.2. An integral formula for AJ(y¢). Now set 7§ := v¢N (X X ﬂ_’g),
so that 9v& C X x T2}. As before we have

0(vg) == 01(7§) —Or2(y NTo) + ... 0L W N T N Ny

the only difference is the extra boundary term:
00(v5) =7 £ Y _(~1)°67 (v N Tn) +6()
S

where the middle term is supported over T¢, and may be replaced by T¢ x
(S1)™ for purposes of integration as before. The last term is supported over

£ 1(T}) € N(V) (note that in general £ }(7}) # ON(V)).
First we get some abstract nonsense out of the way. For o € Q%g;?c(X \V)

d-closed and compactly supported on [a closed subset of] X \ N¢(V'), we have
that

0= / ~ A"dlogz; Adrya = / ~ A"dlogz; A Ty«
0(7f) 90(7¢)

= / A"dlogf A v + /N A"dlogz; A mya + / A"dlogz; A Ty«
Xe 0(075) Tex(S1)m

= (2%\/—1)”/ a
T¢
(where A" dlogf in the first term and 7%« in the second term are zero), so
that as before Qf =0 == [Tf] ~ 0. This means we may choose a relative
bounding chain 8(_1\},‘/) (T¥) ambiguous up to a (2d —n+1)-cycle on (X, V), so
that (B a “trivial” chain exactly as before uniformizing the loops generated
by 0),
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O e = 0(75) F Oyt (Te) x (S)" = B
has boundary
00 ) = 75+ 0(07) TV Nax I 1) (TH)} x ()"

plus trivial “residues” from B. The latter two terms above are supported on
N(V') and constitute nontrivial residues: they don’t count topologically as
far as (X, N.(V)) x (0" \ 800") is concerned, but will matter immensely for
our computations.

It makes sense at this point to define the AJ image of ¢ as a functional
on forms w € Q?;ZJFI(X \ V') supported on a compact subset of X \ N¢(V'),

via the integral

/1 A'dlogz; A Ty w.
O¢ e

It follows immediately from the foregoing that if w = da (« also c¢.s. away

from N((V')) then the integral vanishes. Therefore it gives a cohomology class
in H"1(X — V) « H" }(nx,C) by duality. Factoring in the ambiguity of
Hyy n4+1(X,V;Z) generated in choosing 86\} V) (T%), we have defined

[AJx (y9)] € H" ! (nx, C/Z(n)).

We will show AJ kills “trivial graphs”, i.e. descends to a map on CH™(nx,n) =
KM(C(X)), in the next chapter.
Toward that end we simplify the expression, by computing |, 0(7%) A" dlogz;A

myw for w as above. The idea is that since, e.g., 91(77§) “pulls the graph” to
z1 = 1, we have

€
f

/ ~ A'dlogz; Ayw = / log z1dlogze A ... A dlogz, A Tyw
01(7¢) 7

= ij/ log fijdlogfa; A ... Adlogfy; Aw,
X

and more generally

/ o i A'dlogz; A myw = /~ i i 1 p(A"dlogz; A T w)
01.. k(v§NT=y N...NT: ) (¥§NTzy N...NTzy,)%[0,1]F

“k—1

= / 0*(dlogzy) - ... - 6*(dlogzy)dlogzk11 A ... Adlogz, A Ty w
(ygNTey N..NTz, ) x[0,1]k

= (2rv/—1)F 1 / log zpdlogzg 41 A ... Adlogz, A myw

YENTey N..NTyy

= (27n/—1)k*1 Z m; /T log fkjdlogf(k+1)j A...Ndlogfnj Aw,
j f

15 m"'Tf(kfl)j
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where log fi; is understood as having argument € (—m,n]. Therefore the
whole integral [AJ(vs)](w) =

/ . A"dlogz; A myw = Zm]’ {/ log fijdlogfaj A ... Adlogfnj Aw
O e X

—2mv -1 log fajdlogfz;j A ... Adlogfpj Aw +...
Tflj

j:(27r\/—_1)”1/

Tflj ﬁ...ﬁTf(n71

(g fnj)w} rom D [

—1
)i B0x,v ()

(1.4.1) ::/ ReANw :F(27r\/—1)”/ w::/ Ry A w.
X 8=1(Ty) X

1.4.3. Codimension 1 residues. We describe the residues first in the
case n = 2, d = 1 (X a smooth curve), f = f ® g. We assume that this f
is already in “good” position, with the intersections |(f)| N [(g)], T N |(9)],
Ty N |(f)| all empty. Let w be a d-closed 1-form which is zero on the closure
of Ne(/(H)] Ul(g)]). Then

/ ReNw = / log fdlogg Aw —2mv—1 [ (logg)w
¢ X

> Ty

and 6(_X1 V)Tf simply consists of paths connecting the points Ty N T, to
V = [(NIU(g)l. Write E = V N 9x 9 1, Tt for the function from V — Z

describing the sum of their boundaries on V' (this is a sort of relative homol-
ogy connecting homomorphism for singular chains). Now if we let S; and Sg
consist of circles (with appropriate orientation) around |(f)| and |(g)|, then
£~1(7!) is simply their union. Writing (z) for the path from z to 1, we have

0(075) = 01(07f) — r12(0vs N T,)

= {x € 5§ ‘(w,ﬁ(f(\:;)),g(x)) } + {x € S; (x,e(ﬂ:?)),g(w))}

—{w e 8507 (@, 0(7(2)), 09(@)) |
where z € S5 N Ty is the same as f(z) = —€ (or —1 for a pole), and so in

the 3" term (only) we may rewrite O(ﬂ\i/)) =0T (—€) =07 (—e) ~St. Ina
picture, these three terms look like:
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o 1 0 =¢g

To compute residues, let 3 be a class in H°(V), i.e. a complex number
on each point of |(f)| U|(g)]- (In particular, one might choose = 1 on
one point and # = 0 on the rest.) If we take €; > € and extend this to a
C* function B on X, supported on Ny, (V') and with dB = 0 on N, (V),
then dj is c.s.[=compactly supported| away from N(V) and gives a class in
H'(X,V). (This is just a picky realization of the connecting homomorphism
A:HY(V)— HY(X,V).) Then [AJx (7¢)](dB) =

/ RiNdS = / dlogz; A dlogzy A dr 3
X 0=

[y oy e i
v 00y J(S)2xE

= / E(dlogf A dlogg) ﬁN + {/SE Blogfdlogg + /SE Blogfdlogg
f g

—orV/—1 Z B(z)log g(z) —47?22ﬁ7

TESSNTy
where the first term is 0 by Hodge type. Since log f jumps by 2mv/—1 at each
z€TrN S;, the 1%* and 3"¢ terms in braces (corresponding to the “tubes”
above) get combined into — fS; Bloggdlogf =: () using dB = 0 on N (V)
and the integration by parts:

2my/—1 Z logg(w):/

d{log flogg} = / log fdlogg + / log gdlogf.
TESSNTYy Sp\SFNTy S5 ¢

f
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An alternate point of view here is that taking € — 0 forces the 15! term in
braces to 0 as eloge, i.e. the 15 tube does not contribute to the [ in the
limit. Since according to the expression (1.4.1) for [ R¢A d, shrinking e
cannot affect the total answer, the 3¢ term must then approach the original
difference (). This conclusion is obvious here (for n = 2), but for larger n
it’s useful to be able to just throw away some terms and take a limit. Either
way we have as the result

@2mv/=1) Y B(p) - {vp(9)log f(p) — vp(f) log g(p) + (2nv/~1)E(p) }

peEV

which is precisely 2my/—1 times an AJ-map where the data (d3, X, f),—2 is
replaced by (3,V,9(f))n=1 and
vp(9) - f(p), p €l 1
o =4 " ZPY o \ {0, 00
{ () 9lp)s €| ) \ 1000

(on good f) induces the tame symbol on Milnor K-theory. Note that the
third term (= 27y/—1E) in the braces may be ignored since it corresponds
to the “integral” functionals we work modulo in

H(V,©)"
im{Ho(V,Z(1))}

H(V,C/Z(1)) = 2 [ATy (Vo 1(B)-
Note that if Tame{f} € [[,x C" is trivial, so that the image of J(f) in the

quotient (e.g., v,(g) - f(p) becomes f(p)*»9)) is 1 for all p, then the first two
terms in braces (and therefore the residues) are also trivial in this sense.
In fact one can write geometrically

0(075) = Z Sy, % 02 (Fa,(8) — Z S1, X 02, (Yo, (p)
z€|(g z€|(f)]

plus terms that don’t contribute to the integral (e — 0), reflecting the equal-
ity

[ATx ()(df) = 27v=1 > [AJu(v2,0](B)-

ze[VC]X!

For larger n and d we can prove a generalization of this working modulo
a large enough neighborhood of the codimension-2 substrata. For simplicity
assume f= f1 ®...® f, so that (writing V; C X! for the set of components
of V},) one may take simply

%(0) =Y (~D'valf) fila ®..0Fi®...0 fala -

zeV;
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Also set €2 > 2¢; > € > 0 (all understood to be very smalll); we shall
work modulo N, (W)[x[J" where appropriate].? Then in this sense (ignor-
ing codimension 2) the following beautiful formula is true even when Q¢ and
T are nontrivial:

(1.4.2) 00(vg) =76 £ (S)" x Te+ > SL x 0(35,0) + .-

(where the ... accounts for trivial terms from uniformizing loops and terms
whose contributions to the [ — 0 as eloge). This says that the codimension
1 residues are always the (n — 1)-AJ maps on the [components of]'® V7,.
Moreover in case s = 0 one may view {8}((6(_)({‘/)7}‘) —T¢} C V as pro-
viding bounding chains on (Vy,, W) for Ty,¢ C V, since ) Ty,¢ = OxT¢. In
a picture, for n = 3 and X a complex surface, f = f®g®h in “good” position:

W T

-1
d(X,V)Tf

T,

Therefore we have over X \ N_ (W)
007 ) =5+ ) S1, x (07 ya8) + -
i

and the construction is “telescopic” in codimension 1.
We briefly indicate the “computation” for (1.4.2): generically on the i

face, writing 9;vf = v, N T2 ( 0,;)0 ), we have that in 9(57}/;) the term
912“,2-(8/;/; N Tzl N...N Tzzq) gives rise to one of our €log e integrals while
Z 1912“,,9(&% N Tzl Nn...N Tzkfl) — S;l X 9(’;5\;-)
k}:l,...,%,...,n
plus trivial stuff as e — 0.

%n this we also tacitly include neighborhoods of the remaining intersections of com-
ponents of V.

%we shall sometimes write formulas as if V;, has only one component to avoid bizarre
notation.
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1.4.4. Local-global picture, higher codimension residues. Now
suppose w = df + da, with 8 c.s. (and d-closed) on V,,,  c.s. on Na, (Ve,)
such that df = 0 on N, (V.,) and L’{/B = [, and « (& of course w) c.s. on
X¢. By our computation a few pages ago fX R; A da = 0, so assuming as
usual A"dlogf = 0 and using (1.4.2),

/ RiAw = / i Atdlogz; A A% B T (2%\/—1)”/ dp
X 0(7§)

-1
8(X,V)(Tf)

= / ~ AMdlogz; AT B F (27r\/—1)"/ B
90(7¢)

8XO(X V)( )

— {/E/\”dlogf/\ﬁxﬁ + (2mv/=1)" 5 - 27“/_2/

F 2ny/—1)" {/ﬂﬁ?Z/ww)Taf }

= —2m/—12/ R}y ¢ A By;.
el

A" Ldlogz; A ﬁ}ﬁ}

73 £)

In the context of Chapter 2, thinking of R’ as a current, this will be imme-
diate. It will also be apparent later on that fRTame ¢ A\ (+) is trivial as an
element of H" 2(V; — W;C/Z(n — 1)) if Tame;f is trivial as an element of
KL (C(V;).

The c.s. forms w we consider span
im (HZd—n-H(X, V) N H2d—n+1(X)) :

we would like to know when [ RgA (:) is a well-defined functional (modulo
Z(n)-functionals) on this subspace of H24~"*+1(X). For example, is it enough
to check that it is “trivial” on dﬁ~ +da in the sense described above — can all
boundaries be written as such?!! The answer is no for n > 4 (but yes for
n = 3, e.g. on a complex surface), as we can see with the aid of a local-global
spectral sequence for H*(X) which uses c.s. forms on substrata of X (of all
codimensions). We need to change the f-substrata V{ slightly to include all
intersections (and self-intersections) of all components of V in V2, all N’s of
components of V2 in V3, and so on; denote this version by /sz' (of course
V= Vf1 =/ Vfl) They are needed to get the spectral sequence right but not

UTndeed, this would seem to be only part of the problem: as “trivial” in this sense only
means that the map H*(X, V)" — H*(V)" takes [ R¢ A (-) to the image of H.(V,Z) C
H*(V)V, i.e. “the functional has integral boundary on V" (and so is not a priori a well-
defined functional on H*(X)). However one can just normalize the functional by modifying
G(X V)(Tf) by a cycle on (X, V) killing this boundary, and so this is not an issue. The
real issue is still that we’ve only examined the residue (or “boundary”) of the functional
in H*(V;, W)V, and this isn’t in general enough.
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for the (higher codimension) residues. A reference for some of what follows
is the last section of [F].

Set 'V = X and let'2 1) : 'V X,
49 x Vi < X and JU=1) sz’—l Vi X
be the inclusions; we have the exact sequence of extension-by-zero sheaves

0— ],(i_l)(C — y,(")c — ],(i_l’i)(C — 0.

iy V=
]!(z,z-i-l)(c
We take resolutions of each term by acyclic sheaves, e.g.
() (1) ye _ (1) () (i+1) (yo (1) e
]! (C_>]! Q(X\IV;})OO? ]! (C/]! (C_> ]! Q(X\’Vfi""l)oo /]! Q(X\/sz)oo
Ly L
(i,i+1)((;2

! (Ve
obtaining localization long-exact sequences for relative cohomology
S HIX V) o B = VY o IOV =V
which become our initial exact triangles. Define a descending filtration
(FN 2 Fp]\_if_l) on the sheaf C (on X) by
d— d—p,d—
FpN(C — ]!( p+1)(C, GTI],VC — ]!( Ps p+1)(c
so that the associated spectral sequence
EPY = HPY(X,Gr)C) = HP (VTP LY = BRf = Grl HPY(X)

gives a filtration on cohomology by niveau.
The right-most column is

BT HIY(X - V) = HYTI(X,V);

if we replace it by zero then we have
'EPYV) = { !

0 p=d
and in fact this is a good definition for the cohomology of V' (it inherits a
MHS, etc.). An easy algebraic argument shows that these fit together in the
localization exact sequence

A e
- HY V) - H(X -V) - HYX) > H (V) =

= 'ERI(V) = Gr) HPT9(V),

where j,(kl) is given by including the right-hand column into the spectral
sequence. So for a functional apriori defined on H24~"+1(X — V) to be

2roughly, in what follows j is for inclusion of Zariski open sets, ¢ is for inclusion of
(open or closed) analytic subsets of lower dimension, the index i is for codimension and p
for dimension.
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well-defined on im {H*(X — V) — H*(X)}, it must kill im(A), which is to
say the image of [Gr) .H*(V') by] successive d; in the right-hand column.
However, da and dﬁ~ only represent the images of dy and d;, respectively.
Since

HCQdfn+1(X _ V)

(d
m(dy) ¢ Ug<iim(dy)

comes from

d—i,d—n+i : d—i,d—n—+i ~ - ; '
E{H = subquotient of BTN a2 gRdmn(tyg Vi,

it can be nontrivial exactly for 2d —n < dim('V{) = 2(d — i), or i < 2. As
we shall see, this corresponds to having to check that “higher (i**) residues
of Ry vanish for 7 < &, and that these can be seen as arising from the Res’
of ¢, which (conjecturally with Beilinson-Soulé) become trivial at exactly
the same 7 (see 1.2.10).

For n = 4, and say d = 3 (X a threefold) already we must consider
im(dy): using the above “exact triangles” and writing "W (2 W) for 'VZ2,'Y
for the point set 'V,

5
— HX(W-'Y) = H(X W) —H)X-'Y) —

da||dy

—HX(V - W) dil» H3 (X -V)— H}(X -'W) < H}V - W) A
where ds is defined on ker(d;) and we may describe these maps as follows in
terms of our system of neighborhoods. The bottom § says: if 8 is d-closed
and c.s. on V., then there is § supported on Ny, (V,) C X extending
(L’{/B = ) such that d3 = 0 on N, (Ve,), exactly as before. So dB on X
gives a form c.s. on X¢ (and so on X — V).

The top ¢ says similarly: if 5 is d-closed and c.s. on W —p (we don’t use
all of "W, then we may “extend” it to 7 supported on Ny, (W) C X with
i =n and dij = 0 on N, (W). So dij gives a class in H2(X —' W), and we
assume ¢}, = df for some f c.s. on V, (and obviously not d-closed) so that
the long d; is zero on [5]. Now 8 extends to 8 supported on Ny, (V,,) C X
such that d(77 — 3) = 0 on N, (Ve,) and thus on N, (V). So d(ij — ) gives
a class in H3(X — V).

We would like to see what “codimension 2 residues” arise in the integral
fX Ry AN w for w = d(7 — B), assuming say normal crossings at W and f =
f1® fo® f3® f4. Instead of arguing with chains we ask the reader’s indulgence
in pretending R; is a degree 3 form with residue 27T\/—_1R:9if (a degree 2 form)

at Vy,. Since d(7 — B) is zero on N(V), and we can assume 7 pulls back to
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0 on ON (W), the integral is

/GR’f/\d(ﬁ—B) — [ RiAGi-p) =

0Xe
2m/—12/ve Rh e (17— B) = 2m/—1/v Rie A (vi771 — B).
7 fi €

To proceed further we essentially need to assume that the codimension 1
residues are “trivial”, i.e. on Vi, Rje = dL for some “1-form” L£.13 (Under
this condition, fv Riye N B = 0 for § d-closed with c.s. away from W as in
the previous computation.) We then get

/dﬁA(L*Vﬁ—ﬁ): E/\L’{/ﬁ:/ 7 - Res(L)
Ve w

€

where Res(L£) will be closed (but not necessarily exact). We would like to
write ResC = Res?R(7ys) = 'R(Res?y¢) but we don’t know what 'R should
be (Res?y¢ is no graph cycle); all of this will be worked out (correctly) with
currents in §2.4.

1.4.5. Abel-Jacobi for “boxes”. We conclude the present chapter on
a somewhat lighter note. By analogy with Bloch’s grading (in [B5]) on the
Chow groups of an abelian variety it is not hard (see Chapter 5) to put a
suitable grading on the relative Chow group'*
CH"((Pf, {0,00})") := CH" (Pp)", Useplex (PF)" )

so that the last graded piece Gr"CH"((PL,{0,00})") is spanned by the
cycles of the form

B, = (ah,,, ,an)—Z(al,... I P ,an)

11 <i2 11 19
EXAMPLE 1.4.3. Gr?CH?*(P! x P, #) is spanned by all B, = (a,b) —
(a,1)—(1,b)+(1,1) where a,b € C* and # = Ufj),’;o{zi =e}. Here F1CH?
consists of cycles of degree 0, F?CH? is the Albanese kernel, and F3 = 0.

We will be interested in the case F' = Q(X) so that Bf can be considered
as an element either of Gr"CH"((P{, {0,00})"), by embedding F < C, or
as a graph cycle B(yg) € Z™(nx x (P*,{0,00})"(Q)). Applying 0 to this and
taking boundary (but ignoring the “residues” near V') we have

M(B(E) = B(y§) + 3 (=1)%65 (4N T,) ()

13We use this notation because £ will be essentially dilogarithmic in nature.
Y“pasically like CH™(O",d0") but without throwing out I™ (which means topologi-
cally we are no longer going relative I™)
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on the nose (= without ignoring boundary at I"), where the latter term is
equivalent to (S')"™ x Ty. We merely indicate how things work for n = 2; it’s
the same for all n, with more cancellations. First,

O(B(viny)) = 0(¥5g) — 0(F51) — (i sy) + 0(¥ic1)

= {01 (o) ~ 012350y N 7o)} — 01 (35sy)

(all other terms are trivial —i.e. of lower dimension). Taking 0 (and ignoring
residues) gives

{(f, 9)xe — (1,9)x + (S}yg)T;} - {(S},Q)T; — (8§ Vs + (S, SJ)T;nge}

~ {0 Dxe = (1L 0)xe + (8, Dy }
and after the obvious cancellations (and uniformizing the loops)

{(fvg) - (179) - (fv 1) + (17 1)}X6 - (S}7S;)TfﬁTg = B(’Yt(;) - (51)2 x T,
verifying (xx).
So we have justified using!®

/N A'dlogz; Aw — (27T\/—1)"/ w (w d-closed c.s.)
0(BOF) ) T
as the AJ-map on n-box graphs. The important point here is that only

the 0(v§) term in #(B(v§)) contributes to the first integral; 0(%) and so
on (and their equivalents for larger n) fail to contribute, basically because

A" dlogz; pulls back to 0 on I"™. So we have the same computational result
R A w for the Abel-Jacobi map as above in (1.4.1).
X

Y5provided the (relative) cycle-class of B(ve) is zero; by arguments similar to those in
preceding sections, this is computed by integrals fX(/\"dlogf) A a.



CHAPTER 2

Properties of the Milnor Regulator

2.1. Equivalence Relations

2.1.1. Abel-Jacobi annihilates the Steinberg graphs. In the pre-
vious chapter we showed how to associate to a graph cycle v over nx a
“C/Z(n)-functional” on relative cohomology:

Hom(Hn*l (Xrel)a (C)
im{Hn—l(Xreh Z(n))}

®"Z[Pgx) \ {0,00}] = Z"(nx,n) — =: H""(nx,C/Z(n))

via s ny/ ~ /\"dlogzi/\ﬂ}(-):|:(27n/_—1)”/ ) ::/ RiA ()
(%) ok (T X

(X,vg)

where X,..; is the “dual” of nx. (We do not work in this limit; for each f we
work with X — Vg and (X, V), where V¢ is the union of supports of divisors
of all functions “in” f, rather than with nx and X,..) For this map to
deserve the name “Abel-Jacobi” it must descend to the level of CH™(nx,n) =
CHP(nx x (", nx x dL1") and so respect (relative) rational equivalence, or
equivalently to KM(C(X)), which is what we now show in three different
ways (in §2.1,§2.2, and §2.4). From this latter point of view the map is
called a “Milnor regulator”.!

Our present approach is naively geometric, and it will help to assume
dim X = d < n (we mainly have in mind d = n — 1, n = 2,3,4). The aim
is of course to show the Steinbergs, by which we moved fin §1.4 to get the
AJ-map, correspond to “integral”’(= Z(n)) functionals.? In fact what we will
show is that for an obvious choice of 3(1 \},V)Tf they correspond to the zero
functional.

There are three kinds of Steinbergs in ®”Z[P&X) \{0,00}]; wedof= f®
(1-f)®g (for g € ®”*2Z[IP’(%(X) \ {0, 00}]) first. As motivation we note that
V¢ is “degenerate” in the sense that it is the inage of g,, fo = f ®g, under the
map st : On=1 - e given by (z1,22,... ,2n—1) = (21,1 — 21,22, ... , Zn—1).
So 6(v§) ought to be homotopic to something like st(0(g,)) (in fact only the

first term of 6(¥g ) is correct here); since st* A" dlogz; = 0 the AJ-map is
then trivial.

which is to say, [the pullback of] a secondary characteristic class for higher K -theory.
"Recall that this does not mean Z(n)-valued functionals; it means
(2mv/—1)" xintegration over representatives of H,_1((X,V),Z).

60
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2.1.2. How the dilogarithm arises from a homotopy. We redefine
the basic retraction-to-{1} map
0:Dx[0,1] - !
as well as maps
T (D\{0,00}) x[0,1> =2,  T:(dD)\{0,00}) x[0,1]® — 12

that will be used in generating the homotopy.? First let 6 : 0D x 0,1] - D
be a continuous map with 6(9D x [0,1]) C D\ dD, 6(ID x {1}) = {1},
and 0(0D x {0}) = OD the identity. We also assume that only the path

starting at {oo} intersects {T1_, = (1,00)} C RT, so that 1—6(¢,2) is
defined unambiguously for all z € 0D \ {0,00} and ¢ € [0, 1] (no =+ issues).
Extend this # to D by the rule

O(1 —t1,0(1 —ty,2)) = 0(1 — tyto, 2)

for any point Z € 9D and write 8 for the composition A o8 with A" : D — PL.
(Note in particular that we get out of this 6(t, 1) = 1 V¢, which we used tacitly
above in the closing pages of Chapter 1.)

The basic building-block for the homotopy mentioned above will now be
defined by

W(Z) = (3, b1, b2) = (9(t2,§(t1,2), 1— 9(t1,z)) :

since for each fixed Z € D\ {0, 00} the real 2-chain ¥(2) has boundary (by
setting ¢t = 0,1 and t3 = 0,1)

6\1/(2) = (9(t1,2)3 1- e(thg)) + (9(t27 2)’ 1- Z) - (17 1- e(tla 2))
= st(0(1)(2)) + 01(2, 1/:/2) mod chains with support C I
Finally define the “solid” (for each point Z € 9D\ {0, c0})
Y(2) := Y(2, 11, ta, t3) := O12(st(0(2))
= (e(tZ, é(tla 2)’ 9(t3, - e(tl, 2)))
with boundary components (at ¢t = 0,1, to = 0,1, t3 = 0,1 in that order)

Y (2) = (6(t2,2),0(t3,1=2)) = (1,0(ts,0))

—_—~— P

4 (0(01,2),0015,1 —0(r,2))) — (10131~ 0011, )

+ <H(t2,§(t1,2), 1= 0(h, z)) _ (0(1&2,5(751,2)), 1)

31t is desirable now to include {0,00} in D and T, as the definition of ¥ and Y
require these to be in the domain of 6.
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where the 27 and 6" terms are 1-dimensional (in particular, 6(t2, 0(¢1, %)) =
O(1 — (1 —t1)(1 —t2),2) ). We rewrite the remaining terms
Ur(2) +9rr(2) = Vrrr(2) + Vv (2)
where
Ur(2) = 012(2,1 = 2), Trv(2) = ¥(3)

and Uyr7(Z) is essentially trivial (its support C I2). In a picture,

(z,1-2) ( I\ (z.1)

Al-z<--"%\ -~~~ ------=-=
-

(1.1
(1.0)

All of the above maps extend to [X x]D"1 or [Xx]OD x D" 2 (e.g.,
Uy, Y1) simply by taking Z; — z; in the remaining (n — 2) coordinates.

Returning to the subject of 0(y§) = 01(75) — O12(yE N Toy) + ..., we
remark that since Ty NT1_j = ()0 C V%, only the first 2 terms are nonzero
(over X€¢) and we can even take 6(}1%)Tf = 0 (since T¢ C V). (Again, we
work over X ¢ because our test forms w are compactly supported there.) So,
with Tf = Ty N X, 0(v§) =

(a: 0(F @) 01 - f(@),8(@) - (x; 0(f(2),1),0(1 %m),g(:ﬂ)) ]
z€T5

where by abuse of notation f(z) = f(z)™ — f(x)™ in the second term alone

(and this does not apply to 1 — f(x).) Now the original idea was to do the
initial “pull-to-{1}” in a different direction, along z1 + 22 =1, to (1,0, g(z))
(instead of (1,1 — f(x),g(x)) as in O1(yf)). This corresponds to replacing
the first term above by

(w00t 7 (2)). 1 - 0t f@),8(x)) = st(02(3%,))
and these two alternative “first terms” together constitute two pieces of the
boundary of

(002,80, f2)). 1 = 001 (@) (@) = W1(5,):

Now we set

W) = W) = a3, N Ts) = (5 001200 S @), 1= 0t f@).g(@)
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- (53 02,600 SN, 0001 010 FDN). )

f

where again for z € T%, f(z) = f(z)™ — f(x)"; and so the second term is
just

(z; T(f($)+)’g($))meT; — (= T(f(x)_),g(w))xeTs.

!
Modulo X x I" and N(V) x [J" we then have simply

ou(55) = {= (w5 0, (@), 1 = 011, [ (@), () )

XE

(050002, F@). 1= ) 800)) |+ (55 Wy (o).,

XG

f
- {(x; V(@) gla),, + (o V(@) g@) .+ (o \Ifzv(f(w)),g(w))T;}
= 00) + st01(3%,) — (=5 ¥ (f@). () .
f
so that if w is a d-closed (2d — n + 1)-form compactly supported in X¢,
0= / ~ A'dlogz; ANdmyw = / ~ A'dlogz; A T'w
(f) v ()
= / ~ A'dlogz A mrw + fﬂl(’yf )st*(/\"dlogzi) AT*w — / A"dlogz A m*w.
0(75) fo — Wyr-term

=0
In order to show the last integral = 0 we must examine the “monodromy”
of Wrr: Urr(f(2)) = Uri(f(2)™) — ¥rr(f(x)7) for x € T as above, and we
must consider the difference of the two corresponding integrals. This reduces
to computing

/ dlogz; A dlogzy, = — / / ___ dlogzy ) dlogz;
V() 0(t1, @) \J 0(t2,1-0(t1,D))

W -z W
= / / dlogzs | dlogz, = / log(1 — z)dlogz
zZ1=1 zo=1 1

for @ = f(z)* and f(z)~. The difference is the integral

/ log(1 — z)dlogz
O(f(2))

where O(f(x)) is a loop around 0 going through 1 and f(z) € R~ € T}, and
log(1 — z) (while having a singularity at 1) has no branch cut on O (since
its cut is R®! = Ty ). As it stands the integral is convergent; so, moving
O off 1 (to the left) and letting it approach 1 from there, we may view the
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above as a limit of (nonsingular) integrals. These are zero by the Cauchy
residue formula since the given branch of log(1 — z) is exactly zero at z = 0.
The vanishing of AJ for the first Steinberg is proved.

Now notice that by Stokes theorem, if we extend the Y-construction to
all of D[\R>!],

_/ ﬁA@:/ ﬁA@+/ o, 4z
V() #1 2 V() %1 2 Vv (@) 1 2

d d
/ - / / dlogz; | dlogzs
U(w) 21 22 1—0(t1,@) \ JO(t2,0(t1,0))
1—w 1—2o 1—w
= / </ dlogz1> dlogzy = / log(1 — z)dlogz =: —Lia(1 — w)
0 1 0

gives the dilogarithm* so that (with our “standard” branches of log)

w
/ log(1 — z)dlogz = log(1 — w)logw + Liz(1 — w).
1

Since the argument above basically amounted to saying that the L.h.s. is
continuous at R~ = T, (or has no monodromy around 0), this equation
says that the jumps there in the two right-hand terms must cancel. Since
log(1—w) log w changes by 2milog(1—w) at T, (in the 44 -direction), Lis(1—
w) must change by —2milog(1 — w). This is the “branch cut” in Lis(1 — w)
corresponding to our cuts in log, and in Lis(w) it is 273 log(w) at T} —, (in the
+i-direction). One may check this simply by integrating — log(1 — z)dlogz
from “y 4 04" to “y — 07" (y € T1_,) around T1_, to obtain 27ilogy.

where

2.1.3. Log branch-change and switching tensor factors. Now we
take care of the Steinbergs Corresponding to “multilinearity”: f= fi1fo®g—
fi®vg— fo®g, forg € Q" 1Z[ \{0 oo}]. The philosophy is then to rely
on the remaining antlsymmetry” Stelnbergs to transport f (and f®(1—f) in
the above) to all positions in the tensor product via permutations. However
in this section we shall only do n = 2,3 and leave the general case to the
next section where it is easier.

The crucial point in computing the AJ map [ R} » o0 A() =[x R g

— Jx R,0g A () is that log fi + log fo = log f1f2 only up to Z(1) =
(27r\/_) . and so the difference, multiplied by say A" ' dlogg A w, is an
a priori nontrivial creature. Setting fifo =: f, log fifo = log f gives the
standard branch while log f; + log fo = 'log f defines a different branch
with cut '"Ty = Ty, + Ty,. Since Ty and Ty (which each yield classes €
Hyq 1(X,Vf)) have the same boundary = (f) C Vg, Ty —' T gives a class
€ Hyy 1(X). We would like to show this class is zero.

The exact sequence for (relative) singular homology

*(for the basic information on Lis see [Za] or [Hal.)
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0— Hgd_l(X,Z) — Hgd_l(X, V7Z) — Hgd_g(‘/, Z) — ...

tells us that it is sufficient to show [Ty —'T¢] = 0 in Hyy—1(X, V). Over Q
there is a perfect pairing

Hyy 1(X,V;Q) @ Hi(X -V,Q —Q

so nontriviality of this class, or equivalently the difference between [Tf] and
['Ty], should be picked up by intersection with a loop v € H (X — V).
Supposing then that -7y = m but -’ Ty = 0 for such a path -y, we remark
that 2mv/—1(v-T) tells how much log f1 f2 changes around v if analytically
continued; likewise, 2m\/—1(7 ' T) gives the monodromy of log f1 + log fo.
But, analytically continued, these are the same function (if they atart at the
same value) and so this is impossible.

Therefore on X there exists a 2d-chain A with 0Ay = Ty —' Ty. For
n = 2, triviality of the AJ map then goes as follows (where again w is
d-closed and c.s. on X \ N(V)):

/X( g — Bhiog — Rfeg) ANw = /X(logf—’logf)dlogg/\w

- (2m/—_1)/T

=Ty

(log g)w — 472 / w.

O~ HTyNTg)—0~1('TyNTy)

Now writing Ay also for the integrable function which is 1 on Ay and 0
otherwise, log f —'"log f = (2mv/—1)A¢, while Ty —' Ty = 0A and we may
choose 7Ty NT,) — 0~ Ty NT,) =0~ ((Ty ' Tf) NT,) = Af NT,. So
the above

= 27V -1 / dlogg A w — / (logg)w + 2mv—1 woe.
Af\AfﬁTg 8Af\aAfﬁTg AfﬁTg

Since w is d-closed, dlogg A w = d((log g)w) on Af\ ApNT,, and O(Ay \
AfpNTy) = 0A;\OA;NT, + (T, =T, )N Ay = the a bove is zero by
Stokes theorem.

For n = 3 the computation reduces to

2rv—1 dlogg A dlogh Aw + 27v—1 log g dlogh A w

Ay DA,

2 _
— A7 /aA (logh)w £+ /A I w = ZW\/—I{fAf\Afngd(loggdlogh/\w)

f fiitgtEn
—/ log g dlogh A w + 27v/—1 dlogh A w
Z‘)Af AfﬂTg
/ log gdlogh A w + 2wy —1 (log h)w
QA \OA T, QA fNTH\OA yNTyNT},
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1 dr2 / w} e {27r\/—_1 9 ((log h)w)
ApOTHAT,

(AfNTy\Th

+2mv—1 (logh)w £+ 4%2/ we = 0.
AfﬁTgﬁTh

(04 yNTy\T},

We shall do two examples of the Steinbergs inducing “alternation”: f =
fRg+g9gfforn=2and fIJXIh + f QI Qg for n = 3, leaving
the general case again for §2.2. Since Ty NT, = —T, NT}, we may choose

Oy (T) = 971(0) = 0, and so0

/( ;c@g—l—Rg@f)/\w = / (log f dlogg + log gdlogf) A w
X X

—2my/—1 (log g)w — 21/ —1 (log fw,

which is 0 since log f dlogg +log g dlogf = d (log f logg) on X \TfUT, and
by Stokes theorem

/ (08  togg)e) = 271 [ (og fyo + 20/ [ (g
X\T;NT,

Ty

For n =3, again Ty NT, N'Ty, = =Ty NT, NT, and

=0
/ ( lf®g®h + Rf®h®g) ANw = /logf (Eﬂogg A dlogh + dlogh A dlogg) Aw
X

+27v/—=1 | (log gdlogh + log hdlogg) A w — 47 { /
Ty Ty

(log h)w +/T . (logg)w}
A

which reduces to the same computation as above (on Ty rather than X).

NTy
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2.2. Milnor-Regulator Currents

2.2.1. “Pushing” the Abel-Jacobi map down to X. The proofs in
the last section can be vastly simplified by thinking of [ B A w as inte-
gration against something like a differential form, and working with these
“outside the integral.” So we introduce the language of currents, intuitively
differential forms with distributuion coefficients, and reduce AJ () to such

an object using formula (1.4.1). Formally, an m-current is a section of a
sheaf

‘DY = D)

of distributions on C'*°-forms. Given a suitable /-form 7 on a real-codimension-
k analytic subset Y C X, with associated “delta function” dy, n - 0y defines
a current € T'(’ Dl)“(‘"e) by the formula

of course if = (5.1 for 77 on X then “7 - dy” is the same current. Like C'*°-
forms, currents form a complex of sheaves with hypercohomology computing
Hj ,(X,C); since they are (like the sheaves of C*°-forms) acyclic, we have
H*(T'(X,'D%)) = H*(X,C). Accrding to [GH], the differential of an m-
current is just given by the “adjointness” property

/Xd[S]/\w - (—1)m+1/XS/\dw

where the r.h.s. may have to be computed as a (finite) limit. The obvious
example on X is d[dlogf] = (2mv/=1) ().

But a differnt kind of example concerns us in this section, where we are
not interested in “residues” of this sort, and want to work “away” from V.
Recall that L!Qi‘{f\%m is the sheaf of C'°°-forms compactly supported away
from V%, and let "D’ C DY be the subsheaf of currents annihilating these
forms. They are called the “currents [on X| supported on V” and we get
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currents on (X — V) by ignoring them:®

Dy i= D/ Dt =D (w10 ) -

These form a complex, and [ y S Aw induces a perfect pairing between
Hm(F(X7I (.X\V)DO)) = Hm(X - V) (C)
and
H* (D (X, 10y ) = HE™(X = V,0).

The prototypical example of d in this complex is, considering log f (with the
2my/=1 jump at Tf) as a O-current, d[log f] = dlogf — (2mv/=1)dr,. Here Ty
is oriented so that 0T = (f) = (f)o — (f)x as usual. With the convention
that the 6Tfi ’s anti-commute with dlogf;’s and the like, we may differentiate

combinations of these exactly like forms (with regard to signs).® Formally,
one has

/Xd[logf]/\w _ —/X(logf)dw: —/X\de((logf)w)+/ dlogf A w

X

= —27v—-1 w + / dlogf A w.
Ty X

SThere are actually a few different constructions of currents “on X — V”, arising as
quotients by the following sheaves of currents supported on V. Writing 7: X —V — X,
t:V — X, we have (partailly after [Ki])

(‘'DY? -6y =) u.'DY 7 C "D (onV) C "D~ C ‘DY,
which may be defined respectively in terms of what they annihilate:
OX=™ < mullV >D QFI™ (mullV) D 5% e D 0,

where Q3™ < nullV > and Q%™ < nullV’ > are C*° and holomorphic forms (re-
spectively) pulling back to 0 via ¢* (e.g. any holomorphic d-form, d = dim X), and
Q%o (nullV) := Q%00 A Q% < nullV >. (the difference is that Q% (nullV') has a dz or z
in a neighborhood of a component {z = 0} of V, as opposed to e.g. dZ or Z.) So one has
the (X — V)-currents

"D <V >="DR/i.DP? =D (Qi?;m < nullV’ >) ,

"DE(log V) i= Bpygen' DY AQ% (logV) = 'DF/ D¥(onV) =D (Qi?;m(nuuV)) :
(King)

! 2d—
D\ = DR/ D= =D (39837 ) -

We have chosen the latter in order that R can be d-closed “on (X — V)” for n > d even
for “bad” f (when Rf has worse than log simgularities). Formally, to check in general in
which complex of sheaves of (X — V)-currents R is closed, let w be an arbitrary section
of one of the three sheaves of forms “vanishing” on V' and check if, as € — 0, fNe(V) RA

dw— [n (V)R/\w — 0.
Swith the caveat that a é-function in front corresponds to integration so signs differ
between the currents and (1.4.1) for n odd.
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We now define a map
R: @"Z[Px) \ {0,00}] = T(DY )

sending

fi®..@f=f—

n

Ry := Z(:EQ?T\/ —l)i_l log f;dlogfit1 A ... Adlogfy - (ST/,1 n..NTy,
=1

= log fidlogfo A ... Adlogfy + (£2mv—1)log fodlogfs A ... Adlogfy - o1y,

+...+ (27TV _1)7171 log fn : 6Tflﬁ...ﬁTfn_17

where & = (—1)"!. We note that the singularities are integrable even for f
“bad” so this makes sense as a current on all of X and not just X — V. But
it is closed on X — V, as applying d yields modulo "D}’ a collapsing sum:

n

d[Re] = ) (#2rv=1)"""dlogf; A ... Adlogfy - 61y n.n1y,

=1

n
— > (F2nV/—=1)'dlogfit1 A... Adlogfy - 1y .y,
=1

= dlogf1 A... A dlogfn — (27‘(\/ _1)n 6Tflﬁ---ﬁTfn = Qf — (27‘(\/ —1)an.

Assuming n > d, Q¢ = 0 and 36\} vy Tk exists, so that the (n — 1)-current

R = Re+ (2nvV—1)"65-17, € (DY)
now has d[Rf] € I'('D{w) and so is d-closed in the complex I‘(’D('X\V)oo).
Therefore we have a class € H" (X — V,C), well-defined up to classes
generated by currents { (2ry/—1)" (50‘ CeH, (X, V;Z)}.

PROPOSITION 2.2.1. (a) For n > d, sending f+— R} gives o well-defined
map
H2d_n+1(Xrel7 (C)V
m {Hn—l(Xrel, Z(TL))}

R " 2Pk \ {0,00}] = H" L (nx, C/Z(n) =

(b) This map factors through KM (C(X)).

Most of the remainder of the section is devoted to showing (b), by writ-
ing R; (for f a Steinberg) as a coboundary d[S] in the quotient complex
F(,D(.X\V)Oo)' Note that in T'("D%), the “residues” d[Rg] and d[S] — Rf are in
general not zero, and are considered in the next section; knowing residues of
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S in particular is useful for our discussion of relative regulators in Chapter
5. In any case, for w d- closed with c.s. on X€,

Ri=d[S] — / RiAw = / d[S] Aw = i/ SAdw = 0.
X X X
2.2.2. Explicit coboundary currents.
Casel. f=fo(1-f)®g.
Asin §2.1, Ty NTy_y C Vg so (we may choose)
R; = log f dlog(1 — f) Adloggy A ... Adlogg, 2

+(=1)" 127V ~1log(1 — f)dloggs A ... A dloggn_» - or; -

As a O-current”, Lig(z) may be differentiated (using FTC and the discussion
in §2.1) d[Lis(z)] =

T
d [—/ log(1 — z)dlogz] = —log(l — z)dlogz + 2nv —1logz - o7, _,.
0

Setting

n—2
S = —Liy(1—f) /\ dlogg,
we have (on X \ V) d[S] =
n—2

n—2
log f dlog(1 — f) A /\ dlogg — 2mv/ —1log(1 — f) - o1, A /\ dlogg = Rf.

CASE 2. f=gQ® fifo—8® f1 —8® fa

Again we must show the regulator-current’s cohomology class is invari-
ant with respect to branch change in f = fif2. The 2d-chain Ay of §2.1
translates to a 0-current with

d[Af] = 01y — b1y = 07y, 4, — Oy — 073,
Notice that most of the terms in Ry = Rggf 5, — Rgof — Rgofy =
log g1 dloggs A ... A dloggy,—1 A (dlogfifo — dlogfi; — dlogfs) + ...

+(£2rv/=1)""" (log f1f2 — log fi — log f2) - 61, .z, |

"Incidentally, one can view all the polylogarithms as single-valued functions with a
branch cut at Ti—. = [1,00] € R", and so as O-currents on P'. We write Lii(x) =
—log(l — z) in our preferred branch (—7 < ${Lii(z)} < 7), and thereby iteratively
obtain preferred branches of all

T

Lin(2) = / Lin_1(t)dlogt,
0

by integrating away from Ti_.. The general differentiation rule (using the monodromy
result in [Hal) is then

d[Lin(z)] = Lin—1(z)dlogz + % log" 'z 6r,_.
1

(where log™" ™"z € R along T1_.).
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= £2rvV-1)"Ay - 01, 0.1y,
cancel since dlogf; fo = dlogfi + dlogfs exactly; by choosing
a(t\},V) (Tgl n... ngn—l N (Tf B ITf)) = Tg1 n... ngn_1 n Af

we may write

R,f = (2mv —l)nAf : (STglm...ngTk1 — (2mv —1)n5Tglm...ngnilmAf = 0.

Of course for the branch-change occurring in another factor of the ®-product,
we can define an S using A¢ (or just CASE 3 below).

1

CASE 3. Alternation is more involved. We do increasing levels of diffi-
culty.

n=2: f=f®¢g+gf OnX -V
R; = log f dlogg — (2mv/—1)log g - or, + loggdlogf — (2mv—1)log f - o,

= d[log f logg]
n=3: f=fg®h+9g®f®h = R;=d[log [ loggdlogh]
f=fRih+fOhRg = R'f:d[27r\/—1 logglogh-éTf]
f=fR9Rh+hRgx f =
Rt = log f dlogg A dlogh + (2rv/—1)log g dlogh - 67, — 4n”logh - 67,1,
+loghdlogg A dlogf + (2mv/—1)loggdlogf - 7, — 4m*log f - o1, T,

=d [— log f log hdlogg + 27V —1log f logg - 07, + 27wV —1loghlogg - 5Tf] .

Then on X \ V¢, R = d[S] (choosing 8(_X1 wIe = 9710 = 0) where

Sij = (2rv/—1)""log f; log fidlogfiy1i A... Adlogfj—1 Adlogfjt1 A...Adlogf, - 5Tf1ﬂ"'ﬂTfi—1
+(27v=1)" |log f; log fis1 dlogfira A ... Adlogfj_1 Adlogfjr1 A ... Adlogfy, - 01y, n..0Ty,_ Ty,

+ log f; log fit1dlogfitva A ... Adlogfj-1 Adlogfji1 A ... Adlogfy - 5Tfln...ani71ani]
+ ..+

(2mv/=1)7 2 |log f; log fj—1 dlogfjs1 A ... Adlogfy - 0Ty M..(Ty,_ Oy, Ty, 00Ty,

log fj log fj—1dlogfjti A... Adlogf - 5Tf1ﬁ...mTfFlanianiHn...anjiz]
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We mention one consequence of CASE 3 before proceeding. If
Alt, (f) = Z Sgn(a) . fg(l) R...Q0 fg(n)
gES,

then we may alternate the regulator current for free — that is, there must
exist a current S so that on X \ V¢ (for appropriate choice of 9=1)

n! Ry — ,Ah:n(f) = d[S].

This is easier said than done, even for n =3 and f = f ® g ® h. The reader
is warmly invited to check that

S = 6rv—1llogg logh-dr, + 2log f loggdlogh — 2log f log hdlogg

+2mv—1log f logg - o7, — 2wV —1log f logh - o,

does the job. It is instructive to look at the residues of $; bearing in mind
that on X we have d[0r,] = () and d[dlogf] = 27/ —1d(y),

d[S] = Rie augy =

6y —1 {logg logh - 6y +log f logg - 6() — log f logh - 5(9)} .
The symmetry here is strongly connected to the way we shall use the “Levine
lemma” (Proposition 1.2.1) in §3.1.
So we have our map
R': Ky'(C(X)) = H" ' (nx, C/Z(n))
in the event that n > d so that R} is indeed closed. In the event that n < d,
we have first

Q: KM(C(X)) — H"(nx, Z(n)) N F"H"(nx, C)

n

fr— Q= A dlogf

which may be thought of as a “holomorphic n-current” on X (closed on
X \ V). Then R’ is defined on ker(Q) and altogether we get a map

(R K, (C(X)) — Hp(nx, Z(n)).

The overall picture is simplified if we consider the currents as functionals
on H,_1(X —V,Z) via integration over singular cycles C. Assume once again
n > dim X. If [R{] is “trivial”, i.e. € im {Hy—1 (X,V;Z(n)) — H* 1(X - V,0)},
then while [ v R¢Aw (for an individual w) can be anything, fc R} is necessarily
in Z(n); so we may think of H" 1 (nx,C/Z(n)) as hom (H,_1(nx,Z),C/Z(n)) .
In fact, in integration we may altogether drop the last term of Rf, as

n/(2ﬂ_ /_l)na(—XlV)Tf "
C )

is just an intersection number € Z(n). So [R¢| alone gives the desired coho-
mology class, from this perspective.
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For n < dim X, d[Rg] = Q¢ — (2m/—1)"T¥; therefore we may think of
Jo Ry as giving a C/Z(n)-valued holomorphic differential character. This is
a functional x on cycles (not cycle-classes) which obeys the rule

C=0Con X -V = x(C)= /Q mod (2mv/—1)"Z,
¢

for some fixed Q@ € Q*(X \ V). Such objects give classes in H}(nx,Z(n)),
see [Ga| or (essentially) §2.4.

Notice also that cycles C may be expressed as limits of (Poincaré dual)
closed forms w with c.s. on X€, and so whatever we prove for such forms
also holds for cycles.

2.3. Residues in the Local-Global Setting

2.3.1. Res! and Tame! in the context of currents. We first show
how to compute codimension-1 residues of R, using the language of §2.2,
then introduce the relevant local-global spectral sequences for computing
higher residues. We initially work with a particular (convenient) choice of
Ry, ignoring the Z(n)-ambiguities in the regulator and its residues, then show
how to reinstate them in a way compatible with the local-global setting.®

For any f we may write f = f, + g, g a Steinberg and f; “good” in the
sense that 75, € Z"(X,n). Trivially Re = Rg, + Rg on X \ Vg, enlarging Ve

if necessary to include Vg, and V. One may then choose simply 8(_X1 v )Tf =

8(){1,‘40)Tf0 + 8()(1,Vg)Tg so that Ry = Ry + Ry, so that [Rg] = [Rg ]+ [Ry] €
H" (X — V4, C) (where e.g. [R; ] is the image of the class under HY(X -
Vg,) = H" (X — Vg)). Now we know that the class [Ry] is zero (for the
right choice of 971), and so [Rf] = [Rt ] and the classes of their residues
must be equal. Formally, if R, = d[S] on X — Vg, we take (in the spirit of
§1.4) a d-closed form g on V¢ compactly supported away from Wg; we may

then arrange an extension § to Ny, (V) so that dj is supported away from
N¢(Vg§) D N(Vg), and compute

i/d[ng]/\B::/ng/\dB: R NdB = d[S] A df
X X X\N.(Vg)

X\Ne(Vg)
— / SAdS = 0.
Ne(Vg)

This does not prove that the residues of R’g are “physically zero”, but that

they are cohomologically so (and one could do this for all Res’ below, so that
d[Rg] is cohomologous to zero on Vg, not just Vg\ Wg). The main point is

8Note one slight shift to simplify notation: here V* shall mean what 'V did in §1.4.
Namely, Vi (= W) consists of all codimension-1 intersections (and self-intersections) of all
components of Vi (= V), then V(= Y) is derived from V§ in the same way, and so on.
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now that the residues of R’fo (which has only log singularities) are “directly”
computable unlike those of Rj.

EXAMPLE 2.3.1. On a curve, let f= f ® f. Then
Re = log fdlogf — 2nv/—=1(logt™ f) - 67,
is not convenient to work with. Thus we write
f=fe(-)+fef-fa(-1)] =fi+g,
so that (with standard branches of log = arg € (—mi, 7i]
Ryg, = log fdlog(—1) — 2mv/—1log(—1) - or, = 27?26Tf
and
d[Rg,] = 2nv/ =1 (=mv/=1-4(p)) .
As for
Rg = log fdlogf — 2my/—1log f - or, — 22 0Ty 5
across Ty the change in log? f is
(log f — 2nv/—1)(log f — 2nv/—1) —log? f = —4nyv/—1log f — 4n?
so that
d [%logZ f] = Ry
on X\ [(f)I

Recall that in §1.4 we computed residues of AJ on a “good” graph like
75,; that result gives the second equality in

j:/Xd[R'fO]/\B::/N VR'fO/\dB:/VR'afO/\B.

2€q

However, in the present setting we can see equality of the first and last terms
more immediately. To start with, suppose on a surface fy = f®g®h (adding
more terms changes nothing) so that all components of |(f)|, [(g)], |(h)| are
distinct, and compute on X (not X — V)

d[Rs,] = d [log f dlogg A dlogh + 2mv/—1log g dlogh - or, — 472 log h - 5Tfng]

= 2mv/—1 { (log fdlogg - d(y) — log fdlogh - 5(9)) + (log gdlogh - 05y — 2myv/—1logg - ory - 5(h))
+ (27T\/—_110gh o7y gy — 2mv/—1logh - or, - 5(f))} + 87T3\/—_1(5TfngmTh

=21V -1 x {(log fdlogg — 2mv/—1 logg - 5Tf) “O(hy — (log fdlogh — 2w/ ~1logh - 5Tf) “0(g)

(log gdlogh — 2w/ —1log h - 07, ) - 5(f)} + 87V —1Ty,.
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More generally, for fy = f1 ® ... ® fp, on X

n

> (F2rv/=1)" og fidlogfis1 A ... Adlogf, - 5Tf1m...mTfi_1]

=1

d[Rg] = d

n
-3
=1

-1
> (F2rV/ 1) "2mi(—1)"" " log fidlogfiy1 A ... Adlogfy A ... Adlogfu - 61, 1y,
=1

n

+ D V=D TN =)  og fidog iy A Adlogfu Oy (g o 1] 0
i=0+1

n
+QrV=1)"Ty, = 20V=1) (=)', oo op 05 £ (20V/=1)"Tk,.
(=1
Now (see §1.4 for the picture)
Ox (93 v) T ) = Try = 3 (=103 T,
l
so that reinstating (27r\/—_1)”5371Tf in Ry,

[Rfo ]=2mv— Z Razfo 5(fz) (%)

(=1
gives classes € H""2(V\W,C) = @,H"~2(V,\W, C) which are cohomologous
to the residues of Rf. In fact, since the map fy — 9;fy on good f; generates
Tame : KM(C(X)) = [1,ex: K21 (C(z)), one may write
1
2my/—1

where Tamef means any representative (e.g., T'(f) in the §1.2 footnote).”

d[RY] = Rhamer - 0v € H"*(V\W,C/Z(n - 1))

PROPOSITION 2.3.2. We therefore have a commutative diagram (n > d)

KM(CX) — e B ax, C/Z(n)
T v
II & ) LE IT 2" *(e. C/2(n - 1))
reX! rzeX!

“However for computing higher Res’ this is not sufficiently sensitive — we must use fo
and (*) above. (That is, while the Res’® are invariant with respect to choice of g on X\ V/,
we are not free to modify by Steinbergs on V \ W unless we are interested only in Res'
as is the case here.)
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2.3.2. Higher residues of currents [dual to section (1.4.4)]. Fol-
lowing a suggestion in [F], we now construct a local-global picture which
will turn out to be dual to that of §1.4. We add one more inclusion to those
employed there:

](i):X_‘/fi(_)X, ](i’i+1)3‘/fi\‘/fi+1‘—>‘/}i,
[’(z) H Vi—‘l — )(7 L(i+1,i) : ‘/fi—i—l s V}l
Pushing forward by ¢ we have the exact sequence of sheaves
0— e .9c - ng)(C/LEfH)(C =0

o 1=
]iz,z+1) C

in which we may resolve terms by

W= "Dy, WCKVC— DY, m/'

(sz) VH»l
TN
1Tye -
D(Vl\thl) [ 22]
where by ID(.VZ\VZH) = ’D;ﬂ- /{ D(.V“rl) ’D"/i} we actually mean (a
f f

quotient of) currents “on Vfi” and not “on X supported on I/fi”,lo which is
what it is mapping to quasi-isomorphically (via LEZ), which is essentially mu-
tiplication by (5Vfi). The short exact sequence reflects an ascending filtration

(Flf\il C FpN) by niveau

N

F
IFpN(C — L&dip)(c, IGT'N(C _ ,FN ~ jgd*pyd*p‘i’l)(c

(compare G’f‘;,v C=z= ]!(d_p 4P +1)(C), and from the resolutions we get the initial
exact triangles for the corresponding spectral sequence

.= H;‘/fiH(X,(C) — H* (X,C) — H‘*/Z\VHFI(X,(C) —
H*—Zi(vl VZ+1 (C)

The E;-terms of the two spectral sequences are (computed a priori using the
quotient sheaves)

EPY .= FPte {I‘ (X, ]!QEX\V}dflﬂ'l)oo /ﬂQEX\Vfd’P)"" )} :

d— . ~ d— d—
AT (VP 008 oy iy ) } & HEVIOEP = VPP Q)

10i¢ helps to note that there are 2 different 'D®
'D%, the other in 'DY;.
f

(Vittyeo ’s at work here, one in D(VZ)C,o C
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= grrovi P vt o) = GrlY HPTI(X,C) = BB

from §1.4 and from directly above (and somewhat unconventionally)

[

BP9 = g4+ {F (X, 'D('Vfd,p)oo /’D('Vfdfpﬂ)m )} (<d__p)
Lx
HP—4q {F (‘/fl, ! ('Vfd_p\vfd—pﬂ)oo)} o~ prq(vfd—p B Vfd_p'H, o)

= 'GrY gt (x,C) ="ERS

and none of this requires normal crossings. Clearly 'EP’? and EP? are
(Lefschetz-)dually isomorphic by the usual pairing [ (-) A (-), and more-
over (as we shall demonstrate for i = 1,2) the (")d; of the spectral sequences

are adjoint (as are L’(“i) and Lii)) in this pairing. For n = 4, d = 3 one should

have in mind the picture

E, E
2 3 0 1
HC(W—Y)fHQ(}’—W) H (W—Y)i\l‘\l \(Y—W), d
277--2 3 277 ---2 3
H{(V-W)=H (X-V) H(V-W)= H (X-V)
. i

where of course Y C W C V C X are analytic subsets of increasing codi-
mension (and Y is a collection of points).

We describe the 'd; = Res’ on currents for n = 4, X a 3-fold. [RY] €
H3(X — Vp) lifts to a closed section R; € I'(X, 'D3/'D3.), thence to a
non-closed section € I'(X, 'D%), so that

d[R;'] € F(Xa ID%/OO) — F(Xa ,,D?/OO/,D%V‘X’)‘

Modulo “exact” currents in this last complex, the image (of d[Rg]) lifts to

—~

d[R{] € T(V, "D\ = "Di/ Diy=c)
under LS}); then Res!'[Rf] is the class of either the image or the lift, in
Hé\W(X, C) = H*(V — W,C). Now
B eT(X, J!Q%X\W)oo /]!Q%X\V)OO)
was a lift of the (d-closed) form g € I'(V, ]!Q%V\W)OO) under ¢y, which then

got differentiated as a section I'( X, ]!Q?X\W)Oo) to give df € T'(X, ]!Q?X\V)m)
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and a corresponding class in H2(X — V,C). The procedures are therefore
exactly dual (or “adjoint”) and

i/XR’f/\dB:/Xd[R’f]/\B:/V@/\ﬁ.

This is why we took the “lift”; although localized at V' the second integral is
still on X.

REMARK 2.3.3. If the class of d[Rf] € H*{T' (X, "D} /' D}y } is zero
(i.e. Res! is trivial), then one does not “lift” it to V until arriving at Res?
in codimension 2 — the sensitive “sub-cohomological” information must be
retained along the way. The same goes for all Res’; this is very similar to
our use of Bloch’s moving lemma in the local-global setting in §1.2.

For aid in computing 'do = Res? we may once again draw a diagram of
“exact triangles” (where [Rf] € H3(X — V),

— H*(X V) N H(X) HY(X) —

A

—  Hp(X) HW-Y) =

in which we have already traced through the top 'd;. If it is zero, i.e. d[Rg]
is exact in I'(X, D} /' Dy ), then there exists S{, € I'(X,'D3.« ) such that
d[RY = d[S}]  mod 'Diye,
and we “take residues”
d[Rf] — d[S)] € T(X, Djys) — I'(X, Dyyoo / Dyroc).
Now it’s o.k. to move the image by a coboundary and lift via Lff) t

—_—~—

d[Rg — SV € T(W, "Dy /{'DYo C'Diy}) = T(W, "Dy yyoo)-

(0]

We have to mod out by the image of the bottom 'd; here: take a d-closed
current in

Ry, € D(V,'Diyr\jye) — T(X, DYoo /' Dijyec)
(1)
Ly
so that
A[(RL] € T(X, ' Dlyos) = T(X, Diyos /' Dic),
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and we may move/lift this to d[R},] € ['(W, ’D?W\Y)oo) with class in HO(W —
Y). The difference was that in V — W, d[R},] = 0 while d[S]] = d[Rf](#
0). So in brief one should (abusing notation slightly)!! think of Res? as
Resl;od 71 oResi,, modulo the image of Resj; on “closed” currents on V —W.
To show the desired “adjointness” of the (')d;, we recall the explicit version

of don from §1.4 and write (ignoring signs)

[ Rendan = [ RindGi-p) = [ aEgaG- 5

— [ AiRi-siinG -8 + [ dshinG- .
Since 3 is supported away from W, this
— [ am-siini+ [ sbadi-5
X X

- / d[RL— S Ag :/ Res?[Rl A
X w

Here the second term vanished because S{, € I'('DZ.), while (-7 — 3 is
d-closed on V' so that d(f — ) € (Q?X\V) ). More generally for £ € an

appropriate subquotient of H Zd*”(Vf VH‘l)7
/ ReNdi€ = / Res'[Rf] A &
X Vi

where Res’[R}] lands in a subquotient of H?~% (V¢ — V).

REMARK 2.3.4. One possibility is that {f} € ker(Tame) and d[Rf] is
(along some components of V') trivialized on V — W by an SI. of the sort
encountered in §2.2 (CASE 1), so that Res? is dilogarithmic. More on this
later; Res’ in general should be i-logarithmic in nature.

2.3.3. Lifting [Rf] to X. Reinstating the Z(n)-ambiguities. Now
replacing the right-hand column ’ Ef M= q9-9(X —V,C) by zeroes we arrive
at a spectral sequence converging to

'ERI(V) = 'GrY BT (X, )

which is dually isomorphic to GTI]JVH”J“I(V). (Perhaps the notation H* 2(V) :=
Hi(X), so that Poincaré duality H™(V) = HP(X) = H?>*2-™(V) in-
volves the dimension of V rather than X, makes more sense.) A simple

UThis approach is essentially valid in the case of normal crossings and good f, so
one may use log-currents and build a double complex. In that case the “Resw” at
a component of W typically involves the difference of two residues from two compo-
nents V; and V;. The computation then looks something like Resw,, {d~' (Resv; [Rf])} —
Resw,; {d™"(Resv,[Rg])}, noting that while these two terms are not necessarily closed
currents on W;;, their difference imust be.
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algebraic argument then gives the long exact sequence

Gy
- Hy(X) — HYX) — H*(X -V) — H7(X) >
10 i Res

in which the graded pieces of Res are exactly the Res’. So if successive
Res'[Ry] are all trivial, [Rf] comes from H*(X), that is, gives a well-defined
functional on

m{H (X —V) — H*(X)}= H:(X - V)/ker(){").
i

Actually lifting Ry to H*(X) means going through the whole process of
finding S‘lf as above, then S%,, and so on (there are different possible choices,
too, and they produce ambiguities). Then (Rg— S, — S5, —...) gives a closed
current on X, and the class is ambiguous by im(Gy) just as completing a
graph cycle (for f good) involves ambiguities. (Also as with completions, this
may be very difficult to carry out, which is why we have done as much as
possible over X — V)

The trouble is now that one wants R} to come from H*(X) (mod Z(n))

if the @ f) —1L __Res’ are only trivial mod Z(n —i); so we have to modify the

above argument. There is an easy homology spectral sequence converging to
EX, = Gr) Hy,o(X, Z) with

E;;,q = p-l—q(Vd_pa Vd_p+1; Z),

given by filtering singular chains on X by dimension of support (in terms
of the system of analytic subsets X D Vi[= V] D> V%= W] D ...); omit-
ting the (first ) r.h. column(s) gives graded pieces of singular homology
HP+Q(V(i)7Z)'

Now relative singular chains include
Hy (V2 VP 2 ) = (/1) By o HY (VP - VP 0) 2 B
both as currents and as functionals on
E{J,q ) Hg-kq(vd—p _ Vd—p+1, C) = Hp+q(vd—p, Vd—p+1; ).

The terms of the relevant exact triangles (=long-exact sequences) also in-
clude, producing (by an easy diagram chase) a C/Z(n) exact triangle; so
one has a quotient spectral sequence with differentials or f) ————Res" into

subquotients of H" 2 (V§ — Vi C/Z(n — i)). If these vanish on [Rf] €
H" " Y(X - V,C/Z(n)), then [R’] lies in im {H""Y(X,C/Z(n))} ; to get R}
then as a restriction of a closed current on X, we may have to change our
choice of Rg by an integral cycle on (X, V). Abstractly, the idea is that in
the diagram
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— H”’l(AX, C/Z(n)) — H" Y(X —V,C/Z(n)) _ Res H{(X,C/Z(n)) —

Res

— H" (X, Q) H" 'YX -V,0)

Hy(X,0)

H"(X,C) —

P.D. P.D. P.D.

U U

s Hotont (X, V3 Z(0)) —2r Hogn (V. Z(n)) — Hagn (X, Z(n)) —

we suppose that an initial “choice” of R} gives a class in H" (X — V,C)
with trivial Res. That is, Res[Rf] € im {Hog—n(V,Z(n)) = HX(X,C)} is
[colhomologous (on V') to [the Poincaré dual of] a topological cycle K sup-
ported on V, [K] € Hog—n(V,Z(n)). By the diagram [K] € ker(t,) = im(9);
modifying the original R} by the resulting 97K yields Rf = R;— 9, K with
Res[Rf] = 0, and so

[R{] € im {H" 1(X,C) - H" '(X - V,C)}.

In §2.4.2 we will find that for'? {f} € KM (X), [R}] € ker(Res); therefore we
will have a map K (X) — im {H"'(X,C/Z(n)) — H" "(nx,C/Z(n))}
which will be referred to at times as the “holomorphic” Milnor regulator.

Explicitly, if Res' vanishes then (writing T and B for (2mry/—1)" xsingular
chains)

d[Ry] = d[S{]+ T on X — W,

so that [T1] is trivial under Hog (X, W;Z(n)) — H*(X — W, C) and injec-
tivity of this map

— T} =0B% mod W
(for some BY). If Res’ is trivial then
d[(R¢ — Bk) — S¢] =d[Siy] + Tjy on X —Y;
again T3, = OB% and so on, until
d(Rf—Bx —B% —...) = (S +S% +...)] =0 on X;
and indeed the restriction of this to X —V is Rt — (B% + B% +...), a new

“choice” of Rf.

2that is, for [yf] Ethe kernel of all Res® on CH™(5x, n), [Rf] Ekernel of all the Res'
on currents. To see this we need the commutative diagram in §2.4.2; which is a byproduct
of the maps R defined in §2.4.1.
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2.3.4. Higher Tube maps on cycles and a simplified picture. In
order to explain the original motivation for this section, we introduce one
more spectral sequence, with

By, = Hy (VTP VTP 7) — "By = IGTIJJVHde(erq) (X,Z2),

to complete the local-global duality picture. Removing the d** column com-
putes not ’GréVHQ(d,l),(erq)(V) but graded pieces of something we will call
H*(V) At least if Vf has normal crossings, it seems possible to produce Ej |
and ' Ej; , via double complexes of singular chains, viz.

EI[J],Q p+q /C Vd p+1 X IEg,q = Cp+q(Vd*P _ Vd*p‘}'l)

where the chains on the right have to be supported away from V¢ P+l and
the horizontal differentials 'E) , — ' z[)]-l-l,q are Tube maps set up in such
a way that Tube o Tube = 0. (')E* then computes the homologies of the
associated simple complexes, and the results are dual:

Hyg—1)-m(V) = Hp (V).

This is the right generalization of Poincaré duality to this kind of singular
space (a union of divisors), and there is no need for intersection homology.

EXAMPLE 2.3.5. V =the “triangle” (J7_,{z; = 0} C P?, W =its ver-
tices. Then we expect a duality between H;(V) and H,(V), given by N on
the components. The actual triangle given by the union of the three relative
cycles C (V;, W) connecting {0} and {oo} ought to be a singular cycle on
V; and indeed this does give a class in Hy(V') via the above picture. On the

other hand a nontrivial element of H;(V) is given by a cycle on (Vo — W)
going around z; = {0}. They intersect in one point (on V3); here’s a picture:

Still assuming normal crossings, we set up a double complex

TERT = (Vd PIDPY (log VY P“))
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Co(Y) — C1(W
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computing H*(X) (and H;-(X), omitting the d”* column) and record below
for reference 'EY , and 'Ey™ for the case of X = a 3-fold.

* %k

Cz(W

Co(X — V) (‘D% (log V)
Y
Co(V—W) — Ci1(X - V) (DY (log W)) <— L ('Dx (log V))
—Y) = C(V-W) — Ca(X — V) (DY, (log Y)) <— T('Dy (log W)) <— T'('D%(log V))
) d
Y Y Y
—Y) = C2(V=-W) Tube C3(X = V) P('DY) <— T('Dy, (logY)) <— ("D (log W)) Jes r('D% (log V))
A
) d
—Y) = C3(V - W) — Ca(X — V) D('Diy(log Y)) <— T('D3 (logW)) <— T'(' Dy (log V)
Y Y
Ca(V=W) — C5(X = V) (D} (log W)) <— ("D (log V))
Co(X — V) (‘D% (log V)

Here Co(Y) and I'("DY.), respectively, are in the (0,0) positions. We refer to
the d; in 'EZ , as Tube’; Tube' is the usual tube map from H,(V — W) —

H,,1(X — V), Tube? = Tube o 9~! o Tube, etc., and together they give the
graded pieces of the tube map in the exact sequence

. Tube N .
—H, 1(V,Z2) — H.(X -V,Z) — H.(X,Z) — H.s(V,Z)— .

In the case corresponding to the dotted arrow above the local picture of a
Tube? of a point p € W — Y is, in a picture /R (i.e., we draw S%’s where
there should be S1’s):
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The four points(one of which is hidden) are Tube(p), and the light dotted
lines are 9~! o Tube(p). In fact for one point p, in the global picture this
may not exist — one must choose a 0-cycle > n;p; (on W —Y) in ker(Tubel),
to construct Tube?. A simple computation shows

/ Ry = S miRes’Ril(p;)  mod Z(4),
Tube? (3 nip;) i

and the previous remarks on the dilogarithmic nature of Res? Rg stand (also
see the next section). In general

/ Ry = /ResiR;- mod Z(n),
TubeiC c

Tube’ : Hy_(V'\ VI, Z) D ker(Tube’ ') — H, (X = V,Z) /| Jim(Tube) .
Jj<i

where

REMARK 2.3.6. At least in the case of V' having normal crossings and
f good, one can get results similar to those in this section by working with
Q% (nullV) forms (which one is more likely to be able to write down) instead
of QEX\V)OO forms. (Dually one must use log V' currents, which accounts for
the more stringent conditions.) The spectral sequence would be obtained by,

e.g., resolving j!(i)(C — Q% (nullV?) instead of ]’QZX\V)OO'
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2.4. Abel-Jacobi for Higher Chow Groups

2.4.1. The triple (Tz,Q2z,Rz). We begin by constructing explicitly
an Abel-Jacobi map

R: CHP(X,n) = HZ (X, Z(p))

for X projective /C. Then we extend it to some other cases and give ap-
plications. In particular, on nx (for n = p) it coincides with the Milnor

regulator.
On 07, define!®

T5: =T, N...NT,, €Cy(O"),
n
Of = Qz1,... ,20) = [\ dlogz; € F*'D"(0"),
RY = R(z1,... ,2,) =
log z1dlogz A ... Adlogz, £ (2mv/—1) log zodlogzs A . .. A dlogz, - or,,

— ..+ (:|:27r\/—1)7"“1 log z, - 5TZ10,,,QT%71 € 'D"il(D”).

Put

Z Z Z 1)itse) wheres(e):{0 o — oo

i=1 e=0,00

so that we may conveniently write
oms = 3" pta = Y orm,
i,e

i€

d[ E] = 27TV—1ZP;?*QTEL|_1 = 2nv-— Z Z17"' 72;17"' 7zn)6(zz)7
i€
dRp] = —2nv=1> pf . RE + Qf — (2nvV/-1)"T3
i,e

= —21v/—1 Z R(z1,.. By 2m) -0y + QY — 2nvV/—1)"TE.

Consider a cycle Z € ZP(X x O") :

13 (using the more concise notation A(X) = I'(X, A) for sections of sheaves)
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0¢Z, and we

i,e 71

Set 92 = p¢" Z = ZN (X x p¢,.0"7 1), so that 9gZ = Y
have the diagram of projections and inclusions:

(9:2) (9 2)
o1 i0 gz X X

(2

P

~

z z
o3z X Ly
Now we define the central objects of the section, noting that the 7% ’s (in
what follows) can both involve integration over the compact fibers of Z
(e.g. generically over X if n > p) and multiplication by dy--functions for

components of Z supported over V*?. Put
Rz := 7% & RY € 'DP " (X)),

Oz = 75,75 QY € FP'DP(X),

Tz :=mx (X xT7) N Z) € Cog—2p4n(X, Z);
applying differentials gives

0Tz =7x (X x0TE) N 2) =mx | > (X xpf.TH )N Z

i€

=ax [ D (X XTEHNpl 2| =ax (X xTE ) NOBZ) = Toyz,

i,e
d[Qz] = n%. 73 dlof] = 2nv/-1) #%.af pf. 0y
i,e
=2ry/ 1Y rf a2 an Tt = 2wy 1Y Al Al gn
i,@ i,e

=21V —1Qp,z, and similarly
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d[Rg] = 2nv-—-1 Ré)BZ + Qz — (QW\/—I)HTZ.

We are already familiar with this last formula in the case n = p, Z = 7¢ for
f good.
Define a complex of cochains for the Deligne homology'4

Cy (X, Z(p — d)) :=
Cone {Caq—s(X, Z(p)) @ FP'DX(X) = "D (X) } [-1](—d)

— {Coue (X, Z(p)) ® "D} (X) & "Dy 1(X) } (—d)
with differential 0 taking
(a, b, ¢) = (—0a, —d[b], d[c] — b+ a).
Then the following is a map of (cohomological) complexes:
Rx : ZP(X,—e) — CX 21 (X Z(p — d))
induced (for —e = n) by
Z— (=2nV/=1)P7" x ((2nV=1)" Tz, Qz, Rz) = Rx(Z2).

(Technically one should also throw in a (27y/—1)~¢ here; we’ll sometimes
ignore the (—d) like this). The only thing worth writing out here is to check
that powers of (2my/—1) work out in the third term of the cone complex:

d[C] —b+a = (_27T\/__1)p—n [—QW\/—_IRQBZ +Qz — (27T\/—_1)nTg]
—(=2nV=1)P" Oz + (~1)P T 2nV—1)PTz = (=2nv—1)P" "V Ry, 2,

and so
ORx(Z) = (—2nv/=1)P "V x (21 =1)" Tsyz, Qoyz, Rogz) = Rx(952).
Therefore if Z is a higher Chow cycle (02 = 0), we have that 0Rx(Z) = 0.
Using the formula for d[Rz],
d[Rz] = Qz — 2nV-1)"Tz = [Qz]~ (2rV—-1)"[T%]
gives a class in
FPH*»"(X,C) n H¥ (X, Z(p)).

In the event that this vanishes there are primitives d)_(IQ z and 6)_(1Tg; we
may use them to modify Rz to get something d-closed. The choice of
d~'Qz is ambiguous by FPH?*~"~1(X,C) and that of (2mv/—1)"9%'Tz by
H?P~"=1(X Z(p)), so we get a well-defined class

H2p7n71 (X, (C)
FrH?- (X, C) + H* "1 (X, Z(p))

[R%] €

Mwe try to agree here with the conventions used by Jannsen and Lewis ([Ja], [L2]),
and forewarn the reader that this renders the indexing slightly ridiculous (due to the use
of cochains to compute homology).
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This just goes to say that Deligne homology and cohomology are the same
by a kind of “Poincaré duality”

H (CF (X, 2(p - d)) = HE g0, (X,2(d—p)) =
P.D.

and we have the promised map for X projective.?

We show how to modify this picture for X \ V in case V' has normal

crossings, so that D% (log V') resolves ]S})CX,V and cohomology of

CH X —V, Z(p — d)) :=

Cone {Cag—o (X, V; Z(p)) & T(FP'D (log V) — T("DX (log V)) } [~1](—d)

computes Deligne (co)homology of X \ V. In fact we may view this as
Gr?\,(%_m by defining a coniveau filtration

NiCy (X, Z(p - d)) =

Cone {Cag—e(V*, Z(p)) ® T (F'D% (onV"’)) = T('D (onV?) } [-1](—d).
It is clear that R x respects coniveau, restricting to a map

. Ryi
N'ZP(X,—e) — NCZ (X, Z(p - d))

and therefore

Rx\v
GrQZP (X, —e) — CH (X \V,Z(p - d)),
which is to say that R\ only operates on cycles Z on X \ V with good
closure on X. Bloch’s moving lemma then implies that R x\1- descends to a
map
Rx\v: CHP(X \V,n) — HZ "(X \ V,Z(p)).

For p = n, Rx\v () is just the map we constructed in §2.2-3 using (¢ and
R, since the definitions = Q. = Qf, T',, = T, R, = R¢. However, we
got around the requirements that f be “good” and V have normal crossings
there. (This was the point of using 'D;(\V in §2.2, also see the discussion
preceding lemma 1.3.7.) The same is possible for Ry\y if n > p, because
(for purposes of computing H%p ~" for n > p) we can alter the terms of
C%p_Qd_n(X \ V,Z(p — d)) up to n = p by altogether omitting the second
entry (as F’”D?é"_n = 0 for n > p). This gives us the freedom to replace

’D??_n_l(log V) by ’D?gg;};, so that we may drop the normal crossings

5Note that the version of this map given by Goncharov [Gol] was not correct. One
really needs the Deligne homology cochains here to get a map of complexes inducing AJ:
there is no getting around the triple (7, 2, R) for general n, p, d. The major problem,
however, was that he uses real (n — 1)-currents r, instead of a complex current like the
Rp employed here.
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assumption on V, and even the assumption that Z has good closure. Taking
the limit, we get

Ruyx + CHP(C(X),n) = HY "(nx, Z(p)) = H* " (nx, C/Z(p)),
induced by
Z = (—2nV/=1)P" x (2nV-1)"Tz, Rz),

for n > p. For the remaining n: set it equal to our previous construction for
n = p, and for n < p define it to be 0 since all the cycles in ZP(X,n) are
then contained in higher coniveau.

REMARK 2.4.1. So the cases n > p are arithmetically interesting; they
amount to something already on fields, and they are interesting for projective
X if the coefficients of the defining equations are in Q (or perhaps extensions
thereof, of small transcendence degree). If these coefficients are general (say,
enough independent transcendentals) they are not interesting in most cases,
n =p =2 and X an elliptic curve being a notable exception (see Chapter
4). On the other hand, the cases n < p are geometrically interesting, and
do tend to have interesting images for “general” projective X.

2.4.2. Why residues of R; are polylogarithmic. Again assuming
normal crossings, the maps Ry on coniveau induce a map of spectral se-
quences, so that the d; = Res’ and R (on the appropriate subquotients of
graded pieces) automatically commute; the central step is that the square

: A :
H*(GriyZP(X, —e)) — H*TH (N1 ZP(X, —e))
R R
A

H* (GT%C%]Jde#»') H*—|—1 (Ni-l-lC'ZZ)p*Zd‘FO)
commutes. Cohomology of

~

GrﬁVC%p_Q'H' ? Cone {Cag2p—o(V", VT, Z(p — 0))

Lx

@ D(F= DI (log Vi) — T(DYP ™" (log VIt } [-1](~(d - 1))

at e = —n computes H%(pfi)fn (VI\ V¥ C/Z(p — 1)), and so one has a
commutative square
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CHP(X \ V,n) D ker(Res'}) -~ CHP ' (VI\ VT n—1) /| Jim(Res?)
j<t

R lR

B  Resi[/(2mi) e .
HZ (X \ V,Z(p)) 2 ker(Res' 1) —— /(2i)’] HX ) i Vit z(p — i) /| im(Res’)
i<t
Now suppose p > d = dimX. For all n, F’”D?é"_n = 0 (so that
H%(X,Z(p)) = H*~1(X,C/Z(p))) and we may write instead

NCy (X, Z(p — d)) = Cone { Coa oV, (D)) = "Dl (X) } [1](d)

so that

Grivey (X Z(p = d)) <~
Ly
Cone {Coaapo(VE, VI Z(p = 1)) = DI VAT o (X)} [-1)(=d + 1)

computes
HyP VT (VI VILZ(p)) = B2 07N v\ VL C/7(n))

without the assumption of normal crossings.
Let vy € CH™(X \ V¢, n) be any graph (we are frequently interested in
the case d = n — 1). Then exactly as above d; and R commute and so'®

Resi ((27’(\/—_1)an, Rf) =
Resi(R(’yf)) = R(Resi('yf)) = (277\/__1)i X ((27T\/__1)n_iTResi(fyf)v RResi(’yf))

€ [a subquotient of] H™ 24V \ VL C/Z(p — i) (i),
or more concisely

]‘ i ! /
ey = Fresi:

We could not accomplish this before because Res’(v¢) is not a graph for i > 2
(see Chapter 1): over each point in V*\ V#*! it has fiber dimension i —1 and
so some integration is required (along these fibers) in pushing m* R, down
to get RRegi(yp)-

Provided the conjectural picture at the end of §1.2 can be completely
realized, we would have (i > 2)

Res'(yg) = Res'(pn(n)f) = pn_i(n — 1)(Tame'f) =: 5(Tame'f)

'6Of course one can take a limit here and replace X \ V¢ by nx, V¥ \ Vi*! by [generic
points of] codimension i points in X.



2.4. ABEL-JACOBI FOR HIGHER CHOW GROUPS 91

where Tame'f lives in a subquotient of

n—21
[ Bc@) o A Ca)
reXt
and so
1

il !
@y e

which makes more concrete the expected “i-logarithmic” behavior of ResiR;.
(Recall that the relations on B; correspond to functional equations for the
it" polylogarithm; for more evidence, particularly in the case n = 2i, see
below.)

Recall that

— n

KM (X) € KM(C(X)) — CH (x.m)
Y

is defined to be v~ '(Nker(Res’)). Since R commutes with Res’, it maps
KM(X) to Deligne cohomology of ny (i.e. to currents with trivial Res’). So
we get a well-defined map

R: Kp'(X) — im {HB(X, Z(n)) = Hp(nx,Z(n))} = HB(X,Z(n)) /im(Gy)

n

(see diagram below). This is the “holomorphic” part of the Milnor regulator,
the stuff that doesn’t come from residues and presumably has more to do with
the arithmetic and geometry of X. To put this in a context we write down the
(commuting) map of “exact triangles” (=localization sequences) mentioned

above, for i = 1. We write Hj, 2(V,Z(n — 1))(1) (where (1) = 27y/—1) for
Hp (X, Z(n)) := H*(N'C3; (X, Z(n — d))),

note that both Res maps break up into Res’, and refer the reader to Totaro
[T] for a definition of the norm map N (a priori defined into KM (C(X))).
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lim CH"™'(Z,n) Ry lim Hpy (2, Z(n — 1))(1)
LS}) Gy LS})
CHM(X,n) — X Hp(X,Z(n)
N * *
(norm) J(1) J(1)
h ' Ry '
&) KM — 2P g ny — B e )
| Tame!
R R
[ex: KM, (C)) “ “
=y | '
n—1 _ '](1:2) . n—1 _ RV . n—1 _
II cE""(nx,n - 1) lig CH"™(Z,n — 1) — lim HE™'(Z,Z(n - 1))(1)

e X1

Of course v(KM(X)) C ker(Res), not just ker(Res'); and Gy can be de-
scribed as simply

Hy~ (X, C/Z(n)) — H" (X, C/Z(n))
since we are assuming n > d.

2.4.3. Some special cases of the construction. We now run through
the basic examples, for p = 2 (0 < n < 3), for the most part recovering fa-
miliar formulas (whose analogues for p > 3 are perhaps less familiar). We
assume in each case that the “cycle-class” part of the AJ-map is zero, so that
there exist d71Qz € Fp’DIZ\f(;”(;;)OO and 81{,10r x,,, Tz (on X or nx, depending
on the example).

EXAMPLE 2.4.2. We actually consider CH"(nx,n) = KM(C(X)) for
n = 2,3. The above assumption always (Vd) = Qz = 0 for p = n
over 11x (holomorphic log forms inject into cohomology); we may also ignore
0 1Tz by defining our AJ-map as a functional on integral cycles.
Ifd=1(Xacurve), n =2, Z =3 miv.,, < [[{figi}"™, then
Rz =>"m; <log fidlogg; — logg; - 5Tfi) , and the “regulator”— H'(ny, C/Z(2))

viewed as a functional on 1-cycles C in X \ V¢
/c Rz = > m; /c (log™ f;dlogg — log gi(po) dlogfs) .

Here we have picked a “base point” py € |C| and continued log f; to get
log* fi (only defined on [a cover of| |C|, with cut only at |a lift of] pg). This
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is the formula used in [GG1], [C1], etc. If Z +— {f} € ker(Tame(!)) this
functional lifts to a well-defined class in H' (X, C/Z(2)) because im(Gy) = 0
in the above diagram (H(pt,Z(1)) = 0).

If d =2 (X a complex surface), n = 3, Z «— {f} = [[{fi, i, hi}™,
then the regulator is a functional on 2-cycles C in X \ V' given by fc Rz =

> mi / log f; dlogg; A dlogh; + 2mv/—1 log gi dlogh; —4r”> Y~ logh;
¢ CNTy, CNTy, Ty,

Though KM (X) is still ker(Tame™®), im(Gy) # 0 so one only has
Ry : K3'(X) — H*(X,C/Z(3)) /im(H{ (X, 0)) .

This is because one doesn’t get all of Hy(X,Z) by considering cycles C avoid-
ing V, although for X sufficiently general (see Proposition 4.5.5) such C do
give everything but the hyperplane class.

EXAMPLE 2.4.3. [Z] € CH?(X,1) for X a (regular) smooth projective
surface; R maps to

H}(X,Z(2)) 2 H*(X,C) /F?H*(X,C) + H*(X,Z(2)) .

Z consists of functions f; on divisors V; such that 3¢V (f;) = 0 (the V; may
be singular). We get data

Rz =) logfi-dy,, Qz=» dogfi-dy, Tz=uuTy)

and note that we may choose 97'Qz € I'(F?'D%) (no assumption is needed

for this if X is regular). Therefore we may ignore it in R, = Rz —

070z + 27r\/—153_1TZ for purposes of integrating against closed forms
X

[w] € F*H?*(X,C) :

R o R e

)

is then the desired formula, as used in [?], [C1], [GL], etc.

EXAMPLE 2.4.4. [Z] € CH?(X,0) = CH?*(X) for X any smooth pro-
jective variety (we recover the classical AJ map from our construction).
Rz =0,0z =Tz = Z (or 6z) € HY(X,Z(2)) N F?H%*(X,C). We assume
this class is trivial, and take two primitives:

1
2myv/—1

so that d[f] = 27v/—1-dz, OI' = Z. Pick a d-closed w € Fd*19¥;3(X), S0
that 8 A w = 0. Then our map “ [, Rz A w” reduces to

r

Bl=d7'0) € F*'DX(X), T[=07'T] € Csq 3(X)
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and if w = da (where it suffices to choose a € Fd*IQ?\ii;‘l(X)),

/Fda:/aroz:/Z(L*Z)azo

by type. So integration over I' gives a functional on F4—'H?=3(X, C), i.e.
by duality an element of H3(X,C)/F? H3.
Now suppose Z = 0, so that there exist divisors V; C X and functions
rat

fi on V; with 32 ¢/i(fi) = Z. Then one may choose
T =Y "uV(1p), B=>_ dlogfi-dy;
clearly B — (2m/—1)I' = d[r], where r = 3" log f; - §v;. Notice that
(—2nv/—1)P"! x 27V 1T, B, 1) — (—20vV—1)? x (Z, 0z, 0)

in the Deligne complex. Therefore it’s no surprise that we can write

-1 1

where the first term is zero because dw = 0 (and X is compact).

So fF =0¢€ H3/F?H?3 for Z rationally equivalent to zero, for the above
choice of I'. This result is ambiguous by a period because one may modify
[ =0 'Z by a Z(2)-cycle.

T

EXAMPLE 2.4.5. [Z] € CH?(nx,3), so that fibers of Z — X are (com-

pact) curves. Since R?, is a 2-current, Rz is a C/Z(2)-valued 0-current given
by integrating along fibers'” #=1(p) = (7%)~1(p) :

1
2ry =1 Jx1(p)

Rz(p) = log z1dlogzs A dlogzs

+ / log zodlogzs + 2mv—1 Z log 23.
T (p)N

Tz 7= (p)NT,, NT%,

This gives a class in H°(ny,C/Z(2)) and is therefore a “constant” with Z(2)

jumps. Qz = 0, while the (2d—1)-cycle T’z with support on {p € X\Vz ‘W*I(p) N Té}
has a primitive. This is just a 2d-dimensional “patch” which annihilates Rz’s

jumps: so that Rz — 4n?Tz = R'; really is a constant (this is unimportant,

though). This formula already seems new.

'"Here one should think of p € X \ Vz, where Vz is those points over which (a
component of) the fiber lies entirely in a face of O°.
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2.4.4. An attractive application to polylogarithms. Recall the
maps pp(¢) of §1.2, which in general were only conjecturally well-defined
on the terms of the Goncharov complex G"(C(X), —e) (where essentially
—e =/, and n < £ < 2n — 1 is where the nonzero entries lie). If these
are well-defined and Beilinson-Soulé holds then we get a diagram of maps of
complexes

ZM(C(X), o) L5 2ty T — )

A

1

descending to a composite

p R

H* (G"(C(X),—e)) — CH™C(X),—*) — H%”**fnx,Z(i))
TR

HE ™ (nx, R(i)).

It seems consonant with Goncharov’s program!® that this should agree (on
the cohomological level) with his maps defined explicitly on the level of
complexes!?

Pa(2n + )+ GMC(X), —e) = Q2 A0L)
defining a map

H* (G™(C(X), —e)) = H™ 7 (nx,R(n — 1)).

In particular, r,(1) is given explicitly on G"(C(X),2n — 1) = B,(C(X)) by
{f}n = Lp(f) (where L, is the generalized Bloch-Wigner “real single-valued
n-logarithm”),?° and the homology of the Goncharov complex at that term

18pamely, the comparison of the Lie-motivic and Grassmanian “polylogarithms”, as

discussed in [GZ]. These are presented as cochains in the double (triple) complex com-
puting Deligne cohomology of the (bi)Grassmanian complex, and these should differ by
a coboundary. Our composition corresponds roughly to a pullback of the Grassmanian
polylogarithm via the section p(-); the ry, (*)-type maps correspond to the Lie-motivic side
of things.

%0 avoid confusion: these are not the maps with which we compare in §3.1.

.., for n = 2,3 these are, putting Li; (z) = —log(1 — 2),

L2(z) = F{Liz(2)} —log |z| - S{Lii(2)} and

L3(z) = R{Liz(z)} — log|z| - R{Li2(2)} + % log? || - R{Li1(2)}.
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is just ker(d) (see §1.2). So we can make a very concrete conjecture here,
namely that the composition

on(2n — 1) R
B,(C(X)) D kerd — CH™(C(X), 2n —1) —  Hx(nx,Z(n))
|
H°(nx, C/Z(n))
I TR
R(n — 1)

should coincide with (and so give explicit C/Z(n)-valued “lifts” of?!) the L,
on ker ¢. (Here 7 is & for n even, R for n odd.) We will actually prove this
for n = 2 in §3.1.2. Notice that (on ker §) the answer is always a constant;
this reflects the “rigidity” of the kernel, which is (at least conjecturally)
already generated over Q (at least this is well-known for n = 2). So for
purposes of computation we lose nothing by setting X =a point. Now while
we can write down the maps here, e.g. for z € C

pn(2n — 1)(z) = £Alton_ (1 P - SR e o L ,zn_1>
21 Zn—2 Zn—1
C™(C,2n — 1)
AMC2n —1) = =272
eACm-1) = Gicm-1)

which induces p, := p,(2n — 1) on & = Y mi{z;}, € B,(C), there is the
problem of “lifting” p(¢) from a dp-closed element of A™ to a dg-closed ele-
ment of C™, and this relies on Beilinson-Soulé. This conjecture is known for
only n = 2, although p,,(2n—1) is known to be well-defined into A™(C, 2n—1)
for both n = 2 [GM| and n = 3 [Zh]. So one could still try computations
for n = 3.

Before proving our conjecture for n = 2, we had “checked” it on the two
elements (writing now i = v/—1)

4{i}s and 2{”7\/__7};{_1%\/__7}2 € ker(5 = st),

and we now run through just the first one, to indicate what sort of compu-
tation we have in mind.
First, st(4{i}2) =

4-1—i)ANi=(1—-i)Ai* = (1 —i)Al =1 = 4{i}y € ker(st) C Bo(C)
More generally, [Gol] has
n—1 k
= { 30028 V2 (50
k=0 ’

where 3 are Bernoulli numbers (see footnote in §2.2.2 for the Li).
L This seems relevant (for the n = 2 case) to the approach to the Rogers function in
[Ha] or Bloch’s other book [B2].
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as asserted. The associated rationally parametrized (or “fractional linear”)
cycle is

ﬁ2(3) (4{2}2) = 4 Alts (1 -2z, 1— é, Z) S AQ(C, 3)

which is dg-closed; that is,
05 (p2(3)(4{i}2)) = 4 Alty (1 —1i, i) € S*(C,2) = C'(C,1) ]\ 95C"(C,2).

Since S?(C, *) is acyclic, one may write this as dg of something [€ S?(C,3) =
CHC,1) A CY(C,2)]; in fact,
.. (z —i)* .
4(1—272):83 <m,1—272 y
and so we can modify the original A-cycle to get a (dg-closed) C-cycle

Alts {4 <1—z, 1— é z) - (éj:i); 14, z)} € C2(C, 3).

Now we must integrate R% over this; we first try to calm it down a bit (get
rid of the alternation if possible). Indeed, we get lucky here because

Z:—4<1—§,1—z,z> + (1—z%z>

is also dp-closed and so (by proposition 1.2.1) differs from our C-cycle by
imdp, on which R is trivial (in this case that means it would change the [
by only Z(2)). Now the integral [, R?, pulls back to

1 1
/]P>1 BRY = —4 {% /]P>1 log(1 — ;)dlog(l — z) Adlogz
+ / log(1 — z)dlogz + 27m'/ log z
T(l—%) T(l_%')ﬂT1,Z

(z—i)*

plus zero for the second term of Z, since T} ; = () and dlog(z )T Adlogz =0

on P! by type; the same goes for the first term of the above. Moreover, T(17 iy

is a vertical segment from 0 to ¢ while 77_, = RZ! U{oc}, and so they never
intersect. so we are left with the middle term

7
—4/ log(1 — z)dlogz = 4Lis (i),
0
in the “standard” branch. Now all we have to do is check that its imaginary
part agrees with
ra(1)(4{i}2) = 4L2(i) = 4{SLiz(i) + logli|arg(l —14)},

but since log |7| = 1 this is trivial. In general the terms involving combina-
tions of log (and lower-order polylogarithms, if 7 > 2) won’t be zero like this.
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So we cannot get the “lift” of the £, just by taking Li, on kerd (and so this
“application” would solve a nontrivial problem).

REMARK 2.4.6. Already for n = 2 I have no idea whether (a) kerd is
dense in C or (b) the C/Z(2)-valued function obtained by this procedure is
continuous. Clearly the imaginary part (= L9) is, but my hunch says the
real part is “pathological”.



CHAPTER 3

Real and Relative Regulators

3.1. Real Regulators and Goncharov’s Construction

In the late 1970s Bloch [B1] defined a real regulator on K of an elliptic
curve E| via the Abel-Jacobi map

KM (C(E)) D ker(Tame) — CH?*(E,2) — H%(E,R(2)) = H'(E,R)

d21 dZQ
f— r »—>{w»—>/ %(—/\— A Thw
completing ¢ 8—-1T 21 29

which is a special case of (the imaginary part of ) the consruction in §1.3. He
computed its image by way of the “elliptic dilogarithm”; his major discovery
was that, for £ having complex multiplication and defined over a number
field, this was related to the value of the Hasse zeta function of E at s =
2. Five years later in his seminal paper [Be|, Beilinson introduced real
regulators! on “motivic cohomology”

Hy (X, Q(p)) — Hp(X,R(p))
T'Be
along with conjectures predicting that for X smooth projective over a number
field (and 2p — i > 2), im(rpe) should be a lattice with covolume equal to a
rational multiple of the special value L("*l)(X,p).
Now the motivic cohomology groups, say as used by Beilinson, were orig-

inally definied in terms of Quillen K-theory and its associated “y-filtration”
by Adams operations [So]:

Hiy(X,Q(p)) = Gr Kap—i(X).

The higher Chow groups were constructed by Bloch to offer a more geo-
metric, alternative picture for these groups; in particular, he proved the

'these in a sense generalize the Dirichlet regulator on K of a number field F, which

is just the multiplicative group of units u in the ring of integers (of F). If o1,...,0n
(n=[F :Q]) is a list of the distinct embeddings F' < C, then
r(u) := (loglov(u)],... ,loglon(u)]) € R";

and roughly speaking, it is the covolume of the Q-lattice in R* (generated by all u € K1 (F')
in this fashion) that Dirichlet’s theorem then relates to the behavior of (r(s) at s = 0.
See [Ra] for a more complete description.

99
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generalization (mod torsion)
K, (X) = &,CHY(X, j)
of Grothendieck-Riemann-Roch (the case 7 = 0), and in fact that
H)\((X,Q(p)) = CH”(X,2p —i)o.

So it would be perfectly natural for someone to try and realize the maps
rge explicitly on CHP (X, n[= 2p—i]), and this is essentailly what Goncharov
did in [Gol]. But we should be more precise here. His (real) regulator
formula r is compatible with the product structure on higher Chow and
Deligne cohomology over the generic points of all subvarieties of X (of any
codimension), as is rge. So it follows from a spectral sequence argument that
e and r coincide as maps Gri, CHP(X,n)g — GerH%p_n(X, Q(p)). As far
as I know this is all that is known at the present stage.

3.1.1. Comparison of §2.4.1 with Goncharov. Equally natural is
the question (resolved affirmatively in this subsection) as to whether our
Abel-Jacobi maps provide C/Z(p)-“lifts” of r, or (more precisely) whether
the compositions

AJ Wﬁ
CHP(X,n) o HY? ™(X,Qp)) — HZ ™(X,R(p))

are the same as Goncharov’s maps (defined below).
In order to prove this we need to slightly modify the map of complexes

Ry : Z7(X, —) — Cone { Caa 2y (X, Z(p)) @ FI'DYE(X) = 'DYE(X) } [-1]
given at —e =n by

Z— Rx(Z) := (=2mi)P " ((2m8)" Tz, Qz, Rz)
and inducing AJ. recall from §1.2.1 that alternation over S, x (Sg)®"

Alty, : ZP(X, —e) — ZP(X, —e)

is also a map of complexes, which descends to the identity on CHP(X,n)
(by Corollary 1.2.2a); clearly the composition Rx o Alt, must also induce
AJ. Moreover by our branch choices? for log z; (as 0-currents) we have that

Alt, TH = T5, Alt,QY = QF, and Alt, RY reduces to alternation over S,;
this leads to Ty, z =Tz, Qapn,z = Qz and?

Ruy,z = n'2, ndl2* Ry = nf, 78" (Alt,RY) =: (Alt,R).
Which is to say, sending
Z — (—2m)P™" ((2mi)" Tz, Qz, (Alt,R)z)

2which are completely symmetric with respect to Sy, x (SZ)EB" (the cuts are at arg z; =
=+, for all ). For AJ to be well-defined we must at least have S, -symmetry (AJ on all
of X is a good deal more sensitive to branch chages than the Milnor regulator [over nx]).
3noting that Alt.Rpy = % ZJESn R (20(1), . ,za(n))
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also induces AJ.
To compose this with the “real” projection, first set

mh:C=R(p) ®R(p — 1) — R(p — 1)

and define
. ~ . I ~e
Chr(X,R(p)) := Cone { FP'D5 (X)) = D g 1(X) p [-1],
T
HY (X, R(p) = H " (CHE (X, R(p))) .

We can induce

mh s Hy (X, Z(p) = Hp " (X, R(p))
by sending

(a, b, ¢) —> (b, Wﬂpgc),

and so mf o AJ may be computed by

Zr— ((—M)”‘”QZ,ZTEQ {(—27rz')p_”(AltnR)g}> :

e

=X« mh " (m [(=2m0)P 7" Alt, BY))
Goncharov’s map
r: CHP(X,n) — HY "(X,R(p))
is given by setting?
Alty, j;o ( 2!7.7_3_ 1 ) log |z1| (dlog|zo| A ... A dlog|zojq1]) A (diarg zaj4o A ... Adiarg zy,)
=:7(21,...,2n) =170y € 'DH%(_TL{I)(D”)
and (for Z € ZP(X,n))
rz = TS Y,
and simply sending
Z—1(2) = (—2mi)P " (Qz,7z) € CER" (X, R(p)).

The objective is now to show that for Z any dg-cycle, the difference

r(Z) — nb {R(Alt,2)} = (0 s l(—Qﬂi)p_nT% — b {(—2mi)P~ " Alt,, }])

-~

=: A"
is a coboundary in the cone complex C%p & (X,R(p)); it is enough to show
that 7%, m5*A" = d[-] on X. In fact, suppose there were an alternating (n—

“this differs from Goncharov’s current by a factor of (2mi)™.
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2)-current Alt,S € ’DH%(_I){I)(D”) with d[Alt,S] = A" + residues on 001",

The residues must be of the form®

C =2mi Y (-1)'Q(z1,-.. 20,y 20) Oy = 210> pfu Q!

V4 Le
for some current Q €’ DIE(;{Q) (Od"~1), because Alt,, is idempotent (and com-
mutes with d) = C'is Alt-invariant. So we find
d [n5enGAlt,S] — ni G A" = 27?2'752(*7?5*2;)?*@%71
i€
= 2mi WiBZ*WgBZ*Q%_I =0

since 0gZ = 0 is assumed. Therefore to equate the two real regulators it is
sufficient to exhibit Alt,S with d[Alt,S] = A™ on O™\ 00O".

"2 n even
Next put £, := { ’

o and notice that
"1, n odd

1
2mi)P " Alty, —27i)Pt — T Alt R
mh {(—2mi) RY} = i) %{(_27”) R }
N 1 R, n odd
_ _ p—1 ) n
= +,(—2mi) 2T { S, n even }AltnRD

= (=2 (i 1){ X }AztnRg - (—m)p—"{ S }Altn

while (with g, := 1, ™ even )
]-7 n odd
1 EnAltn 350 (-1 " log |21 |-
TE:En'in'(TE/i”*)zen. nAlln ) j>0 27 +1
(dlog|za| A... A dloglzgj1|) A (darg zpj 2 A ... Adarg zp)
=: €&y f%

So we’ve reduced this problem to producing an alternating current Sy with

R, n odd i
d[So] = { 3, ;”gven }AltnR” —

(on O™\ 00O0™).
Working under the Alt sign® now, we will use the following notation for
real (n — 1)-currents (on O"):

L o log |z
<{ A } || j> ::{ a§g|z11| }(dlog|z1|/\.../\dlog|zi+1|)/\
k

®(see §2.4.1 for dote)
5 Alt is implicitly applied to everything; so these are alternating currents (other wise
the lemma would be false!).
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(dargzjzo A ... Adargzipji1) - 5T%+],+Qm,,,me
where i + j + k + 1 = n; we will also use (n — 2)-currents
(LA |i| 7)), := log|z1|arg zz (dlog|zz| A ... A dlog|zita|) A
(dargzips A ... Adargz,,,.,) - 5Tzi+j+3ﬁ..-ﬂTzn

where i + j + k + 2 = n. We have the following basic’

LemMa 3.1.1. d(L A |i] §),] = (L ]i| 5+ 1), —(A i+ 1] ), =27 (L || 5) i1,

and it is also easy to see that in this notation

in'{ 5?7 n odd }AltnR’DL _

S, n even

> Yty [( " ) (L1240 —2j —1); , + ( . ) (Al2j +1n -2 —i—1),

i=1 j>0

while

= 4 o107 (7 B2l n-2i - 1.

J=0

. « L ” n—11Y\_ n _ ([ n-1
Recalling the “Pascal’s triangle” rule ( 2 ) ( 2% +1 ) = ( 2% +1 ),
we find that

tn ({g}AltnRE - F%) -

SO0 (317 ) Al 1 23 = 2 — (il = 27 - 1)

J=0
(3.1.1)
- i—1¢_ _1\j n—1 . o n—1 . Y
+i222j§(27r) (-1) [( 2j><L|2j|n 2j 1)i_1+(2j+1> (A2 +1n —2j —i—1),_,

By the Lemma,

AT (7)) walziin—2i-2,| -

j=0

"the important thing to notice in verifying this is that swapping log | - | and arg( - ), i.e.
changing log |z1| arg z2 — arg z1 log |22|, generates a (—1), while swapping the differentials,
e.g. dlog|zit2| A darg zi+3 — darg zi+2 A dlog|zi+3|, does not. (The point is always to
keep the order of the {z;} intact.)



3.1. REAL REGULATORS AND GONCHAROV’S CONSTRUCTION 104

-2 (-1 (2j+11>[(A|2j+1|n—2j—2)0—<L|2j|n—2j—1)0]
Jj=>0

—2ry (-1 (2 +11>(L|2j|n—2j—2>1.

320
Adding this coboundary-current to the current of equation (3.1.1) gives

2 : . . .
Soon(-17 (% JAI2+ 11n=2) = 3), — (L12i]n -2 -,
3>0

+ZZ[< >L|2]|n—2] 1>,._1+<27;+1><A|2j+1|n—2j—z 1]

=3 j>0

and so on. More generally, the Sy we are looking for is &, times the current
in brackets, in the following

ProposiTION 3.1.2. On O™\ 000", £, ({ g }AltnRE — f%) =

n—1
> S en -1 (7Y ) Al -2 -1,

i=1 j>0
and so r and 7 o AJ coincide as maps: CHP(X,n) — H%pfn(X, R(p)).
We give some applications in the subsections that follow (as well as §3.2).

3.1.2. Application to CH™(C,2m — 1). Using a result of Goncharov
we can now prove the conjecture of §2.4.4 (regarding C/Z(m)-lifts of the
L, on ker(d) C B, (C)) in the case n = 2. Writing p,,(«) for the linear
subvariety of (12!

pua(2m — 1)(a) :=

(—1)™ ! Altgm (1 a1 i—i N a LIt ,zm1> € Z™(C,2m — 1)
-

parametrized by P~ Theorem 3.6 in [Gol] translates® to

80ne needs to use the fact that (since r(fi,..., fon—1) is alternating multilinear in
its entries)
r(ziy. .. Zno1, L — 21, 21 — 22, .o+, Zm—2 — Zm—1, Zm—1 — Q)
z2 Zm—1 a
=r(l—2z,1——,...,1— ,1— y Zlyevey Zm—1)
Z1 Zm—2 Zm—1

, together with the (277)>™~" difference between the 72"~ " here and the version in [Go].
Incidentally note that using these properties of r one can easily extend his computation

to other linear subvarieties, e.g. Ln(a1 ... am) =
1 21 Zm—1 «
Oy r(l—aizi,l —as=—, ..., 1 —am_1——,1 — —"— 21, ..., Zm—1).
(27i) prn—1 22 Zm—2 Zn—1
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LEMMA 3.1.3. [Goncharov| For any a € C,

Em - (=2m))" L0 (a) = / ()Témfl (Z Tpm(a)>'
pPm @

REMARK 3.1.4. Obviously this holds for an “unalternated” version of
2m—1

pm(a) since r5 is itself alternated. (In particular we may use any permu-
tation, with the corresponding sign.)
Another way of putting the Lemma is
r(pm(a)) = (0, em - Lm(a)) € Cpp(SpecCl= pt.],R(m)).

Since the only coboundary 0-current is 0, if p,,(a) were a dg-cycle then
Proposition 3.1.2 —

m 1 1
TR W&mw) = C2miym 1@ (=em - Lm(a)).

But this is not so; even if one replaces py,(a) [given some £ = )" mj{a;}m €
ker(6) C Bn(C)] by pm(&) := > mjpm(a;), this still has to be completed
to a dp-cycle by the addition of W € S™(C,2m — 1) using Beilinson-Soulé.
This is how we obtained the map from ker(6) - CH™(C,2m — 1) in §2.4.4
(conjecturally for m > 3).

Now specialize to m = 2 and recall that

S2(C,3) = CLH(C, 1) ACHC, 2),

so that one of 21, z9, z3 is constant on each component of WW. Thus one can
use [Gol| Theorem 3.3 or the following simple argument to ahow that

/ 7“% = / r(z1,29,23) = 0.
w w

Since W is a sum of curves,
dlogzi A dlogzg =0 = dargz; A darg zp = dlog|zg| A dlog|z|
on W, and so

(21, 22, 23) = 13y Alts {—3log|z1|d arg zo A d arg z3 + log |z1|dlog| 22| A dlog|zs|}

= =24y, Alts {log |z |dlog|za| A dlog]|zs|} .

On a component Wy on which, say, z; = ¢, the problem reduces to showing

log|c|/ dlog|z2| A dlog|z3| = 0.
Wo
But this is clear because

d[log |z2|dlog|zs|] = dlog|za| A dlog|zs|

(there are no residues).
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Therefore [, 1} = 0, and on Z¢ = pp(&) + W = Y mjpa(aj) + W we
have (using Lemma 3.1.3)
-—— | = ey =iy m;iLlaa;) =: iLo(§).
271 Z¢ 271 S mjpa(aj) Z

But Z is a dg-cycle and so

1 3 2 1 / 3 2
o = Lin| WR{ o = r WR{ Zs}

and since 74 =i - S, we have exactly

R {R25} - ['2(5)7
which was the claim of §2.4.4.
3.1.3. Real Milnor regulator currents and CH"(X,n). Associated

with the case n = p, X = (n — 1)-dimensional projective variety, one has
the following objects and maps:

Steinberg

{relations} oBZ (77:(, n+1)
"L |Poixy \ 0,00 Gk (nx,n))
; y ’ _R
K (CX) ——— CH"(nx,m) HY (1, C/Z (m)
s Tix
u . 4
K10 ’ cH"(X,n) —X =2 g (x, /2 (n)

where KM (X) is by definition ! {im(CH"(X,n))}, and R and AJ were
constructed in §2.2 and §2.4. Iff = 3 mafia®. . .® fra € O"Z []P’}C(X) \ {0, 00}

is such that {f} € KM(X), then there exists I' € Z"(X,n), ds-closed and
“completing” 7 to a higher Chow cycle (y¢ = 7, I'). Writing Re = Ry, =

Y. maR(fia,--- ; fua), we have also that Re = j; Rr, and these currents
have respective d-closed lifts to nx and X: Ry = Rf—l—(27rz')”(9&1 ve Tt R} =

Rr + (27?2')"3)_(1Tp. From §2.2.2, R¢ — Alt, R¢ is a d-coboundary on 7x, as
is (using the beginning of §3.1.1) Rr — (Alt,R)r on X, possibly modulo
(271)" T} for some topological cycle Ty € Z,,—1(X, Q).



3.1. REAL REGULATORS AND GONCHAROV’S CONSTRUCTION 107

R (nodd)

We slightly change 7 (by a factor of €,,) so that now 7 =
3 (neven)
C — R; clearly this induces also a map C/Q(n) — R of coefficients. Ap-
plying 7% kills (273)"Tp, (2m)"0 1Ty, (2mi)"0 MI; in particular note that
R Ry [= 7Ry is closed without a membrane term. Applying ng to the
above coboundaries on nx and X, and combining this with the Proposition
we find that 7 R — 7 and n} R — 7 are also d[-] (on nx, X respectively).
We can “see” this in a diagram:

H (X, C/Q(m) L B (x,C/Qn)) (-
- i
,Y*

H" (X, R)
Referring to §4.5.6, suppose X is a very general type [A] complete in-
tersection on P"*" (of codimension r + 1). Then according to the vanishing

theorem stated there (and proved in Chapter 4), [Rg] = 0; so [7¢f] = 0 and
7] € ker {5}, : H" (X,R) = H" *(nx,R)} .

H" ' (nx,R) [Fr] F—— [F4]

Now Qp = 0 and so 7 completely describes r(I') = (0, &, - 71); moreover,
any [' € Z"(X,n) with dgI' = 0 gives rise to f € KM (X), and so [fr] €
ker(y; ) for all [I'] € CH"(X,n)! Furthermore by Proposition 4.5.5, for n
even ker(z5, ) = 0, and for n = 2n — 1 odd ker(s;,, ) = imH"~'(P"*" R).
In the latter case we can completely describe r(I') by integrating against
the appropriate power [H]™ ! of the hyperplane class, or equivalently over
X N {Pmtr Cc PPt} (where 2m +r — 1 = n+r), since

vk =~ WX

X *
im anl(IPn+r) N anl(X) — % coim anl(X) N H2r+n+1(]pn+r)

Writing ['-[H]™~! for the intersection of I' C X x[1?m~1 c p2mtr=1y2m-1
with P+ x 0?1 this becomes

/ 7p :/ T e :/ m el :/ =t
Xnpm+r XNPm+r r[H]m—1 g(C-[H]m—1)

where one can think of 7o o {-[H]|™ '} as giving a map

[H]m—1 T
CH*™ Y(X,2m — 1) H—> CH™(X NP™" 2m —1) — CH™(C2m — 1)
and the integral as computing the Goncharov regulator on the image. Ac-
cording to Lemma 3.1.3, this is computed by L,, for special linear cycles;
more generally he calls it the Chow m-logarithm and conjectures that it can
be computed in terms of the L£,,. Since 7r gives a class in H" '(X,R),
the value of [ xApm+r T 18 independent of the particular linear subspace
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Pmtr c P2mFr—L chosen, so we get a family of cycles in CH™(C,2m — 1)
with constant Chow m-logarithm.

Now any I' € Z™(X,n) is of the form ' = 4+ 3" .. | 4* where supp(mxv?)
has codimension i in X, and we write Vi := mx (3,5, 7*)- With this in mind
we summarize the above discussion:

PROPOSITION 3.1.5. Assume X is a very general (n — 1)-dimensional
type |A] complete intersection, and [I'] € CH™(X,n). Then for n even,
r(I)] € HY(X,R(n)) is zero, while for n odd it is computed by a current
rr whose periods are
(a) a value of Goncharov’s (“£2)-logarithm, on mo ([H]%1 -F) € ZTLTH((C, n),

(b) zero on all cycles avoiding Vpr C X;
and according to Proposition 4.5.5 these two types of cycles span the space

Hn—l(Xa Q)

A few remarks are in order here.

First, this illustrates clearly the value of constructing a C/Z(n)-lift of
the real regulator as we did in §2.4; to the lift we may apply infinitesimal
invariant techniques in Chapter 4, which lead to this vanishing theorem for
the real regulator.

Moreover this result is consistent with the Beilinson conjecture, which
predicts the nontriviality of [the covolume of] the image of rge for X defined
over a number field (and therefore not general). Provided

Gri{y B ™" (X,Qp)) | = im {HY ™" (X, Qlp) — HZ~"(nx,Q(p) | |

is nonzero, this “guarantees” interesting values for Gr; of r and R for X over
a number field. For n = p, the latter of these (Gr% of R) is the holomorphic
Milnor requlator which is discussed in Chapter 4, and for which the vanishing
theorem is proved for X very general (so definitely not over a number field).

The notion that the image of rpge is a Q-lattice (so that one may speak
of its covolume), or at least topologically zero-dimensional, is “explained” by
the fact that rx is constant on continuous families in CH™(X,n) (for X
fized). This is proved in [Be|, using rigidity of deRham classes. For this
same reason one can easily show the holomorphic Milnor regulator is also
constant on continuous families in K (X), for X fixed. So in that Chapter
we investigate instead the situation when X is allowed to vary (and Propo-
sition 3.1.5 above comes out of this).

3.2. Relative Regulators and Polylogarithms

We get many more opportunities for explicit Milnor regulator computa-
tions, if we generalize the maps and definitions of Chapter 2 to the case of
a relative variety (X,Y) and its “generic point” 7x,y). (This is obtained
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in the limit by removing divisors intersecting Y properly; such divisors are
henceforth written “V° C (X,Y)”). The resulting integrals [, Rg are still
periods in the sense of Kontsevich and Zagier [KZ]|, and we calculate some
very basic ones here. However we first put them in their proper context with
quite a bit of abstract nonsense; our approach may initially seem rather ad
hoc and naive to readers of [B2].

3.2.1. Motivation and definitions. Let C(X,Y") :=the multiplicative
group of all functions =1 on Y, and assume for simplicity dim X =n — 1.
Set

KM (C(X,Y)) = Z[P}C(X,Y)] ® <®nflz[P}qx) \{O’Oo}]>

{Steinberg relations} Nnum =: §

C(X,Y) @z Ny C(X)*

< f®u—wawan%4,>
fOUu NI —gi)ANgaN...gn1

f) must be =1 on Y; and

where the first function (

CH"(nixyy,n) = CHY(X\V,YNnX\V;n).
VC(X)Y)

In this situation there are still well-defined? (but perhaps not isomorphic)
graph maps 1:

9(Well-definedness of v.) For instance, recall that for n = 3 one has the “Totaro cycles”
Cr — which are elements of Z3(nx,4), and 9 of which hits v+ — for any f €Steinberg
relations. The question here is whether, if f € S, the Totaro cycles can be chosen in
Z*(nixv),4). f f = fifoand f, fi, f2 = 1 on Y, then to the generators of S we can
associate such “relative” C¢ (with 0sC¢ = 7r) as follows:

f=fogoh-fiogoh-frogoh  Co=(z SHLEC S o), hz))

f=f@qepoh-fouoh-fopoh C=(f(r), BB 5 b))

f=fogoh+foheg Cr = (f(a), Coplpiagial, el )
f=fe(l-f)xh Ce= z,%,l—z,h(x)

where each Cr is parametrized by z € P! and z € X, and has one coordinate= 1 always
when z € Y (and so Cr € Z°(n(x,v), 4)).

Notice that if, in the fourth C¢, we put only f or 1 — f = 1 on each component of Y,
i.e. allow some “sharing of responsibility” between the functions, then on some Y; we get
z:‘l) rather than = = 1, which is a problem. (Hopefully this gives some insight into our

otherwise arbitrary-looking definition of the relative Milnor K-groups.)
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EM(C(X,Y)) 2> CH™(x.v,7)

KM(X,Y) CH™(X,Y;n),

where KM(X,Y) := 4y }(imCH"(X,Y;n)). However, the dotted arrow,
which represents the concept of moving!® and completing ¢ (trivially pos-
sible for {f} € KM (X,Y), by definition), is not well-defined.!* We draw it
because its composition with other maps can be.

In particular, recalling that 0" = (P'\{1})", for (X,Y) = (P!, {0,00})"" ! =:
(On=t, 00"~1) consider

R
CcH™@O" ! 00"t n) —» CHM(O" !, 00" n) — CH™(C,2n — 1) — C/Z(n)

where the second map is induced by a map of dg-complexes. We can es-
sentially (modulo some further restrictions on f) show that the resulting
composition

KM@t 00" ") — C/Z(n)

is independent of the choices made along V¢ in completing ¢ to I'.  Say
I' =I'y; + 7%, then R(I') is computed by

1 1
R2n71 + : / R2n71'
= (2mi)n—1 Ty, =

(2mi)n—1
Now write {w1,... ,Wp_1;21,-.. ,2,} for the coordinates on 12" ~! and set
Tt =Ty N...NTy, , C O 1 T 1 will also denote its image under the
projection to X, m : 0?1 — O0"! and we can show the second integral
vanishes under the assumption'? that (on X) VeN T2~t C 90" (= Y).
Namely, in

i3

/ RZD"_1 = {/ log widlogws A ... A dlogw,_1 Adlogzy A ... Adlogz, + ...
Ty, Ty,

+(2mi)" 2 / log wypdlogzy A ... A dlogz,
Py NTwy ... Tw,,

ONote that in moving ¢ we have the added restriction that it remain a relative cycle
€ Z"(n(x,v), n); we have not pursued whether a version of the moving lemma still holds.

1 (as usual the completion is not unique)

12m=1 ill play in this section the same role as C at the end of §2.2, namely, the
topological cycle for a Milnor-regulator current to be integrated over, which must avoid the
divisors V¢. In the present argument, which is motivation for the relative Milnor regulator,
T~ ! appears as a restriction on the function f (rather than vice-versa).
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+(2mi)" ! {/ log z1dlogze A ... Adlogzy, + ...
rynrp—t

+(2mi)" Z log 2z,

n—1
Ty NTy ™ "NTyNe.nTy,

the first term is zero by type since dim¢I'y = n — 1. The second term
vanishes under the above assumption, because I'y is a relative higher Chow
cycle and so as a cycle Ty N 1(Y) (D Ty NT2 1) is zero. Similarly

1
— [ Rl ={lst n—1t =0 1 dl AL Adl
(2mi)n 1L Lf 0 {1st n erms = 0} + {[rfﬂTJfl og z1dlogza 082n

27m'/ . log zodlogzs A ... A dlogz, + ...+ (2mi)* ! Z log z,
e 0Ty T~ NTey NN T,
= (_l)nil Ry,
Tt
where {z1,...,2,} have been replaced by fi,..., f, because we are on ~s.

this is just a Milnor regulator current integrated over a relative cycle [T?~!] €
H, 4 (E”_l \ Vg, 0Ot nOnt\ Vf) . It makes sense to try to turn this into
a map on all of KM (C(O"~t,80" 1)), where one can choose cycles'3 that
avoid Vf (instead of restricting f), and to show well-definedness directly via
coboundary currents as in §2.2.2.

3.2.2. Well-definedness issues. More generally, we start with a map
Z[Phx,vy] © (8" 'ZIPl x) \ {0,00}]) —

lim  Hom{H, (X \ Vs Y NX\VgZ),C/Q(n)} = H" (nx,y),C/Q(n))

V(X))
fr— {C'%/Rf},
c

where the chains C must avoid Vg but may bound on Y (they do not have to be
topological cycles on X). To show that this map descends to KM (C(X,Y)),
recall that the regulator currents associated to any Steinberg f are cobound-
aries on X \ Vg that is, Ry = d[Sg]; or simply R = d[S¢] modulo (274)™ x
{integral chains}. So if ¢].S¢ = 0 then

/CRf = /cd[sf] - /MY Se=0  modZ(n)

13¢.g., some deformation of T2~ ! for which 'T» ' NV C 000" L.

defined by
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So we then just write down St for every “trivial” relative f (i.e. f € S), and
verify that (5S¢ = 0

We will do this for n = 3 on the two interesting such f in that case;
it is crucial to remember that for us log always means the branch with
—7 < arg < m. Let f = f1foand consider

f=/R9®h—f1iQ9gR@h—fa®9g@h

Re = 2miAgdlogg A dlogh — 2milog gdlogh. - 6pa, + 47> log h - 6o i,
where
;= % {log f —log f1 —log fo}, OAy =Ty, + Ty, — T.
Then d[Sg] = R¢ (up to Z(3)xintegral chain) for the following
Sg = 2miA s log gdlogh + 4n*Aglog b - 67, .
As for

f=feo(l-f)eh = Rf=log fdlog(l— f)Adlogh + 2milog(1 — f)dlogh - iz,

one has exactly d[Sf] = Rg with
Sf = —Li2(1 — f)dlogh

where once again, for us Lis(z) always means the “standard branch” (as a
zero-current) with a cut at 77 ,. Both these S¢’s clearly have ¢}, S¢ = 0, since
f=1onY and using our given branches log 1 and Liz(0) are always exactly
zero.

In the case of (X,Y) = (0", 00"~ 1) it turns out to be easier to com-
pute certain integrals of the form [, R¢Aw instead of [, Rg,. Indeed we shall
use the former to compute the latter (which is what we are interested in).
Assuming normal crossings in Y U Vg, we have a well-defined regulator map

like that above:

o _ {HT' X\ Y, %X\ Y;0}"
Ko@) = I e, (XY, Ve X\ V5 Q()

f — {wH/R'f/\w}

where we may represent H" (X \ Y,V; N X \ Y;C) by either forms w €
{Q?\,\IV) (dlogY)} compactly supported away from Vg, or forms w €

= H""! (1

{Q" ! (null V) (dlogY)} with tj;w = 0. In particular, simply by type a

Y“(In fact half of our work is to preserve branch-accuracy, since we have so many
instances of a product of an Lis or log with something else; and one cannot go modulo,
for example, 27i times any current.)
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form in HO(Q'% " (dlogY")) is fair game, and for (X,Y) = (O"~',007!) this
means
1
QZ} ! = W AT ! dlogwl
is a candidate for w.

Let [T2~1 € H* 1@\ 90"~ L, VpnOn~1 \ 00"~!) denote also the
topological cycle’s Lefschetz dual class; it can be represented by a form wr
with support on a tubular neighborhood of T?~! and disjoint from V;. Then
[TP=1] # [Q%7!] but their images in H"~1(O"~! \ 90"~ !) are equal, and
s0 wr — Q=1 = da on 01\ 90", Since d[Rf] = 0 on O\ 00" it
seemingly should follow that

0:/‘ RiAda = R;—/ REA QR
Cn-1(\a00n—1) 1 On-1

but this is not quite right. There is a subtle flaw in the first equality: al-
though by construction da is nullY (= 00), « itself may not be, and so
[ d[R{] A o, where d[R{] is supported on Vg, may be a problem. The way to
get around this (at least for {f} € KM(O"~1, 00"~1)) is to appeal to §2.3.3,
which works out a map

(coim {H" (X, Vg ©) = H" 1(X,0)})"
imH,_1(X,Q(n))

KM(x)y — 1
n (X) @%

f»—>{w|—>/ R'f'/\w},
X

where (in the language of §2.4) Rf = j}\VfR’F for I' a completion of ¢ (so

defined by

that d[R[.] = 0 on all of X). That is, we have to choose our membrane
36\},W)Tf more “precisely” than usual: just any Rf = R+ (27?2')”8(}1%)Tf is

off by Rt — Rf = (2mi)"(, for some { € Hy_1(X, V§; Z). This is the only way
to ensure that, for w compactly supported away from V¢, and w = da (where
a may have support on all of X),

JxBR{Nw = [\ Rp Aw = [{RpAda == [(d[Rp]Aa =0 .
T
w cs. on X\ Vg
R = R{ + Ry
One extends this in an obvious way to get

(coim {H" (X \ V,V;N X \Y;C) —» H" 4(X \Y,0)})"
imH, (X \Y,Q(n))

Krjz\/[(X7Y) — ]QVfCX
by sending

f — {wH/R'f'/\w}
X
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where R{ (= ]}\VfRf) = Ry + (2mi)"( for ( € H, 1 (X \ Y, VeN X\ Y;Q), is
consistent with the notion that 13- Ry = 13- Ry = 0 (since ¢ avoids Y).
Now returning to (X,Y) = (O 1,00" 1), we have [T !] = [Q%71] on

071\ 90715 and this is reflected by the fact that on 0% 1

1

ARy~ = d[W

R(wy,... ,wy)] = QP — TP~ 4 Res(R"™)
where the residues are supported on 900" L. If {f} € KM (O 1, 00" 1) so
that I' = 7 + 'y completes ¢, and R = R{ + Ry where Ry is supported
on V4, then!®

0= [ ABIARY S [ ReAdRy Y
Gn-1 m

= /(RV+R’f’) ANt =Tt + /R’F/\Res(R;j,l);

the last integral here is zero because vy R, = 0 while the residues are sup-
ported on Y = 90", So we have

/Rv/\%—l = )L Bt /R’f’/\Qg,—l — /Tn_lR’f’

and the two leading terms in this are zero: the first because Ry is supported
on V and Q2! is nullV, the second since T2 1NV C d0" ! =Y and
ty-Ry = 0 (since I'y is relative). Therefore this reduces to

/ R{AQMTL R¢ (= 0 mod Z(n)).

On-1 -1

We are interested in the latter integral, in particular its mg-part. We have
justified the following idea: in order to get an idea of what this should be,
at least for {f} € KM(O"~1, 00" !), we can try to compute the former
integral.

3.2.3. Linear factorization and classical polylogarithms. We will
in fact compute a modified version of this integral. To illustrate the idea
we turn to n = 2, where (O, 00!) = (P!, {0,00}). Any f[= > lofa ®
ga] involves functions fa,ge € C(P') which split into linear factors; how-
ever, breaking {f} up into the resulting “linear” symbols is not allowed in
KM(C(P',{0,00})), because the linear factors of f, do not = 1 at {0} and
{oo}. But this kind of symbol-factpring is necessary to do any computa-
tions. So we slightly change the definition of KM so that f, and g, need

15Tl_1e boxed equailty is not automatic; it amounts to saying that if 7c is an e-tube
about 000" as in §1.3, then fT ReARL™' — 0 with € — 0. We will justify this carefully

for n = 2 below.
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only “cover {0} and {oo} between them”, and define a regulator on it. Let
{ subgroup of ®?2 Z[P&Pl) \ {0,00}] generated by }
f®g with (1 - f)(1—-g)=0 on {0,00}
{Steinberg relations} Nnum =:'S

"K' (C(P, {0, 00})) =

The « defined in the beginning of the section is not well-defined;'® how-

ever it is defined on the numerator, and so the notion that a symbol {f} €

'K (C(P', {0,00})) has a representative f whose associated graph cycle ¢
(modulo imdg) is completable to a relative higher Chow cycle in Z2((P!, {0, 00}), 2),
is a well-defined one. So we have a 'K2!(P!,{0,0}), and this contains any
symbols represented by f = >l fo ® ga, |(fa)] N ](ga)] = 0 for each «, in
ker(Tame),'” essentially by the construction in Chapter 1 (or see Example
1.3.1(b)). Such f will be called “nice”. For example,

a®\™ w "
o) =TT (1-%5) " aut) = T] (1—b—a> %
i j J
give an element of 'K (C(P', {0,00})); if {f} = [[{fa»ga}t® € ker(Tame),
and for each fixed « the set of {af'} and {b7} are disjoint, then f is nice and
¢ may be completed to a relative higher Chow cycle (by adding curves over
points in V).
To simplify notation we will usually work with elements of the form

B S (R

m;n;
so that {f} € ker(Tame) means for us []; ( — ‘g—;) " =1 for each j and

m;n;
I1; ( - Z—;) " = 1 for each fixed i. The proofs for {fasgatte are then
trivial generalizations of the ones we give here (with more complicated no-
tation).

There is a regulator map
R: 'K (C(P',{0,00})) — h% Hom (H; (P \ V,{0,00};Z), C/Q(2))
vce

= H' (np1,40,00}), C/Q(2))

defined a priori on the generating elements f by f — {C — fc Rf} . There
are three!® interesting “coboundary currents” to check here (in order to prove

6This is just the n = 2 analogue of the problem mentioned (for n = 3) at the end of
the long footnote there; - does not kill the ' K37 -relation: f® (1 — f) if f = 0 at {0}, 1 at

{oo}.
vp(ga)

Lo
""In this case this means: for any p € P', [], (%) =1.
18The third is, for fif2 ® g, f1 ® g, and f» ® ¢ all in the numerator of the definition

of "KM,
Rp f209-fi@g—f209 = (log f1f2 —log f1 —log f2)dlogg — 2milog g - 6(r;, ;. —7; —T4,)
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this is well-defined):
Riogiges = dllog flogg] and  Rygq-p) = d[~Liz(1 = f)];

ideally we want to show the quantities in brackets are 0 at {0,00}. Since
either f or g is 1 at {0} and at {oo}, and always log 1 =exactly zero for us,
the former is easy. However the latter can be —Liy(0) = 0 or —Liy(1) = 72/6.
In this case, say if f =0 at {0} and 1 at {oo}, one has for C =T,

[ Rpsug = [ di-Lial)] = Lia(7(0) - Lia(s(o0)) = /6 € Q@)
T 0

which for a regulator modulo torsion is considered trivial. So the map is
well-defined on cycles bounding on {0, co}.

It is also well-defined on 1-forms with dlog-poles at {0,00}. The fact
which we must check, is that for nice f (€ ker(Tame) and without corners,
so that J¢ completes)

Tlsz/PlR’f’/\Q}U mod Q(2)

where T} is the path from co to 0 along R, QL = 27ndlogw and we are
assuming Vg NR™ = . First note that Ry = 0 so Rf = R}, i.e. d[R{] =
(on P); then

0:—/ d[R{ /\—logwE/R /\d—logw]
Pl

1 1
= /PlR'f'/\ <2—mdlogw—5%> = Q—M_/R;'/\dlogw — /T1 Ry mod Q(2)

provided the boxed equality holds: this is the same as saying, for C. a circle
about {0} (or {oo}),

0 =lim [ logw: Re = lim / log w log fdlogg — 2m: Z log wlog g
e—0 C. e—0 Conte

The worst-case scenarios (at {0}) are:

i) f=0,g=1 = e€log?e— 0 limit bounds first term
second term — 0 as eloge

= 2mi(Aydlogg +log g - doa,) = d[2miAflog g] = d[S]

modulo the Z(2)-valued current 47°Aj - 67, (As takes only integral values). We must
check that S = 0 at {0} and {co}. For example if g =1 at 0 and fi, fo = 1 at co then
(S =)2miAyslogg is 0 at {0} (here our policy of log having imaginary part between —ri
and +7¢ is obviously important) while one has to show Ay is zero in a neighborhood of
{co}. But this is clear: log fifo = log fi = log fo = 0 at {oo}. (What we have to worry
about is something like (e>"¥/%)® = 1, not 1-1 = 1 — this does not generate a branch
change.)
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(i) f=1,9g=0 =  eloge bounds first term
CcNTy =10 in second
and so the above equality (mod Q(2)) does hold for any nice f.

Nowif f=[] (1 — %)™®[] (1 — %)nj is nice then sois fip = Y mn; (1 — 4)®
(1 - %), and since f — fi7 € 'S, we have (mod Q(2)) that

1 1
Re = Re = — Ry Adl :—/R Adl 2'/d1
/Tig ! T = 9r /[Pl 1 ogw 21 Jp1 1 ogw + 2mt ¢ o8

where ¢ € H(C",|J{a;} U {b]}) because [T #] Tfn = Zmian(lf%) N
T( ) = (), since no a; = b; (Vi,j), and so there is no membrane. The sec-
-
J
ond (= fg) term is a mysterious correction to residues of Rg on Vg involving
2milog a;, 2milog b;. The first is

log (1 — —> dlogw
b

a;
= — Zminj/o log (1 - b_> dlogw = mej/ log(1 — u)dlogu
]

= mejLig(Z—;) =: Liy(Nyg4), where Ny := mej ( > € Z|C].

(This is even the standard branch of Liy, as any branch-changes have ap-
parently been pushed into the “mysterious” second term above.) So more
generally, we have for f = > ¢, fo ® go nice,

o.¢]
- / ZE Lis(Ny, g ) + 2mi Z N(p)logp N some Z-valued
0 pEVE function on Vg

Zmzn7 — /Pllog(l - —)dlog(l - b_J) A dlogw — /T

=: Lig(Ngf) + {27ilog terms} mod Q(2),

a minor result just as nice as f (and out of a whole lot of abstract nonsense).

Can we do something similar for n > 3? First of all, (%, 00?) = (P! x
P, #) so Y has four components. While we can define 'K (C(00?, 901?)),°
it will not contain relative function triples {f, g, h} factoring linearly in ' K.
If we switch to (P2, Uj:o{$i = 0}) =: (P2, 0P?) so that Y has three compo-
nents, the situation is partially repaired (see the triples below??). However,
in order to get a well-defined regulator map we cannot quotient by some
of the relations, e.g. f ® (1 — f) ® h since its regulator current is d of

Y(in terms of generators f ® g ® h such that (1 — f)(1 — g)(1 —h) = 0 on each
component of 901%)

20Still, it seems strange to restrict to functions in C(P?) with linear factors; even
though not all elements of ' K27 (C(P*, {0, 00})) factor linearly it seems more natural there
since all functions do.
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Stoa-pen = —Liz(1 — f)dlogh; and if 1 — f = 1 on a component of OP?
then Sf = —%leogh there, which is unacceptable. Now above in the case
n = 2 we had use only for the branch-change relations f — ff7 (and no use
for triviality of f ® (1 — f)), so perhaps this is no matter.

The more serious problem is the existence of linearizable elements of
"KM (P2, 9P?), that is, for which 7f is completable to a higher relative Chow
cycle. Say f=>"Ylofa ® ga ® hq is a sum of terms of the form

f®g®h:H<1_Z_j> ®H(1_M> j®H(1_@>”k;

and even suppose that it is in ker(Tame): e.g. for one term, this means that
on {wy = bjw; } ~ (P, {0,00}), f®h €'S. The trouble is that, for the same
reason that v was not well-defined on 'K (P!, {0,00}), we cannot always
complete such a ¢ suppose h =1 — f, and h and f share the responsibility
of being 1 on {0,00} between them — then this is not completable by a
relative cycle. One can remedy this extra discrepancy between ker(Tame)
and 'KM (P2, 0P?) by not including Steinbergs of the form f ® (1 — f) in 'S
(and thereby making it harder to be in ker(Tame)).

As for producing linear elements of 'K3!(P?, 0P?), which seems hard,
we expect there is a connection with B3(C); we will write one down in the
example below. In the meantime, assuming their existence, we can replicate
the situation on P! :

1
/ Ry = —— / Re A dlogwy A dlogwy + 2m/dlogw1 A dlogws,
T2 47T I

with ¢ € Hy((C*)?, Vg (C*)?). The [, is easily computable (as is its
analogue for all n):

1 a; bjw wWo
mejpk 12 /P2 log(1 — w—zl)dlo g(l — w—2) Adlog(l — —=) Adlogw; A dlogws [ =0

ok by type]

1 bjwl w2
+— log(1 — ——)dlog(1 — —) A dlogw; A dlogws [=0 by type]

271 T, o wa Ck

wq
more trivial terms,

+/ log(1 — %)dlogwl A dlogws + since we may assume that

T a; NT 4w Ck ai pwe Ty =10

U=wp) a5 Uwp) a--Eh  Omg)

a; bjwi Wo
= — Z min;p / / log(1 — —=)dlogwsy A dlogw;
o Jo Ck

b]- w1y

= Zminjpk/ Z —/ * log(1 — w)dlogu | dlogw,
0 0
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bz'ai

o bja
= Zmi”jpk/ " Liy(v)dlogy = me]pkLla( o ) : Lig(Nyg,n) =: Liz(Ng).
0
(This computation of the [,» term generalizes to a result of the form “ [5, RgA
Qr=l = Li, (NVg)".)
ExAaMPLE 3.2.1. Consider
1— L 1 —q4 1—
f=8fogeh:=8 (%) ® (1 ﬂf) ® (1 w")
1+ & +44 +ws
where (1 —f)(1 — g)(1 —h) = 0 on OP2. Noting that {-} denotes going
modulo fewer relations than usual, we have that

i

8
1— 2 1—4% g
{f} = { w1 Puy 1 “’2} € ker(Tame) C 'K (C(P?, 0P?)),

1+ wL1 1+ z% 1+ ws
where ker(Tame) denotes the more restrictive sense mentioned above; and
since f has no corners, J¢ is an admissible element of Z3(P?, 9P?; 3). Therefore
it should be completable to a relative higher Chow (dg-)cycle, so that (by
definition) {f} € 'K} (P2, 0P?). We will show how to complete it (by adding
a relative cycle) along just one component of Vg, namely V; = {w2 = 1},

1+Z , the

component of Tame(f) there, by a simple calculation, is simply 8 f ( ) ®
(—%), which one may express as a sum of Steinbergs not of the form

and leave the rest to the reader. Writing w = w; and f(w) :=

E® (1 =¢). Alternately, the component of dp¥f with support over (Vi, V1 N
OP?) = (Py,, {w = 0,00}) is 8(f(w), —775y)- This is I of
(z+ 7)? ( (z—f)? 1 >
Ty=d(f e | 2 s e
! (f (z = )z = 1) (z= -1 f?

z2—f(z- % P
+2<f2,( f )( ! ),Z> - <Za((—fQ)27f74> EZZ((]P%;’{O’OO})’S)

2= f(z-1)

which is parametrized by z € an auxiliary P! and w = w; on V; = PL
(through f = f(w)). It is easy to check that I'y; is “relative”: one coordinate
in each component of I'y, is 1 whenever w = 0,00 (since f(0) = 1 and
f(o0) = —1).

So the above computation applies, and noting that N = 32({— } -
{1}) € Z[C*] and the known values Liz(—1) = —2((3), Liz(1) = ¢((3), w
have apparently

/ Ry = —56((3) 4+ "lower-weight" terms.
T3

This checks with what one would expect from a Beilinson-type conjecture
for relative varieties. We do not pursue this here.
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3.2.4. Relative real regulators and Bloch-Wigner. Now we return
to the n = 2 case and reinstate the f ® (1 — f) Steinbergs. One wonders
if the 27rz' log terms added to Lis(Nf) are, like the integrals over elements of
{C1(C,1) AC(C,2) = S*(C,3)} in §2.4.4, are corrections in order to make
the & part exactly Lo of something? In fact, the overall idea we want
to suggest here is that the relative Milnor regulator on 'KM (C(P", 0P"))
applied to Q7! does give classical n-logarithms; and that on 'K M (P", 9P")
applied to T~ 1 (followed by &), should give modified Bloch-Wigner n-
logarithms. So for these [relatively| completable linearly-factoring f's with
“generalized Abelian symbol” Ng, one should get a C/Q(n)-lift of L, (N¢);
the connection with §2.4.4 is that the Nt of such functions, projected from
Z|C*] to By (C), should give elements of ker(d). What we do now, is prove it
all for n = 2, starting with the last statement.

First recall that {f} “nice” =

{f} € "KM (P, {0,00}) C ker(Tame) C 'K (C(P!, {0, 00})).
LEMMA 3.2.2. Given f= > lofa(w)® ga(w) nice, with fo and go of the
form (*); then as an element of B2(C), Ny = > Laming {%}2 € ker(st).

Proor. If
@
f= = 1 — 22ymi 1 — —
res=Tla- eIl
so that f nice = {a;} and {b;} are disjoint and [[;(1 — §*)™" =[], (1 -

J
Z;)mm] =1, so that

mej —/\ l—b—)
]

_Za,/\H mmf—Zb /\H m1"1—0

More generally, since {f} € ker(Tame) and {af'}, {6} are disjoint for
each a, st(Np) =

0 6]
Zeamgng.z_w(_z—; Z Zm caf Aga(ad) = Y nd b5 A fal(bF)

] J J J

a peC* peC* peeCH a\P

=0. O

U\
)

= S0 S = S s = S AT (£



3.2. RELATIVE REGULATORS AND POLYLOGARITHMS 121

We will retain the above conditions on f in the following, and?! also assume
that none of the {af",b}} are in??2 R~ = T}. Again assume f = f ® g to
simplify notation. From the beginning of the section recall that

—/ Rs = —/ log fdlogg + 2w Z log g

w Tw TN T

1
= logwdlogf/\dlogg — / log fdlogg — 2m: Z logg = —/ R%.
Ve

T 2mi Tt
Since the regulator sends branch changes f — f7 to 0, and this last compu-
tation applies equally well to fyy,
-1 5

Rf = Rf = — RI:I‘
T T, U 271 .

Now Yy s completable (by the same additions as 7f) since f is nice, and
one has (with V' = (H{ai} U{b;}) I';y = T'v + gy, 9801 = 0, T'p N
({0,00} x %) C {0,00} x I? (so that I'[y is a relative higher Chow cy-
cle). Moreover fFv R% =0as VNT, =0 and I'y consists of curves C 1?2

over points € V. So
-1
/ Re=— | R},
i 211 FH

and by the last section (and because dl'1y = 0)

1
/ Ry = - §R{R3D} = %/Fnr%.

Now fFv r% = 0 also (again, see §3.1.2) because one coordinate in 1% is
constant, and

me] (w 1-— 1_b_j>

Since r% is alternating,

3 _ 3 _ 3
[ P B R D DL IR

’

= me]/ 7’% = Zminj~27r[,2(ai/bj) = 271'[,2(/\/},9),

p2(ai/by)

*lthough one may avoid it easily; as we will see in the computation at the end of the
section.

2Zhote: fT& =—[7
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where we have used Lemma 3.1.3 for n = 2, Lo(a) = fp2(a) r2,. Therefore we
have proved that

S / Re = Lo(N7y).

Now we “test” our machinery by doing instead a comparatively “direct” com-
putation, to the same effect, not using the Goncharov lemma (our 3.1.3).
Again the first key is to observe that (mod Z(2))

/ Re E/ an me] / log fidlogg; — 2mi Z log g;

TyNTy,

a; w
me; log fidloggi , where f; = (1 - =), g; = (1 - -)
w b;

and the sum inside the brackets vanished because T, NV C {0,00}. On
P!(=P'\ N0, 00}), since dlogf; A dlogg; = dlogw A dlogg; = 0 by type,

1
d [— log wlog f;dlogg; — log gj logw - 5Tf_] =
271 g

<log wdlogg; - 5Tfi +log f;dlogg; - 07, + logw log f; - 5(gj)) — (log gjdlogw - 5Tfi+

log wdlogg; - 0r,. + 2milog g; - 0ty A, + 2milogw - o7y, A1y, + log g; logw - 5(]%))

= log f;dlogg; - dT,, — log g;dlogw - (5Tf + logwlog f; - 0y, — logwlogg; - §(y,),

where logg; = 0 on Ty, N Ty, C {0}, and Ty, N T,, = (Z) because {a;} and
{b;} are disjoint; this is one thing we have gained by switching to product
branches.?? Integrating the result on P! (and taking a limit) we have?*

/ log fidlogg; = / log g;dlogw + Z log w log gj(w) — Z log w log fi(w)
Tw Ty,

we (f;)NC* w€ (g;)NC*

BTy, = 71 (R), Ty, = gj_l(Rf ). We have to make perhaps the stronger assumption
here that {arga;} and {argb;} are disjoint, for the argument to go through with no extra
work.

?4in greater detail: if S := ﬁ log wlog fidlogg; —log g; log w-dr, , we computed above

d[S] on P}, and claim that “we have” lim._o J31 d[S] = 0, while a priori this only equals
lim. 0 fB]P’l S. Therefore, if C.(0) is a circle around {0} [and similarly with {co}], we must
show the followmg tends to 0 with e:

. w
lim /c o % log wlog(1l — —)dlog(l - b—) + Z log(1 — b_j)Ing

e—0 '
Ce(NT;_a

— Ui)
where T(lf%) is a path from 0 to a;. if we approximate log(1 — %) by log w, dlog(1 — %)

by dw and the circumference of C.(0) by 2mie, then the integral is bounded by essentially
elog? € and the sum by eloge, which is enough.
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@i w a; a;
= log(1 — —)dlogw + loga;log(l — —) — logb;log(l — —).
0 bj bj bj

Adding all of these together, we have shown that
_/ me]ng ) + me] {log a; —logb;} log(1 — b—)
j

We cannot write loga; — log bj = log & B because this would not be the
standard branch of log ‘g—; However if we take the imaginary part of the
second term, we obtain

Z m;n; log ‘

b; i J ij

H(

where the second and third terms are zero since {f} € ker(Tame). This
is beautiful: we have exactly the right branches of everything (Liy, arg)
involved and can state the conclusion, recalling that Lo(w) = —3{Lia(w)}+
arg(l — w) log |w| (where Liy, arg are assumed in the standard branches):

< — Lo [ ) —.
\S/Tw Rf = izjmznjﬁg <b]> : EQ(Nf’g).

More generally for nice f

%/ Zﬁamm][g (b_o‘> =: Lo(N5).

« Z,]

= log |w|arg(l — w) ‘Nf,g + E arg a; log I |(1 - %)mim - E arg b; log
. . ]
i j

We can make some progress towards a comparable result for n = 3
(the computation in this spirit is much more lengthy), but have trouble
believing it until the following difficulty is resolved. In the argument using
the Goncharov lemma for n = 2, we used that 7“% integrated over an element
of S%(C, 3) is zero; we would need for n = 3 that 72, integrates to zero over
elements of S3(C,5). Is this true?

3.2.5. The easiest nontrivial regulator computation. Finally for
n = 2 we give a simple example where we can compute the entire C/Q(2)
regulator value, exhibiting the Catalan constant G (a famous transcendental
number) as a period. Consider the functions

1- % 1—w
f= 1 i 9=
+ w 1 +w
and begin with the element {f} = {2, ¢?} € ker(Tame) C K} (C(P!,{0, 00})).
Let . be the path along R~ from {0} to {co}, perturbed by e~ to avoid
{1} € |(g)]. It gives a generator of Hy(PP!,{0,00}).

arg(l — Z:)—i—mejargailog‘l—% —mejargbjlog‘l—%

J

)mzn]
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We want to evaluate

/Rf = / log f?dlogg? — Z omilog g°

Ye ﬁTf2

but do not want to deal with the branch log f? or [the point] e NT}2. (Here
Ty is the preimage of R™ under f2, which in this case is the unit circle;
log g blows up very near the intersection.) In order to change to a more
convenient (but equivalent) 'f, we enlarge our available generating elements
(i.e., use a larger subset of ®@2Z[C(P')*]) by working in 'K (C(P', {0, 00})).
If weset ' f=4-f®g, then'f-f=4-f®g—f2®¢%> € S and so
'} = {f,9}* = {f% g%} = {f} in 'K}, therefore the above integral is

identical (mod @Q(2)) to
/ R = 4/ log fdlogg
3 Ve

(where the second term is not written because 7. N Ty = {0} and logg = 0
there). One can see even more directly that f% R = f% Ry by noticing that
up to Z(2)-valued currents [=integral chains x 472] one has on P! (or just on
Ye) Rig—Rg = d[QWiA?c log g?], where the O-current A?c = ﬁ(Z log f —log f?)
and d[A}] = Tp> — 2T7.

Now we make a rare exception, and use the slightly altered branch of log z
corresponding to the cut —7,; we also perturb 7y and T}, (and the accompany-
ing branches of log f and log g) slightly so they avoid {0}, {c0}, and ., and
reason that one gets the same answer in the limit as this perturbation— 0.
The following computation mimics what we did on P} above:

1
0= / d [——, log z log fdlogg + log z log g|r;
Pl 271

= / {log fdloggl,. — log zdlogg|r, + log zdlogg|r, + log gdlogz|r,
]P)l

—log zlog f|(y) + log zlog g|(y) + 2milog 2|1, nr, — 2mi 10gg|Tfm%}

= / log fdlogg + / log gdlogz — Z log zlog f + Z log zlog g,
‘ T (9) (1)
since the two intersections are empty. Multiplying by 4, the last two terms
are Z(2). Now logg = log(1l — z) — log(1 + z) exactly (i.e., not mod Z(1)),
and so

/ log fdlogg = —/ log(1 — z)dlogz + / log(1 + z)dlogz.
8 Ty Ty
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Since the dilogarithm has no monodromy about 0, this

= —Z/Tf log(1 — z)dlogz = 2 (Li(7) — Li(—1))

(= S )P (=DF
_2<klﬁ_z ;2 ) _4Zk20(2k+1)2’

and 4 times this is the final result, 167 - G.

3.3. Comparison to the Milnor-Sheaf Regulator

In this section we define a regulator on the Milnor sheaf?® compatible
with the cup product in Deligne cohomology; it can be shown its real part
thus necessarily agrees with Beilinson’s regulator. Thus comparing our Mil-
nor regulator to this one would give an alternative method for proving its
compatibility with Beilinson (if we did not have Goncharov around), and is
interesting in itself.

Let K%X and H’(n), respectively, be the sheaves on X associated to

the presheaves
U — KN(TU,0%), U~ HpU,Z(n);

an alternative definition for the Milnor sheaf is
0y ®...0 0% "
- *)
where S is the subsheaf of the tensor product generated by the Steinberg
relations. Modulo torsion it is resolved by the Gersten sequence

M ._
Kn,X -

Tame
0—>KX—>H CKMN(C) = [ EEY L (C) -
zeX0 reX!

— H iC(x)* — H i7 — 0

zeXn-1 reXn
so that in particular

Ky ~im § Kply — I &)(C@) p =kerq [ KM(Cx) = ] K

zeX0 z€eX0 zeX!
and taking sections
H(X, Kplx) Zgq ker(Tame) C K (C(X), (**)
H(nx, Kylx) Zeq K (C(X)).

%5 (which has appeared for example in [Es|)
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For a proof of the Gersten sequence (and more details) the reader may consult
[So].

REMARK 3.3.1. It isinteresting to observe that, starting with an element
{f} € ker(Tame), (*) + (**) means that one may choose a cover {U¢} of X
and fy € H(Us, 0% ®...90%) so that f—fz € H%(Ug, S) is a “local Steinberg
relation.” Thus, while it is possible (according to the moving lemma) globally
to remove “corners” from any element of KM (C(X)) via a Steinberg, one may
also locally remove all singularities from an element of ker(Tame).

Using local-global spectral sequences as in §1.2, one may show modulo
torsion for n > 2

KM(X) < ker(Tame) — KM (C(X))
N ~ forn = 2,3
= forn = 2 =20
= (p =2
o (xm) — =0 o k)
S =9 ’

We will sketch how to construct a map of sheaves?S

nx — Hp(n)

so that the induced regulator on sections fits into our picture as follows (mod
torsion):

CH"(X,n) KM (X) < HO(X, KMy) s KJ(C(X)

Hp(X,Z(n)) = im{HP(X, Z(n)) = Hp(nx, Z(n))} — H°(X, Hp(n)) — Hp(nx,C/Z(n))

where H(X,H!,(n)) is essentially ker(Res'). What we will actually prove
below, is that this “sheaf regulator” agrees with our Milnor regulator over
the generic point.

3.3.1. Formula for the regulator on K%X. Given an element {f} €

HO(X, K%X) we can again find a cover by Zariski open sets {U¢} and f; €
H(Ue, 0%) ® ... @ H(Ug, O% ) whose images {f¢} € HO(Z/Ig,KT]L‘f{\,) agree
with the restictions of {f}. Set

Z(W)px = Z(1) = Ox,  Hp(le, Z(1)) i= ' Ue, Z(1)p ),

*The map A" dlog : K}y — Q% induced by sending {fi, ..., fa} € K} (DU, O%))
to dlogfi A ... Adlogf, € Q% (U), which is familiar to readers of [EP] or [Gr4], factors
through this map.
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and map

0
H'(Ug, O%) — Hp(Ue, Z(1))

by sending functions?”

f— {Logaf, Logaf — Logs/} = 0(f) € {C*(Ue, Ox) , C" (Ue, Z(1)) }
to cocycles in the double complex
Eyi(1) = CP(Ug, L(1)p x)

of Cech cochains. (Here a, (8 reflect a real analytic refinement of Ug by a
collection {Wys}; C" is given by sections over each Was, C' by sections over
Was MW, and so on.) So fe maps to ®"H} (U, Z(1)); we may now employ
the cup-product on Deligne cohomology (see below) to reach HJ (U, Z(n)).
Provided the composite kills Steinbergs H(Ue, S), H° (Us NUy, S) locally we
wind up with a well-defined section in H(X,H%(n)).

To simplify notation we pass to the generic point nx and give explicit
formulas for this regulator, in terms of Cech cochains (again using a system
of analytic neighborhoods {W,} on nx). To begin with, define

d d d
Z(n)p y:=7Z(n) = Ox — Qx = ... = Q%' =0 [= Cone {Z(n) » Q" } [-1]]

(with Z(n) placed in degree 0) and
Hp(nx, Z(n)) := H (nx, Z(n)p x)

where the hypercohomology map be computed by means of the double com-
plex (either as a total complex or as a spectral sequence)

EPY(n) := CP(nx, Z(n)qp’x) with total differential D =d + (—1)""9.

According to [EV], there is a well-defined cup-product

U
HE (nx, Z,(0)) A Hy(nx, Z(m)) — Hp (nx, Z(£ + m)),
induced by the map of sheaves
U: Z(0)% x ® Z(m)p x — Z(L+m)F %
taking

Ty a=0
TQY zAdy a>0,b=m ) =zUy.
0 a>0,b#m
*Twe write Log, for these branches of log, which are chosen so as to be continuous
(and single-valued) on each W, instead of log,, reserving the lower-case log-notation for
our preferred branch with argument between 7 and —.
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(In particular, it takes cocycles to cocyles because the product obeys a Leib-
niz rule under both differentials.) For example, for f, g € C(X)* consider
the two cocycles

0(f) = {Logaf, Logaf — Loggf}, 0(g) = {Logag, Logag — Loggg}

in the double complex defining elements of HJ,(nx,Z(1)). Then 0(f)U6(g) =
{Logaf dlogg, (Logaf — Logsf) - Logsg, (Logaf — Logsf) - (Logsg — Logyg)}

€ {C%nx, 2k =Z(2)p x), C'(nx, Ox =Z(2)px), C*(nx,Z(2)px)}

defines an element of H2(nx,Z(2)} ) = H%(X,Z(2)); the reader may wish
to check that this element is closed in the double complex (under D).
To state the generalization we introduce the notation

Logf := Logaf € C°(nx,Z(1)), ALogf := Logaf — Logsf € Ct(nx,Z(1))
(the latter defined on intersections Wy := W, N W3 C nx), and
ALogf ALogg := (Logaf — Logsf) - (Loggg — Log,g) € C*(nx,Z(2))

for Cech cup-products, and so on. Then
O(fi1)U...U0(fn) = {log frdlogfa A...Adlogf,, ALogfiLogfadlogfs A ... Adlogfy,

..., ALogfiALogfs - ... - ALogf,_1Logf,, ALogf; -...- ALogf,}

is a cocycle in (Ey"(n), D) defining an element of H"(nx,Z(n)p, x). The
check that this map from

®"Z[Pyyx) \ {0, 00}] = Hp(nx, Z(n))
factors through HU(nX,K%X) =~ KM(C(X)), uses monodromy of Liy (not

Li,) for all n. This will also follow from the comparison with our regulator
on which we now embark.

3.3.2. Comparison with Milnor regulator currents. We will need
rules for differentiating in the double complex, beginning with the obvious
Leibniz rule

H{KUK'} = KUK’ + (—1)*e XK UK’

for Cech cochains (where deg K is Cech degree). We will enlarge our complex
to include currents: the O-current log f (whose imaginary part is always
€ (—m,n]), the l-current [=codimension-1 chain| dr,, and

DLogf := Logf —log f := Logaf —log f € C%nx, '"D%)
(a strange Cech-current amalgam). We then have the rules
dlog f =06(0r,) =0, &(ALogf) =0,

dLogf = d6(Dlog f) = —ALogf; and
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dflog f] = dlogf — 2midr,,

d[Logf] = dlogf (on W,, Logsf is continuous)

d[DLog f] = dlogf — (dlogf — 2midr,) = 2midr; ,

d[ALogf] =0 (

There are no residues on nx so d[dlogf] = d[dr,] = 0.
Recall that the cohomological complex?®

C(n)p,x = Cone {C3y o(Z(n)) & F"'DX — DX }[~1]

on Wsas where ALogf >

gives a constant value

= Coy_o(Z(n)) ® F"'D% ® 'DY

with differential
d(a, b, ¢) = (—0a, —d[b], d[c] — b+ a)

computes Deligne (co)homology:

H (nx,C(n)p,x) = Hp(nx, Z(n)).
Moreover all its terms are acyclic, i.e.

H*(nX,C(n)%’X) =0 for x>0 (for each q),
and so
H (nx,C(n)p,x) = H*(C(n)p,x(nx)) = cohomology of

Cone {Coq—s (1, Z(n)) & F*'DX (1x) = "Dx (nx) } [-1]
(which is familiar from §2.4). Now we can map
Z(n)p,x = C(n)p x

as complexes, as follows:

(deg0) (deg 1) (deg2)

0 - Z(n) - Ox - QL

0 —— C34(Z(n)) — C3q_1(Z(n)) ® D — Coy_»(Z(n)) & 'Dyx —— ...
A+ (=3A,A)
€, f) ——— (=0C,d[f] + ()

Here CX(Z(n)) is the sheaf of germs of #-dimensional real-analytic chains with
coeflicients in Z(n).
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(degn — 1) (degn) (degn + 1)
n— d -
- Q2 - Q! -0
*)

o G 1 (Z(n) ® DY — C3y (Z(n)) & F"'Dy & 'Dy " — C3y 1 (Z(n) ® F'DY™ & Dy —— ...

C,S) i (—aC,0,d[S] + C)

(C,Q,R) > (—0C,—d[Q],d[R] — Q2 +C)

where we have left out the (274)"’s multiplying A and the C’s, and (in order
that the diagram commute) (*) is given by sending

w — (0, dw, w).

(Apart from that, Z(n) < C5y(Z(n)) while Ox — D%, Q% — 'D%, and so
on.) We now have a composite

&"Z[Phx) \ {0, 00}] — P (13, Z(n)p.x) — HP (nx,C(n)p )

f=fi®...0 fo— 6(f1)U...U0(f,) +— D-cycle in "Ef(n)
Decyele i By'(n) 1= CPn.Clnlh y)

computed by a D-cycle in a new double complex, namely
{(0,9F,8F), (0,551, (0,8¢), St} =
{(0, dlogfi A ... Adlogfy, Logfidlogfa A ... Adlogfy) ,

(0, ALogf1Logfodlogfs A ... Adlogf,) , ..., ALogf1 ... ALogf,}
€ {’Eg’"(n), 'BY ), ,'Eg’o(n)} ,
where we note the peculiarity that S2 € C™(nx,C55(Z(n))) while the remain-
ing St € C"'(nx, D% ). We compose with one more (isomorphic) map
H* (nx,C(n)p,x) = H"(C(n)p x(1x)) [= Hp(nx, Z(n))]
by using acyclicity of C (n)qp’ « to pull the whole D-cocycle (by adding D-

coboundaries) up to a doone- and d¢ecn- closed element of / Eg’"(n). (This is
abstractly possible, by an easy diagram chase.)
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The picture we would like to have is the following:

(0,9¢, S¢)

(0,8¢7h

|

(o)

n—1 n—1
(Cf 7Qf ) (—1)”716

‘(30,'1[62] +C)

‘(—ac,C)

C?—(S»S?

where all arrows but the dotted one represent two quantities summing to give
another (or 6C2 = £50). The “answer” (after subtracting the D-coboundary
from the D-cocycle S, so that all other entries are zero) is then just

(ace=t, Qp, S —d[Qr7Y - Y € "By (n)

in the upper left-hand entry, and it had better equal ((27i)"T¢, Q¢, Rg) in
order to agree with R. More precisely we want

Cf- ecrt (77X7C§Yd—i(z(n))) ) Q;‘ ecr! (nx,’Df{l) ,
T ]
such that:
(-1)rscf = S, Cf + (-1)"'6Q¢ = S¢,
—9C + (~1)"C = 0 for 1<i<n—1,
d 1.'71] +Cf~71 + (—l)n_i(SQ% = Sﬁ for 2<i<n-—1,

ocg~t = (2mi)" Ty, Sf —d[Q¢™'] - C¢~' = Ry

Very explicitly now, the terms of the D-cocycle which we are modifying by
a coboundary are

Si = ALogf) - ...  ALogfu_iLogfn_iz1dlogfn_izo A ... A dlogfn.
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The fact that the {Sﬁ} comprise a double-cocycle is expressed by the relations
0=d[Si )+ (~1)" %S and 9SP = 0.
Also, recall the notation
R(f)=logf, R(f,g)=logfdlogg —2milogg-dr,, etc;
the properties of these currents we shall use are that
d[R(f1,--- s fm)] = Qf1, o s fm) — @)1, .1y,
and (somewhat less obviously)
R(fi,-.., fm) = log fidlogfa A ... Adlogfm — 2midry, - R(foy... y fm)-
We find that

Cp = (2mv/=1)'ALogfi -... ALogfn—i—1DLog fu—i - 01, . n.nmy,
Q¢ = ALogfi ...  ALogfn—i—1DLog fn—i - R(fn—it1,-- ; fn)
do the job. Absolutely crucial here is the fact that the Cf; as we have defined

them are real analytic chains with Z(n)-coefficients (and DLog is important
in this connection). We state our conclusion:

ProrosiTION 3.3.2. There is a well-defined homomorphism of sheaves
K%X — H}(n). On nx it induces ¢ map

KM (C(X)) 2 H(nx, KMy) — H(nx, M (n)) = Hp(nx, Z(n))

which coincides with that induced by the Milnor requlator currents, namely
the assignment f— ((273)" Ty, Qy, Ry).

3.3.3. A note on product structure. If

f= Zkafla ®~-~®fna € ®nZ[]p(1C(X) \{0,00},

8= Lgg15® ... ® gmg € @ Z[Pry) \ {0,00}]
B
set

f® g = Zkaeﬂfla ®...® fna ®gAD...09gms € ®n+mZ[P(%I(X) \ {07 OO}]
o,
This induces a “tensor product”
K (C(X) ® Ky (C(X)) = Ky (C(X))
on Milnor K-theory by sending

{f} @ {g}— {fog}

It is obviously well-defined; if f or g is a Steinberg then so is f® g.
By construction, the sheaf homomorphism is compatible with the prod-
uct structure on Zariski stalks; therefore the map in the Proposition sends
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products to products. Namely, we have (as a corollary of the Proposition)
that

((2m0)" T, Qt, Re) U ((274) " T, Qg, Rg) = ((270)" " T, U, Rrsg)

in Hyt"™(nx, Z(n+m)). We expect similar product formulas hold for all the
maps of §2.4.



CHAPTER 4
Rigidity and Vanishing

4.1. Gauss-Manin Connection (How to Differentiate Periods)

4.1.1. Why a “Vanishing” Result? Let E; be a family of smooth
elliptic curves parametrized by a Zariski-open subset of H°(P?, Op2(3)).
Collino [C1] has demonstrated the existence! of a “continuous family” of
holomorphic symbols

{1} = [[{fa(t), 9a()}™ € ker(Tame) = K3’ (E;) € K3"(C(EL))

with nontorsion regulator image

[Ry] € im {H'(Ey, C/Z(2)) — H'(nr,,C/Z(2))} = H'(E,,C/Z(2))

for general ¢, as well as nontrivial infinitesimal invariant. The family of sym-
bols is constructed geometrically,? by starting with a family of hyperelliptic
curves C; of genus 3, which produce Ceresa cycles C’t'" — C; in the corre-
sponding (hyperelliptic) Jacobians; degenerating these Jacobians twice then
yields (from the Ceresa cycles) the desired family of symbols.

This is very much in the same (geometric) spirit as the work of Miiller-
Stach, Lewis, and Collino ([MS1], [AM], [C1], [C2], [GL], etc.) on con-
structing indecomposable elements of CH?(X,1) for X a general K3 sur-
face.? On the other hand, Collino’s construction is the only case of an inter-
esting holomorphic Milnor-regulator image on a general curve: if we replace
HO(P2, Op2(3)) by H°(P?, Op2(D # 3)) (Collino, [C1]) or by the universal
family of curves of genus g (Griffiths-Green, [GG1]), such an {f;} as above
cannot exist. So why not try higher dimension?

The aim of the project represented in this chapter, was to start with a
family X; of smooth complete intersections parametrized by a Zariski open
subset of HO(P"*7, Op(Dy) @ ... ® Op(Dy)), and produce geometrically a
family of holomorphic symbols

{f:} € K/ (X1) C K/ (C(Xy)) (= Qg =0)
with interesting regulator image

(really on a cover of this family)

%as opposed to arithmetically for special ¢

3The above amounts to an interesting element of CH?(E, 2) for general E; the work
on CH?(X,1) also involves computing regulator images.

134
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(4.1.1) [Re,] € im{H"™"(X;, C/Q(n)) — H"™'(nx,C/Q(n))}

for general t.* We always take dim X; = n — 1 in order that H"'(X})
be interesting; it follows that the target space (4.1.1)[= H;}T*I(Xt) for very
general t] is too.

Instead we wound up proving that this situation is impossible unless n =
2 and Xy is an elliptic curve. Otherwise, nontrivial images (in H" ! (ny, C/Q(n)))
are possible (for general ¢) only for symbols with nontrivial residue, i.e. not
in KM(X;). For n > 4, {f;} € ker(Tame) is a less restrictive assumption but
already “rigidifies” the image, i.e. makes it flat with respect to the integral
structure. (See the Theorem at the end of §4.5 for a formal statement of
the results.) Nontrivial “geometric” images — i.e. the cohomology classes —
probably always have residues (for X # F).

The main idea behind the proof is a computation of the “infinitesimal
invariant” (of [Ry,]), which is a sort of derivative of a family of cohomology
classes. This boils down to the differentiation of their periods on (n — 1)-
cycles (on X;), since these cycles give a “rigid” integral or rational structure
that one can differentiate against. So in the following we establish precisely,
the sense in which such a derivation (or “Gauss-Manin” connection) is possi-
ble. Much of what follows (in this section) owes something to Chapter 3 of
[Gr3|.

4.1.2. Setup and Notation. Gauss-Manin globally (from Leray
spectral sequence). Let Y be smooth projective and E [the sheaf of sec-
tions of] a vector bundle on Y’; the families we study will always be of the
form X — §, X and § smooth quasi-projective and 7 smooth, where § is
Zariski open in [a cover of] a complete linear system S = PHO(Y, E). All
X, := (s € S) are smooth projective.

Let 0 € S be a base point and D C S be a 1-parameter® disk containing
0 (and parametrized by t). We fix a homeomorphism

F: XoxD— 7 YD)=xp
auch that the restriction to Xy x {¢t} maps it to Xy; this induces a map
Ff o H (X, ©) = H*(X0,©)  (Fy =id)

by pulling back forms, which does not respect Hodge type. However this gives
a way of recording the periods we want to differentiate in a fixed space.® In
a diagram:

Yor equivalently to produce an interesting regulator image on X, ¢ very general.

®(8 is not 1-dimensional)

50One can also see Fy* as recording the (varying) Hodge structures on H*(Xo,C) as a
vector space.
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=i

=l > 7-H(D) o Xox D

A

D S S5 D

A choice of F' (= choice of local product structure) carries with it a choice
of horizontal vectors F,(9/0t) =: 9/0t and vertical forms’ (annihilating
these) on Xp. Gauss-Manin (and Kodaira-Spencer) is independent of this
choice, so F' will not become relevant until we seek to realize explicitly the
abstract/invariant version we now start with.

On all of X (without F') we can define vertical forms as a quotient, via

%1

0— 7" Q5 = Q) — Q5 = 0, /s : _/\QX/S,
or
(4.1.2) 0 — im{r"Qs @ Q%' — 04} — 0% — Q% 5 — 0.
Consider a Leray filtration on the complex Q% by

0y =im {r R ey’ 50y} o Grhoy =2k e oy,
which gives rise to a spectral sequence
BT = RT(Grp0%y) = Q5@ RETOL K = Q5 @ RY Q)

computing E%! = Grl.RET7Q%,. We shall sometimes write HS for RT, QF

x/s =
RI.C® Os, FFHY, for RE Q5% HYTF for RE O, o[-k = RITMO%, o

though in the latter case one must often specify whether one is thinking of
’H';gqfk as a subspace of H% or as the quotient FkFk-1,
Pasting together the long exact sequences arising from

Lo P Gt P2 o L GeR T et

we have from

5
— RPFI GRS, - REVOH LrHlQs, o ReTOH 2RO,

I
<

b}
ReFetl pprle, X Retetl Gl — REFORZLPE2Q,

]Rgi-q%-? [LPt2 Qs _?

"(vertical vectors and horizontal forms on X were well-defined to begin with)
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our first definition of the Gauss-Manin connection
. OP q p+1 q
V:Qs@HY — Q5" @Hy,
in such a way that V o V = 0 is obvious.

In the same way, a Leray filtration on Q:YZ]HP (instead of Q%) leads to
Hodge-filtered pieces of Gauss-Manin

Vi Qe PG -t e PRI
while taking instead Q]f\,+p[—(k + p)] leads to maps
VO Qf @ik o it @l b
which may be viewed as graded pieces
V: ke GriHYy — O e Gri Y
of V. In particular V o V = 0 is again immediate.

REMARK 4.1.1. We emphasize that V itself does not take a section of
% @HY ™" C k@Y, to Q5T @ H MM C 0f @ MY, ! The map
“v (017 i5 to V what 0 is to d on C* differential forms; they coincide on
Hodge-graded pieces (i.e., in a quotient).

4.1.3. Gauss-Manin locally (with 1 parameter). In §4.1.4 we will
“compute” V explicitly (for p = 0) on D, where (4.1.2) reduces to®

07" Qp® QY = Q% = Q4 =0,
or
(4.1.3) 0 — 7*Qp ® Q% pl-1] = Q% = Q%) = 0.

This gives a long-exact sequence with connecting homomorphism
REO%)p - R (7°0h © Q% pl-1]) = @b ® R 0%
which is of course V : ’HgQ — Qb ® ’Hg(t ; we will show this differentiates

the periods. For v € HO(D,HSIQ) we write Vi =: dt @ Vg g11 ; replacing
D by an open ball in S and ¢ by {t;}{% would just give

VI/t - Z dtl ® V@/@ti Vg.
)

Briefly, the filtered and graded pieces go as follows:

0= 0L @02 -1] = Q% —» Q2L =0

X/D X/D
induces
V:iRLQY, - Qp @R QP
and
(4.1.4) 0—7"0hL ® Qﬁg/lD[—e] = Q5[4 = Q5 /p[-4] > 0

8where we continue writing X for Xp (and F, Xo x D do not yet enter)
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gives rise to
v: Grﬁ%" — Qb ®G7’f ’H
via the connecting homomorphism
RE Q% pl—6 = Qp @REF'QL L[4 = Qp ® RE L)

This connecting homomorphism must be given by cup-product with the
extension class of (4.1.4), and so V is just U with

eER}r*Hom{ . *QD®QX/D} 0) @ R Hom(QX/D,QfY/1D>

(the [—/] shifts make no difference). On the other hand the Kodaira-Spencer
class is the extension class

¢ € R Hom (6}, 0,)) = O @ R 0%
of
0= 0y/p— 0y = m*0p = 0.

Dualizing this sequence and tensoring with Q%' (which doesn’t change e)

X/D (
gives the bottom row in

0L ® 0l

> Of ¢
X/D Oy Qx/p
w L}/D<w,->,y w | <w,s >x/p

Hom(ﬁ*H}j,Qf\,/lD) — Hom(&}v,Qg,/lD) — Hom(GX/D,QfY/lD)
which shows that e naturally pulls up to €, or “V = Ue”. An immediate
consequence is that (unlike V) V is Op-linear;’ we sometimes call it the
Op-linear [graded| piece of V. That is , the value at ¢ = 0 of a section 7; of
Gré?-{g(t is enough to compute the value at ¢t = 0 of ?3/&% € GTEF_IH%. Of
course one needs to know the local behavior of the family X; (as encoded in
€), but not that of the section.!® We’ll pursue the computation of V further
in §4.2.

4.1.4. V is computed by the Cartan formula. Returning to V and
(4.1.3), we now obtain the connecting homomorphism explicitly, on forms
representing sections of the hyperderived sheaves. To this end we need to
resolve the complexes of holomorphic sheaves by complexes of acyclic C'*°

%of course V on S is Og-linear
though one should note that v; is implicitly restricted by having to be a (holomor-
phic) section of the holomorphic sheaf RL ZQX/D
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sheaves, e.g. (Q2%,0) = (Q%,d) so that an abstract section of RL, Q% (=
R Q%) over D can be represented by a form in (the numerator of)

ker{d: L(Xp, Q% — F(XD,Q%)}

HU(D,R;IF*Q. °°) =

im {F(XD,Q‘;&) - I‘(XD,Qg\,OO)}
However we run into the difficulty that (unlike D% = Q% ~ ®) QZX/D)OO ~
7*Ope @ C is not quasi-isomorphic to (and so does not resolve) Q%o
7™ Op ® C. Here is how to get around this: from

12

(a3

T Qp ® Wy p —— ker(Qy — Q%/p) - Q% - % (-,9

one has a commuting diagram

/ N

Op ® RI C=RL Q%) p RIH ker(Q% — Q% /p) ~——— Qb @ RL Q% = Q5 @ RLC

()

~

) =)
So for our purposes, given a section v; € H’(D,Op ® RL.C), it will suf-
fice to compute Vv, and throw away the di-part (to get Viy).

Recall that our choice of F' induces a (local) notion of vertical forms and
horizontal vectors (as subspaces rather than quotients); in particular we have

a “preferred” /0t on Xp, and also for any section o € H°(Xp, Q‘(IX/D)OO) a
lift & € Q% (Xp) with <6//v6t,64> = 0. It is easy to see that on the image

of RE, Q:\,/D, V™ is given by composing § with the projection

At ® iy p <8//\8/t, >

X

This will land in

and yield a representative for Vvy. To compute 6(1;) we snake through the
bottom row of (%), first turning the image of v; in RZ, QEX/D)OO into a dy/p-
closed C* g-form o on X'/D (or a family of ¢g-forms a; on X;), then taking
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a “vertical” (non-closed) lift &, then differentiating to get da € ker(Q?Yti —

QiI+1

(X/D)oo)' Composing with the projection we have a formula which we write

Vo = dt @ i, <5/Vat, dd>X

in terms of the representative forms. On the other hand, if we let &' be any

—~—

lift then we can “verticalize” it with respect to 9/0t with
& =a — (7dt) A <5/Vat,a’> (= <5/Vat,&> ~0)
so that
<8//\8/t,d€y> - <5/Vat , A + (r*dt) A d<8//\/8t,&’>>

- <<§75t, da/> +d <57/at, 5/>

which is the Cartan formula for the Lie derivative. This also shows that the
cohomology class of ¢, <8/ ot,da’ > is independent of the choice of lift of «.

(Changing 8//\0/15 by a section of 9}\, /D wouldn’t even change the form, since

A& € ker(Q%H — Q'(I;} py=)-) Of course, for cohomology only the first term

of Cartan is important.
4.1.5. The Cartan formula differentiates periods. Although our

goal was merely to differentiate periods of o; on a continuous family'! of

cycles {C¢}iep, with the choice of (F,0/0t,&) we can do “more”. For an
arbitrary g-chain Q on Xj set Q; := F(Q x {t}) on Xp and on Xy x D,
e := Q x P for P, = [0,¢€] a (short) path in D so that 9'c = 0Q x P, +
(Q x {e} — QA x{0}). Note that Lf\fox{t}F*&(,) = F}"ay. We define a functional

(L—=ay)i—o on all such Q, and compute a form representing it, by

8/t
0 0
L—oy)i—o = [—/ a] = —/ Fa
/Q( a/ot t)t 0 ot 3 tt:o [at ox{t} L
. ]' * * . ]' * ~1 * ~ 1
= lim - Fop— | Fyoag| = lim— F o — F*a
e—0 € o) o e—0 € ox{e} ox{0}

1
= lim = [/ d(F*a') +/ F*&’]
e=0¢€ | Joxp. QX P,

= /Q<8/8t,d(F*6/)>t0+/89<3/3t:F*5/>

" This might be given by F;(Co) for Cp a fixed cycle on Xo, but for (closed) cycles
this is purely cosmetic; on the other hand “how” we vary a non-closed chain Q¢ makes a
difference.
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- / {(9/0t,d(F*&)) + d (80, F*&')}
Q

_ /Q<8//\/8t,dd’>+d<8//\8/t,d’> - /Q<5/\8/t,dd>.

We state our conclusion that this version of the Lie derivative is given by
the Cartan formula:

(Lamoni-o = ik, (9/0t,da) = v, {(9/or,da’) +a (d/or,a')}
where as before & is an F-vertical lift and & an arbitrary lift of «;. Of

course if we take @ = C a (closed) g-cycle such distinctions don’t matter,

as [,d < 9/0t,& >= 0; combining the above computation with our prior
unraveling of V,

0 ory /
= = [ 50\ — )
[87& /Ct Ott:| . /c LX, <8/8t, da > /C(Va/atat)t_o

and so Vs “differentiates the periods”, i.e. yields a form with periods equal
to the derivatives of ay’s periods in the 0/0t-direction.

4.1.6. V on a family of elliptic curves. Here is the easiest nontrivial
example we could cook up. Let Xp be be the family

X =C/{Ze (t+9)Z} , teD[>30]cC

of elliptic curves; we use z € C as coordinate on each X; (of course identifying
z =0 with z € Z + (¢t +4)Z) and take simply oy = dz (on each X;) as [the
representative of| our section of ’H}Q. Define

Ft:X()X{t}—)Xt

1+t

w
by the “linear” map'?
S(tw) = %{(Z—it)w + it}
and pull the X' /D-forms oy back to “Xy x D/D”-forms
Fro, = Frdz = % (2 = it)dw + itdw)

which can also be thought of (using the product structure) as a vertical form
Ffay on Xo x D. Then (F~Y)*(Fjay) is the desired “F-vertical” lift & of

20f course this also defines F: Xo x D — Xp.
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oy = dz [from X/D] to Xp (simply taking dz on Xp isn’t what we want'?).
So in fact the above is a formula for F*&, that is

1
F*a =2 {(2 - it)dw + itdw}

In order to compute Vg gcr = 1, <8//\/8t, d€v> for the local family (not just

at t = 0) we write
(0/0t,dF*&) = F* <5/Vat,da>
so that
Lﬁfox{t} (0/0t,dF*a) = l’ﬁfox{t}F* <(9//79/t’d&> = Fux, <a//vatad0~4>
and

[’fYt <8/8t, dd> = (Ftil)*l/fyox{t} (8/875, dF*d>

Clvs % dw — dw
= (Ft 1) LXoX{t} <3/3t, dt/\ <27>>

)

1
= (Ft_l)*Z(dw — dw).
The inverse to z(t,w) is

(24 it)z — itz (2 —it)z + itz

b)) =TT Bt ) = -
wit2) = = otz = i
S0

] .

21 20+t—1t
and

— dz —dz
L, <8/8t,da> = ST

If on X; we let a be the path from (z =)0 to 1 and 8 be the path from 0 to
t + 4, the periods of dz are

/dz = 1 (constant) and /dz =t+1i,
o B

where the derivative of the latter by d/0¢t is 1. And indeed

/d_z—dz: _l_l,zﬂwhile /qz—dz:(t+_z)—(t—z):1
a2it+t—1t 2t1+t—t 522+t—t 2t1+t—t

as promised.
Another phenomenon (mentioned abstractly at the beginning of the sec-
tion) worth pointing out, is that (in this example) oy — Vg9, drops from

13What we want is <6/ ot, 64> = 0, of course; the actual expression is messy (we have

worked around it here).
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F'to FO. In fact for vy € Tkﬂg(t we can always choose & in F*¥Q%.. (Xp) so
that da € ker {}"ng\,ﬁ — Q?;}D)m} (Xp), this is essentially because Q:\,Zk
can be resolved by C* (p, q)-forms with p > k. Any confusion as to how

—~—

one can have & € F*, <8/8t, &> =0 and Vg g0 ¢ F* can also be resolved,

by this local “example”: if 6//v6t looks like 0/0t — z0/0z and & like dz + zd¢t,

—~—

then < 8/0t,& >=0, da = dz A dt and <8/8t,d2 A dt> — _dz.

4.2. Cohomology of a Smooth Hypersurface X C P

4.2.1. Meromorphic forms and homogeneous polynomials. We
consider a smooth X C P* (n > 2, dimX = n — 1) cut out by F € SP
homogeneous of degree D. Let 7 : U = C**! \ {0} — P" be the quotient by
the action

t-(z0y...y2n) = (tzo, ..., tzp)

of C*; this is infinitesimally generated by

Set
o=H(C"" Q%..), A™ = rational m-forms on C"*!,

W= A" (X) :=rational m-forms on P" with poles of order < k along X,
(and no other poles)

A™ = A™X) = A7
k

By Chow’s theorem/GAGA, meromorphic forms are rational:
W= H(QF(kX)), A™ = H°(QF.(+X));
in particular, for m =n
r=H(Kpr ® O(kD)) 22 SFP="1,

We realize this = as follows: if w € A}", then (by definition of a rational
form) it lifts to

1
Tw = U = T Z Ar(z)dzy € A™
I,|I|l=m
where Aj(z) are polynomials. We characterize those ¥ € A" that descend
to P (i.e. arise in this fashion). Let iz(-) = (€,-) be interior product and for
a monomial ¥ define its degree as an eigenvalue:

deg(T) - 0 := [d,is] T := (,dT) + d (¢, 7).



4.2. COHOMOLOGY OF A SMOOTH HYPERSURFACE X C P" 144

For example, deg(dz;; A ... Adz,) = k; the definition extends to sums of

monomials of the same degree. If deg(¥) = 0 then ¥ is invariant; an
invariant ¥ descends (= 7*w) iff it is horizontal with respect to m, i.e.
(e,T) =0.

For m = n, set
dz =dzp A...Adz, € AV | Q:= (g dz) € A}
and compute
deg(Q) - Q =d (¢, (¢,dz)) + (¢,d (€, dz))

= 0+ deg(dz) (€,dz) — (€, (€,d(dz))) = (n + 1)Q2.

One also finds deg(aAf) = deg(a)+deg(5) (where a, 5 are forms or functions
of well-defined degree), and so if P € S is a homogeneous polynomial them
PQ _ PO P
deg <ﬂ> =a—kD+(n+1) and <e,ﬂ> :ﬁ<

so that (PQ/FF) = n*wif a = kD —n — 1.
In fact all ¥ € A" which descend to A} take this form: that is, assuming
U = Wy /F* for ¥y € AP, and (€, ¥) = 0 = (&,d¥), we have (&, ¥() = 0 and

(using this together with (€, dF) = deg(F') - F)

0= FF1 (e dv) = (¢, FAW¥, — kdF A W) = F (€,d¥,) — k (&, dF A ¥g)

&) =0

:F(é’,d\Il())—k(é’,dF)/\\IlO:Fdeg(\llo)\IIO—kDF\IIO

so that deg(¥o) = kD and ¥, = (€, 5d¥) = (€,¢) for p € AG*'. The
only option for such a ¢ is Pdz, so that ¥y = PQ and

kD = (deg(¥o) =) deg P + deg Q2 = deg P + (n + 1).

We note that the inclusion A}_, < A}’ corresponds to F - §k—1)D-n-1

GkD—n—1 PQ _ (PF)Q
Fk-1 — FkE

via
4.2.2. Meromorphic forms and cohomology of X. Now viewing
GEH (O (+X)) = AP (X)

as a filtration by order of pole on meremorphic forms, the corresponding
graded pieces

GrEHY(QF.(+X)) = HY(QP.(kX)) /H(QF.((k — 1) X))
may be shown to coincide with those derived from the standard spectral-
sequence procedure for m=n, n-1 (the cases we shall use).'* Namely, set
PFOE. (+X) = QEL(kX) for k>0 (and P~!:=0)
“with the sole exception in the case m = n — 1, n = 2 (which doesn’t matter)

H'(Q5,(X))

1770
(G’"QH = QL) = 0

> — GrpH®(Qp2(xX)) = H (Qp2)[# 0]
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and use

BV = HPT(GripQp(+ X)) = ERI = Gri, HPT(QFL.(x X))
with p+¢ = 0; then the assertion is that (for m = n, n—1) Gri, H*(QF. (x X)) =
GriHO Q. (+X)).
Griffiths [G1] considered the “rational de Rham cohomology” groups
A™(X) . : Ap(X)
X)) = e th filtrat "(X) = b
ONX) = iy Vit filtration Gu9™(X) = e A oy
and graded pieces

k&n X) = gkf) ( — k .
GrgH™(X) Ge—1H"(X) AP +dA"~! N {num}
Clearly GoH™(X) = H°(Q%,) = 0. We will quote the following results:

LEMMA 4.2.1. (Griffiths)

(1) Gn$"(X) = H™(X).

(i1) GrE™X) = A} [(Ap_, + dA}"Y) .

It follows easily from (ii) that GpH™(X) = A}(X)/dA}_ | (X).
The following simple argument suggests that to understand the interest-
ing part of H*(X') we sould study the Gréﬁ”(X). First of all (working with

o~

coefficients in Q or C), by the Lefschetz hyperplane theorem H(X) <« H*(P")

Ux

for ¢ < n — 1 and dually HY(X) — H“2(P") for'® £ > n — 1. Define
Gy

HH(X) = coker { H*H(P") — H" (X))}

and

HIH(X) = ker{H"—l(X) — H”+1(X)} :ker{H”—l(X) — H”+1(1P")},
UD[H]

Gy
noting that since the composition

H" Y(P") » H""1(X) — H""'(P")
is UD[H] and is therefore an isomorphism (over Q), the natural map
Hy H(X) = Hig, ' (X)
is also an isomorphism. From
Gy Res Gy
H"*X) - H"(P") - H"(P" - X) — H" YX) - H"TY(P")

51n fact both maps are isomorphisms for all £ # n—1 (except for txat £ = 2n,2n—1),
by factoring UD[H] : H(P") — H*"*(P") through H'(X).
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Res
we have H™(P"—X) — Hgfl(X), which is the “interesting part” of H*(X),
and similarly
Res
HYOLE (@ogX)) — @), —ker {HO(08) - 177 (0201}

forp+qg=n—1.

Now here is the main point. Recall that “Bott vanishing” (see [Gr3|)
says that H'(Q,, (kX)) = 0 for i,k > 0 (and j > 0). There is a long exact
sequence of sheaves (see [L1])

d d d
0 — Q. (dlogX) = QBLH(X) — GriQpi*(+xX) = ... = Gry POR.(xX) = 0;

in fact (using Bott'®) all terms but the first have trivial H?, i > 0. So we
have an acyclic resolution of the dlog forms, and
H(Gry P, (x X))

H" P~ (O (dlogX)) = =
dHO(Griy P=h R (X))

N HO(P=PQn,. (xX)) /HO (PP P~1OR,, (X))
—d{HY(PrrmlQR (X)) JHO (P20 % (x X)) }

_ HO(Q%,.((n — p)X) _anvan
~HYQ2.((n—p—1)X)) +dHY(QE ((n —p— X)) Grg "9"(X)

(where the second 2 again uses Bott to ensure Hl(Pn_p_lQ”n(*X)) = 0).
So we obtain

H"P=H Q) = Grg 79" (X)),

but this (efficient) incarnation of the proof does not lend itself to studying
how periods change!” (as X varies), as easily as Griffiths’ original argument
does. This does everything explicitly on forms.

8together with the long exact sequences associated to P*~!' — PF — Grk. A
more formal way of proceeding than the above, is a spectral sequence argument taking
Fa, 0 < a < n—p, to be the sheaves of the long exact sequence and E‘f’b = H*(P",F,) =
0 = Ew. (This is because the spectral sequence computes H" (F, ), and Fe ~ 0 since it is
exact; see [GH]|) Then the first & above is given by dp,_, : EY" 7" — E2~P° because
by Bott vanishing all Ef’b are 0 except for a =0 or b =0.

"It can be made to yield up this information, basically by using the spectral sequence
version in the above footnote and tracing through d,—, (and this is exactly how we will
do it for complete intersections in §4.5).
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4.2.3. Griffiths’ approach revisited; Jacobi rings. There are in-
clusions of sheaves

in particular for ® = n,n — 1; we denote sections by H" and closed sections
by Z°. The inclusions induce maps on cohomology
H™(X) — H"(P" - X,C) «— "H"(P"(dlogX))"
I I I

HO(2p0(+X)) Z° (Ul xy00) 70 (oo (dlog X))
n— TS0 /an—1 N —
dHO (07" (X)) dHO(Q0) xy00) dHO (07 00 (dlog X))

which are in fact both isomorphisms. If we define a filtration

Z0(FriQr  (dlogX)) Z0(FriQr  (dlogX))
PP (B dlog X)) = e = ,
{dHO(Q"_nl)oo (dlogX))} Anum  dH (FpQ(]pn)oo (dlogX))

Griffiths proved that the (isomorphic) images in H"(P™ — X, C) of the two
filtrations

im {Gn—p$" (X)} = im { FPHLH™ (P"(dlog X)) }

coincide. Even if we take graded pieces here, this is more than the previous
result (out of the long exact sequence), because it tells us the representatives
differ by a coboundary on P" — X (while the previous approach just gives
“an” isomorphism), so that their periods coincide. Taking residues on the
right hand side, we get Griffiths’ map

(4.2.1) Gn—p$"(X) — FPH"(X) N HJH(X).
4 p

In the following we shall always identify & = n — p (this simplifies
notation). We briefly explain how to change a rational form w € A} =
HO(Q%,.(kX)) by a C* coboundary on P"—X to get 3 € ZO(F”“Q?P“)OO (dlogX)).
The key is that one can always reduce the pole locally by adding a holomorphic
coboundary (which is mot always possible globally). For instance, taking
Up :=P"\ {20 =0} C P", if U, C Uy is a small enough neighborhood of any
point on X N Uy, there is a j(a) for which 0F/0z,) # 0 on U, (because X
is smooth). On Uy, 2 = dz; A ... Adz, (by taking zp = 1); and so on U,,
using dF =30, g—Zdzi, we have

_P_Q _ Pdzy AL Ndzy
- FR Fk B OF[0zj(qy - F* o Fk

PdzxyAN...ANAdF A ... Ndz, dF A6,
w =:

where

o —

. :i:Ple/\.../\de(a)/\.../\dZn
« 8F/8z](a)
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is holomorphic on U,. So

0o  db. dFAG.
k—1D)F-1) = k—nFk-1 gk o

dne = d(

repeating this procedure on a system of neighborhoods U, covering X (and
doing nothing'® on a Uy with Uy N X = 0, Uy Uy U, = P™) we piece the
result together with a partition of unity {pq}:

dn:=d Zpa"?a = Z(dpa/\na—i-paTa) —w=T-w
0,
where (because of the {dpy}) 7 may have a dz part: 7 € ZU(F"*Q?P”)OO ((k—
1)X)). In fact we can always say something slightly stricter about the poles
of 7: the “last” pole is dlogF’, so that repeating the procedure eventually
lands us in ZO(F”_’““Q?P”)W (dlogX)) rather than HO(Fn_k“Q?Pn)OO (X)).
See [G1] for details.
If, for some j, P has a factor of 0F/0zj, one can “globally” (at least on Up)
holomorphically reduce the pole (no dz’s come into play): if P = Py0F/0z;
then

_ Pdz AL Adz AL Adz,
B 0F [0z

0 : = Pydzy A... Adzj AL Adz,
is holomorphic on all of Uy.

To do this correctly on all of P" we again employ C*-invariant forms on
U = C**1 \ {0}. More precisely, we would like to show that w = ?—? €

A} | +dA7 L, € AR if P is in the Jacobi ideal

[k—1]
oF oF
kD—n—1 == . =) cC kD—n—1
Tr <8z0’ ’8zn> 5

(and the converse as well). For n € Az:%, ' =¥ = Ffﬂl with ¥y € Ag*l;

exactly as before we use (€, ¥) = (€,d¥) = 0 to show ¥ = <€, ﬁd‘l&» =:

(€,), where ¢ € Af has degree (k — 1)D (deg(d¥o) = deg(¥y) is easily
shown). So deg ( ) =0 and

P
Fk-1
080 (52) 3 58) on (58) 5t - s (50)

(€ (k=1)dF Ny — Fdyp)
Fk
Now the only options for ¢ (= holomorphic n-form on C**! of degree (k —
1)D) are to take dz(® =dzg A...Adz A ... Adz, and any R; € Sk-DD-n

18i.e., taking 1, = a primitive of w on Uo.
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and write
n

Y = Z(—l)iRidz(i) so that
i=0
"\ OR; " _OF
dp = > o dz, dF Ap = ;Rigdz,

i=0 b

£ ((k ~ DR IE - Fg—R) dz> B {zi ((k ~ DRI - F

OR
0z;

(r*dn =) d¥ = < " = =
where the homogeneous polynomial in brackets is € J*P~"~1. Conversely,
given any P € J, say P = > (k — I)ng—fz, clearly [subtracting] the above
d¥ € dAP~] will “reduce the poles” of PQ/F* to (32 g—Zj)Q/Fk*1 € A}_,.
What we have shown is that the map (4.2.1) has graded pieces (identi-
fying k =n —p)
vD SkDfnfl ~ ~
RpP = —5— GreH"(X) = H" M1(X),,,
where the first isomorphism is induced by sending P +—» ?—? =: w, and the
second by modifying w by a coboundary on P" — X and taking Resx. We
emphasize that the H”*k’k*I(X)p, are not to be thought of as subspaces of
HI~1(X), but as quotients Gri " HH(X).

To put this all in perspective, suppose now we want to compute fc «
for [C] € Hy—1(X,Z), [a] € FPH}"*(X,C). Then up to coboundary on X,
a = 5-Res(B) for B € ZO(F”“Q’("”W)OO(dlogX)), and up to coboundary on
P"— X, B = we H(QF. (kX)) = A}. Consequently by Stokes’” theorem

1 1 PQ
a =  — ,3 = - Tk
c 2mi JTube(c) 2mi Jrube(e) £
for some P € §kP—n—1,

4.2.4. Computation of V. Now take a local l-parameter family of
smooth hypersurfaces

X=XpcP'xD , x=|[]J{X}
teD
and consider the sheaves on D

n—kam—1 n—1e>n—k n—kqm—1
F HXt,PT;)RW* Q./\,’/D - F HX,g,'uar

(this is not an exact sequence!l); we would like to “differentiate” sections of

the “var” sheaf. The Gauss-Manin connection Vg5, on the middle sheaf

1QOZn—k—1
X/D

give derivatives of the periods. We can think of H,, and H,,, as functionals

H;;I(Xt) = Hom (coker { H,, 11 (P",Q) — H,_1(X;,Q)},C)

induces such a derivative; the periods of the derivative in R}~

ey
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H" Y(X;) = Hom (ker {H,_1(X;,Q) — H,_1(P",Q)},C),

var

so that (for n odd) H,q, ignores periods on cycles outside a (large) subgroup
and Hj, consists of functionals zero on im {H, 1 (P",Z) — Hp—1(Xy,Z)}.
The fact that they are isomorphic indicates that we can always lift a section

of ’H};}} ar O ’H};}w by subtracting the pullback of a smooth form on P" x D.

So it suffices to differentiate a section «y of .7:”7'“7-[?(:;, which begets a

family of f;’s [in ZO(FPHQ?W)OO(dIogXt)), satisfying 5--Resy,; = au] and

w's [d& + By = wy = £ € HY (. (kX))]. Consider a vertically closed lift
t
@€ HY (O, »(kX)) and differentiate periods using Stokes’ theorem

1
) / =2 / w, = lim = o = / (0/t, da),_
ot Gt ot Tube(Ct) e—0 € (Ute[o a 'I‘ube(Ct)) Tube(Co) B

where C; and Tube(C;) are continuous families of (n — 1)- and n-cycles, re-
spectively. Suppose

P(t) € S¥P~ 1), G € SP

- P(t)Q
w=—"7,
(F £6)
where {Ft =F - %G = 0} cuts out X;; this is completely general since F;
is varying in H°(P", O(D)), and

05, = THO(P", O(D)) = 8P,

Then
_ (F—L@) At AQ+ P(t)GdE A D : P0G | G (0)Q
Ao — — (9/0t,da) = + &
k)+1 ’ t=0 k+1 k ’
(F - §6) r "
and

. P0)GQ  Z2(0)Q
27TZ/ Va ot ) = / + ! .
‘s ( / ) et Fk+1 Fk

This is useful if we work modulo periods of F"*(=P) forms on X;, or
equivalently modulo periods of forms in A} (X;) on P* — X;. For we have
proved the following statement about equality of periods vectors in the cor-
responding quotient spaces of functionals: namely, if {Ci} are a basis for
ker {H,_1(X) — H,_1(P")},

<fc3 (Vﬁ/ﬁtat)t:0> = <fTube(cg) (% =4 %»
in GriFHETH(X) in Gritlen(X)

In a commutative diagram,
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PQ

P ﬁ

~

R —— Grf ™ (X) —— G Hy T (X)

xG (Vasor) Vayor
REHIDL E Gngn ) Z gt o x)
QN
Q = Fk+1

4.2.5. First application. We refine this a bit for a family

X —S8 c PH'P",O(D))
Zar. op.

of smooth {X;}. First, note that for each t € S

F
H}S',t ~ 5P /(F,) where (F,)= <Z ZJg_g) c JézD),
j

and so we have the slightly more informative commuting diagram (with
p =multiplication)

SP/(Fy) @ REP—n—t K, plk+Dbon=

o~ o~

0%, ® Griy "Hp ' (X,) — Gri T Hp T ().

One easily sheafifies primitive and variable cohomology (and the graded

pieces thereof); e.g. we could define ’Hggi o Vid

n—1 e n—1 e n—1
0= R Dpnysys = Re " Qs = Hx, yar = 0-
With this is mind the bottom map becomes a map of sheaves on S which
dualizes to™ the Gauss-Manin connection
k 1 Vi 1 k—1 1
n— — n—
GreHy, vor — s ®@Gry Hy, o
19 As the reader can check, this assertion reduces to the fact that, for a; and S; sections
of .7-"“7{}:1 and f"ikﬂﬁjl (so that ax A B = 0),

0= Vosot(ae ABt)_o = /

Xo Xo

(Vayatat),_o A Bo +/ at A (VasaeBt)—o

Xo
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Noting that u is obviously surjective for kD —n — 1 > 0 (so that SkP—n—1
is not zero), we conclude that ?(k) is injective for 1 <k <mn — 1 provided
D > n+1, or equivalently Kx, > 0 (or HO(QSZI) # 0). This result will be
applied in the next section to show that for ¢ € S “very general” the image
of Gy : H"3(V;) — H" ' (X;) is just [the span of] the hyperplane class.

4.2.6. Second application and Donagi-Green. Similarly the reader
may easily verify that the map

2

2 P(k)

REP—1 o N\ SP/(F) — RETIP e sP)(F)
P® (Gl/\ég) — PG1®G2—PG2®G1

is isomorphic to the dual of the G-M connection

Vio
Q}S ® GT.I;-‘/HT)L{:,iar — Q% ® GT};;IH?(:}JM

induced locally by

Zdti R a; — Z(dti AN dtj) & ?a/atjaz-.
i 2

In the next section we will want to use injectivity of @%n_l) (it’s the crux
of the argument), so we compute here the range of D for which u%n_l) is
surjective. We include this in a more general problem by observing that, for
k =n — 1, R%IT:‘Q)D*TL*I _ R%‘Fl)D*TL*I — Grg+1f)n(X) — 0, SO that lt iS
enough to prove exactness at the middle term of the bottom (trivially =
top) row of

2 2
- M M
Ry P ® \SP/(F) = Rj; ® S |(F) — Ri”

A

2 2
REP® /\ sb M L RgLgst H . RUHP

for b= (k+1)D —n—1=nD —n— 1. (That R;P = 0 for this b in no way
simplifies the proof, so we will ignore it.) That is, we prove vanishing of a
certain “Koszul cohomology” group (for certain b and D).

For b > D — 1, J% contains all the generators 0F/0z; and so pu : Jb ®

SP— J%'FD is surjective. Considering the diagram with exact columns
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2
TP e \SP — Jh @ SP —e it

A

2
S"P o \SP — S' e 5P — 5HHP

Y 4
4 4

2
Ry” o \S” — Ry ® S” — Ry”,

it is enough to prove exactness of the middle row (at its middle term). More
generally by a lemma of Donagi and Green,

2 W I

NS @8 — 5°@8" — st
is exact at the middle term for b > a, and so our result (that ?%nil) is
injective) is proved for bj=nD —n —1] > D+ 1, or (n — 1)(D — 1) > 3.

For completeness we include a proof of Donagi-Green, namely that ker(u) C
im(p?). Following [DG], let I and J be multi-indices and

Z cr, gz @ zy € ker(p)
Il =a
Il =b

be an element of the kernel; then ) ;. ;. cr, 7 = 0 for all fixed multi-indices
K (with |K| = a+b). Now by definition

im(u?) = {21 @ 2re1 — 20 @ 2141 ‘|I| =|I'=a, L] =b-a[>0]};
if we can show the following

CraIM. im(p?) contains all elements of the form

{ZI®ZK—I_ZI’®ZK71’ |I| = |[I| = a, |K| :a+b7 KZIaI,}a

then all z; ® z; with I + J = K are equivalent modulo im(x?) and so

from
Z Cr,jg = 0

I+J=K

follows

Z crgzr®zy =0 mod im(uZ)
I+J=K
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follows
Z Ccrg2r @ zy = Z Z CIJZI @ 2] = 0 mod im(uZ).
Il =a |K|=a+bI+J=K
[T ="b

But this is the same as saying our (arbitrary) element of ker(u) is in the
image of .
To prove the claim it is enough to show that

im(u?) 3 21 @ zx—1 — 2p @ z—p for T and I' differing by one index
(and the same conditions on I, I’, K as in the claim). So for

I-I'=(0,...,0, 1,0,...,0, =1 ,0,...,0) =: & —§;
i J

we will show, working modulo im(u?), that z; ® 2z 1 = 21 ® zx_p.
More generally for any I, I', K (satisfying the claim’s conditions) for
which there are multi-indices J and I" with

|J|=b, J—1>0, J-I'>0, I"+J =K,
we have
ZIQ2x-1 = 21" Q@25 = 2p Q2K

(using the definition of im(u?), e.g. for the first = replacing the L and I’ of
the definition by J — I and I"). Since we only care about the end terms we
can forget I" and replace the condition I" + J = K by J < K.

What’s left is to show we can choose such a J for I —I' = ¢; — J;.

there exists J > §; 4+ I with |J| = b; we than have immedi-
atelyJ—IZéjZOandJ—I’:(J—I)+(I—I’)25j+5i—5j:5i20.
Now K >I,I' = K >0;+1=20;+1I', and so it is possible to choose
this J both > 4; + 1 and < K.

4.3. The Vanishing Theorem in Codimension 1

4.3.1. Spreading an element of the Tame kernel. We would now
like to study the Milnor regulator on a smooth degree D hypersurface X C P"
(d = dim X = n — 1); the family of all such X is written

™

X — S:=PH(P",0(D))\ A

where A starts out as the discriminant locus (of singular fibers) and grows by
a finite number of Zariski-closed subsets during the course of the discussion
below. In fact we shall begin by throwing into it the hyperplane at oo (in S)
so that we may parametrize S by the coordinates #1,... ,ty which generate
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its meromorphic function field. If {o;(z) = o;(z0,... ,zn)}j.\;0 € SPis a
monomial basis then X C P" x § is cut out by

N
0 = op(z) + thaj(z) :
j=1

if we write (57,... ,B%) for the coordinates of s € S, then

N
X, ={0=o00(z)+ Y _ Bio;(z)
j=1

Since the only interesting cohomology of X is in dimension (n — 1), we
will look at the regulator (mod torsion)

R: KM(C(X)) —

H" '(nx,C/Q(n)) := lim Hom{H, (X -V,Q),C/Q(n)}
VcX

in the version given by integrating Rg over closed cycles.?® In particular,
we will study how this behaves in the family, if the “rigidity condition” that
{f;} € ker(Tame) or KM (X,) is imposed. Except when X is an elliptic curve
(the case n = 2, D = 3), we will show that for the weaker (= ker(Tame))
rigidity condition the infinitesimal invariant (=“V[Ryg,]”) is zero, while the
stronger criterion?’ == the regulator image is actually zero.

We can use this latter result about the family to show that the image of
the regulator®?

R: K} (X) — im {H""(X,,C/Q(n)) - H" ' (nx,C/Q(n))}

is zero for a very general X (again excepting elliptic curves). That is, the
base point?? 0 € S must be chosen in the compliment of countably many
Zariski-closed (proper) subsets.?* This essentially means that Xg is of no
arithmetic interest; indeed to prove our result it is sufficient to assume that
BY,...,B% are algebraically independent (over Q).

Consider on a very general Xy a fixed element

{fo} € [T{/Tas--- s fRa}™ € ker(Tamel) € K}/(C(Xo)).

Passing if necessary to a finite cover

*Owhich gives the same result as integrating R (mod Q(n)).

ZFor a definition of K2/ (X) see §1.2.3.

2gee §2.4.2; note that it makes sense to want to look at this part of the Mil-
nor regulator — it is the part that has nothing to do with residues (and so “more”
to do with the cohomology of X). While it’s not obvious, we will show below that
im {H"""(X) — H""'(nx)} is generally large enough for the map to be interesting.

230 does not mean t; = ... =ty = 0.

24general” means 0 €the compliment of finitely many Zariski closed subsets (which
is just a Zariski open set). Though we start with 0 very general, our “spread” shall be
defined on a general member of the family.
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XXss /’? S
p p
xr—- .S

after removing (finitely many) more Zariski-closed subsets of S into A (in-
cluding the branch locus of this cover), we may “spread” {fy} to an element

{F} = [[{Fiar- - » Fua}™ € ker(Tame) C K} (C(X)).

This engenders a whole family {f;} € ker(Tame), for all s € S, by restriction;
and there is an sg € p~!(0) (which we shall henceforth call 0) such that
{fs,} = {fo} on?® X,,. We caution that the extension of {F} to the entire
branched cover X would not be in ker(Tame); the functions F;, may be
badly behaved over certain points of S (including, but not limited to, the
discriminant and branch loci).

Here is how the spread, and cover, arise if 8. .., ,B?V are algebraically
independent. First lift {f2} € C(Xp) to the rational functions {f%} in
C(P™) = C(Z1,...,Zy) |here Z; := z;/zy| they come from, and collect
together all the coefficients involved in these functions into the finite set
¢p C C. Pick out a maximal subset € = {~1,... vy} algebraically inde-
pendent over Q(8?,...,8%) and name the remainder €*9, so that (writing

ﬁo for {B(f, . ,ﬁ?v})
Q8% o) = Q(BY, ") (el) /Q(BY; ¢

is an algebraic (finite) field extension, and the functions we started with live
in Q(B°; €y)(Xy), with corresponding rational functions

{fgx} € Q(:BU, C())(Zlv ey Zn)
Now write
QB°; €) C QET)(BY)(€5) = k(B°)(€f) =: 4,

so that now [£y : k(8°)] is finite and will in fact be the order of our cover.

. P
In particular, there is a cover § —— S completing the diagram

#5571(0) is just several copies of Xo.
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tj — B;)
evaluation o
k(S) - ~ k(tl, 5 N) T’
p*
k() = o
where k(S) is just k(t1,... ,tx) with some algebraic functions of the {t;}
(e.g., 2v/t1 — t3) adjoined. (This also explains the necessity of the cover, to

€s
make these functions well-defined.) In fact evaluation maps k(S) — C are
possible for every s € S, simply by taking ¢; — (] and choosing appropriate
branches for the algebraic functions. Denote the image by £g; it is isomorphic
for s very general (and obviously for s = 0 ), as is e, in the following diagram:

CENZn,. .., Zn) <2 k(S Zn,e s\ Zn) > U4(Z0,. .. | Zn) — C(P")

(C(')E) SU— k(:\?)

\4

G es(ks) . C(X,).

Given the original rational functions { Nzoa} € lo(Z1,...,Zy) it is now clear
that the isomorphism eg yields {Fj,} € k(X) < C(X) as desired. However
these functions may have “vertical” zeroes and poles due to the behavior
of “coefficients”€ k(S) (including the above functions of {t;}), and so the
bottom ey is not functorial as far as the tame symbol is concerned, until we
omit the (finitely many) Zariski-closed subsets of S over which this happens.

The result is still denoted by X — S.

4.3.2. Development of the infinitesimal invariant VR¢ . We now
consider established the existence of {F} € ker(Tame) on this new X, giving
by fiberwise restriction {f;} € ker(Tame) C KM (C(X,)). There are corre-
sponding regulator currents Ry € T'(’ D},—l) generating by fiberwise pullback
vk, Br = Rg, € T('DY.Y). Writing V = Vg C X and V, = Vg, = V N X,,
we want to differentiate the periods of Rg, on cycles Cs C X\ V5. Note
that Rg, is not even d-closed on X \ Vs (i.e. as a current in the complex
,D(.XS\VS)“’)’ but can be made so without chaging the periods € C/Q(n) as
follows: trivially by dimension Q¢, = A" dlogfs = 0, so there exists (as in

§2.2.1) Ry = Ry, + (2m')"a(jls v,y Tt. This is what we must lift to differen-

tiate periods, to some kind of Rgp. While this is impossible globally on X
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(see below), it is possible to construct R on 7~ (U) =: Xy C X ford C S
a small acyclic neighborhood of 0.

Indeed for U sufficiently small there is a relative homeomorphism (A, Vi) ~
(Xo xU,Vp xU) under which the image of Ty N Ay is homologous to Ty, x U
(which is homologous to zero) mod (XoxdU)U(VyxU); and so TpNAXy ~ 0
mod Xy U V. Alternatively one could consider Qp = A" dlogF on A, \ Vi
as a closed (holomorphic) n-form with?6 /fQp = Qg = 0 and note that [1]]
factors (ignoring Hodge type)

1%

H" (X \ Vi) = H"((Xo \ Vo) xU) = H" (X \ Vo) x H'(U) — H"(Xo \ Vo);
therefore [Qdp] = 0 as a class in H™(AXy \ Vir). (This is a naive use of the
rigidity of H},p.) Since on Ay \ Vi (in fact on X\ V) d[Rp] = QF — (27)" T,
we see that [Tr] = 0 in H,(Xy, Viy U Xay).

Either way we have a chain 9~ Ty whose boundary is TF, plus stuff on
Vi U Xgy; and writing Ry := Rp + (27i)"0~ Ty we have an (n — 1)-current
on Ay, which on Ay \ Vi has coboundary d[Rg] = Qp.

Now let {Cs}seue be a continuous family of (n — 1)-cycles on X\ V and

e =uUn{t;=p)|Vj#i} CU
be “disks” with holomorphic tangent vectors {9/0t;}. Noting that for s € U

/ Ry, E/ R, :/ (5] RE mod Z(n)
s Cs Cs

and denoting by [0, €]; (with endpoint ;) a simple path in ; from t; = (32
to B + €, we may differentiate periods

. 8 T 1 ' /
(Va/atins)s:o (Co) := <8_tz /cs Rfs>so - lg% ¢ ( Cei e /CO RF)

1 1 —
= lim — d[Rp] = lim - Qp = / LX, <8/8ti, /\dlogF> ,
C[O,f]i Co

e—0 € C[O,e]i e—0 €

—~

where the interior product with 0/0¢; is being taken away from V;,. We ask:
in what sense is it valid to write

VR, =Y d,00, <<§75ti, /\dlogF>

— in particular, where does the L’;/g—part live? We can do better than the

cohomology of X \ V.
Up to this point we have not used the fact that {F € ker(Tame) on
X. Recall that the map KM(C(X)) — I‘(F”’D%) given by sending {F} —

261t’s worth emphsizing the difference between the pullback 1iQp € HO(Q;}S) (which
must be zero as dim X; = n — 1) and the restriction Qp |X$ € H°(Q% ® Ox,) which is
not zero.
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Qqp) (:= QF for any representative F) is well-defined, and also that d[Qg}] =
QTame({F) Which in this case is zero on X. So Qp = N\" dlogF is a d-closed
current on X', and in fact using an argument like that in §1.3.3 one can show
it is a holomorphic n-form there. However, the extension of {F} to X is not

in ker(Tame) and so the current Qg is not closed on the compact X'; therefore
the corresponding holomorphic form on X may have residues along the “bad”
fibers and the line of reasoning in §1.3.3 does not show A" dlogF = 0. The
reason ker(Tamel') is enough to work with here, is that Qg has no higher
codimension residues (unlike Rp).

Now % <(9//79/tl,A" dlogF> gives a section of R;.TQZZSI if A" dlogF is
holomorphic on X'; alternately one could use closedness of Qp to prove di-
rectly the weaker statement, that ¢% <8/ ot;, QF> can be replaced by a holo-

morphic (n — 1)-form on X as far as its periods on Cs C X, \ V5 (indeed
on any cycle on X;) are concerned. This is done simply by checking that
it is a d-closed element of F(F”‘“D};l), by integrating against da (for

a € D(Qy)~)) and a1 € ZO(FIQ?);SQ)OO) li.e., dag = 0]:

/Xoa/\d[<6//v6ti,ﬁp>] — /XO da/\<<§78/ti,QF> — g%% . da A Qp

1
= lim — / a d[QF] + / ae N\ Qfs — / ap A\ Qfo
e—0 € X[O,e] X Xo

i

which is 0 (d[QF] = 0, Qfs = Qfo = 0) and

n n
—— 1
/ ar A ( 0/0t;, [\ dlogF ) = lim = / a A\ dlogF = 0
Xo o Ho,e1; S

because A&y, can only support n dz’s.
So differentiating the periods fc Re, gives rise to a section

S dt @k, <5/\8/ti, QF> of Qf®R) YL QLeRC

and it is fair to ask whether this goes to zero under the map
1 -1 2 -1
Qs® Ry C— Qs Ry C

This is what we will prove; the weaker statement that it goes to zero under
the map of graded pieces

Vi
QR QU — QL®RL O
xS S xS

then follows automatically.
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4.3.3. Killing the infinitesimal invariant. (Rigidity). The present
situation is summarized by the diagram (over U)

n
ve =Y dt; ® ik, < 9/0t;, [\ dlogF > — ?
0L n—1lqm—1 v 02 n—l
S" ® f HXS > S ® HXS
Wil - Q5 @ H - Qs e H
R;-s — HVR;_S " — 0

where the question arises from the fact that v (which is mapping verti-
cally to VR;-S) is not given by differentiating periods of something on Xj.
The question would be resolved if we could show that the right-hand vertical
map is “almost injective” in the sense that

K= ker {H"'(X,,C) — H" (X, \ V;,C)} = im{H}, '(X,,C) - H" ' (X,,0)}
is just
im {H""Y(P",C) - H" 1(X,,0)} .

Then since?” v, € Q‘lg QHY L and Vu, € Q% ® Ks (by the diagram),

Xs’pr,
2 n—1 o 2 n—1 _ 2 n—1
VVS € QS ®HXs,pT — QS~®HXS,U(W = QS~®HX5 /ICS

must be zero.?® Note that the statement about K, is equivalent to the

statement regarding cycles that the natural injection
im {anl(Xs \ V57 Q) - anl(st@)} — ker {anl(Xsy Q) - anl(]pna@)}

*"Assuming n odd (so there’s an issue), a form gives a class in Hj ™' (X, C) if it
integrates to zero on cycles in the (1-dimensional) image of Hn+1(P", Q) — H,—1(X;, Q).
Since this image is spanned by the cycle X r]IP’"TJr1 , trivially by Hodge theory a holomorphic
form ws (like ¢X, <8/8ti,/\" dlogF>) must be “primitive”. The new cohomology class
[Vosor;ws] € F""2H"™'(X,,C) obtained by differentiating its periods is also primitive,
since

19} 19}
/ n+1 Va/atjws = nt1 Ws = 87(0) =0.
XNP J

2 8tj XNP 2

*8This is also clear in principle from the fact that A" dlogF is closed (as a current on
X). We have chosen this kind of argument because we have to deal with K, in any case!
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is an equality. In words: for a very general hypersurface in P (of sufficiently
high degree, as we shall see), one can still “get” all the “interesting” cycles
even if they have to avoid an arbitrary configuration of divisors.
So it is left to show that
?
(Ks =)im {Hy,(X,,C) — H"1(X,,0)} = im {H"'(P",C) - H" *(X,,C)}

for all s in some Zariski-open subset of S (which as usual we rename ).
For s very general (say, = 0) we know that we can choose a small analytic
neighborhood (say, U) where for all s € U the relative situation (X, V)
is topologically identical to that at s = 0. As the above equality is an
“algebraic” matter, if it holds on U then it holds on a Zariski-open set D U.
So we will prove it on U, assuming that Kx, > 0 (that is, D > n 4+ 1), in
order that HO(Q%") = HY(Qf.(dlogX)) = HO(Kpn(D)) = SP==1 £ {0}.
Otherwise already vs = 0 (= VR; =0) and we don’t need this result.2?

Now we make two key observations about the left-hand image K: the
first is that it is generated over Q (one could just change C to Q and tensor
by C on the outside), and so one may choose a local basis of rational sections

{o}} eTWU,RY'Q)  for T(U,Ks).

These are necessarily flat (Voy, € 9}, ® RP7'C are zero), essentially by local
rigidity of periods € Q. The second observation is that, since V; C X is
codimension 1, its cohomology has image K, C F'H" '(X,,C). Putting
these together, we find that the {0y} are sections over U of

Vv
ker { FIHYT — (FOHY' @ QL

Taking the quotient by im { H"~!(P",C) — H"~'(X,, C)} gives sections {oy yar }
of the middle sheaf in the short exact sequence

v \Y
0— ker ¢ FPHY L, — FIHY L, ©Q5 b s ker ¢ FIHY L — (FOHY L, ® Q%
Va
— ker ¢ GreHy L, — GrEHy L, ©Q% 4 —0.

Since D > n+1, §4.2.5 applies to show that @(1) isinjective, and the last term
is zero (and {0 e} pulls up to the first term). Now one simply increases
all the F and Grz superscripts by 1, writes this out again with {0 yer } in

*9which in fact fails without the degree bound (D > n +1). For instance, a “general”
quadric surface C P3=" is birational to P! x P!, and removing the divisors {0} x P! and
P! x {0} from this eliminates H» completely.



4.3. THE VANISHING THEOREM IN CODIMENSION 1 162

the middle and repeats the bootstrapping procedure. This contlnues using
injectivity of V( ) V( 3), etc. until {0 yqr } winds up in Fz ’HX or N R Q

for n even or F 2 7—[” i}ar Ry 1Q for n odd, which are zero. So there is

only one oy (as they were a basis) and it was in I' (I, im {Hp.* — ’H};l )-
This completes the proof that Vvg =0 on S for all degrees D.
So in particular v, gives a section of
ker{V(n 1) Ql®.7:n ern ' )_>QQ®GT HX var}’

Xs(,var

which was shown to be zero in the last section for (n—1)(D—1) > 3. Recalling
that this argument was valid for D > n+1, and that we had trivially vs = 0
for D < n 4+ 1, wee see that it is possible to have vg # 0 only if D > n + 1
and (n — 1)(D — 1) < 2. For n > 2 the only solution to these inequalities is
n = 2, D = 3, the case of a family of elliptic curves. This establishes the first
result promised at the outset: that the infinitesimal invariant VRe, = 0 for
any section {f;} € ker(Tame) C KM (C(X,)) over [a cover of a Zariski-open
subset of] a complete linear family of hypersurfaces C P™ [elliptic curves in
P? excepted].?® So the regulator image f(.) Re, in H" (X, \ Vs, C/Q(n)) is
flat (the periods are constant), but that’s all;3' indeed this tells us nothing
about the image of the regulator on the {fy} € ker(Tame) C KM (C(Xy)) we
started from. So we start over with the stronger criterion on {fy} and give
a very brisk, but at this point much easier, argument.

4.3.4. Vanishing argument for KM (X). Let f; be a “good” repre-
sentative of any class in KM(X,) € KM(C(Xy)) so that 7, is the generic
(=codimension 0) component of a (Jp-closed) higher Chow cycle I'y € Z"(Xo,n).
The pair (fy,Ty) then spreads to (F,T) on X — S as before, where T' €
Z™MX,n) is dp-closed (but its closure on X is not). Writing 7% for compo-
nents of codimension > 1, this gives by restriction a family of higher Chow
cycles

Ty =%, + )7 (Z supp(mx;, (74)) =: Vs>

i>1
giving rise to currents
Rr,=Re, +> Ry, d[Rr,] = —(2mi)" T,
i>1
(so that one has R}, d-closed) since Qr, = 0 by type considerations (on

Xs). In fact on 2\?, also by type, the current Qf has no codimension > 1
“components”; so Qn = Qp = A" dlogF, which is once again holomorphic on

3%In this case Collino has constructed a family f; with infinitesimal invariant he shows
to be zero by means of thetanulls.

*'For a monodromy argument we need [Re,] € im {H" '(X,) - H" (X, \ Vi)}
(already true for n = 2,3 but we are working more generally).
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X with possible poles on X. It has trivial class locally, e.g. over U, so that
on Xy one can write a R’f with

vk, R = Rp, d[Rf] = /\ dlogF

for all s € U.
Lifting f; to I's has saved us from the headache of working away from

V. There are actually two lifts going on here: since {f;} € KM(X,) C

K'(C(X,)) the class [Re,] € im { H" (X, C/Q(n)) — H" (X, \ V5, C/Q(n)) } ;

[Rr,] € H"'(X,,C/Q(n)) gives a global lift over S, of which [R} ] €
H" Y(X,,C) is a local lift, e.g. over U. However, it may be analytically
continued to a “multivalued section” over all of S , and one can look at its
monodromy in H" ™' (X,, Q(n)).

Before doing this we show locally that [R}. ] is flat, i.e. VR, = 0. Since
d[RL] = A" dlogF we have as before3?

n
VR, = Zdti ® <6/6ti, /\dlogF> € ker {Qg ® ~7:n_17-£§(:1 N Q?é ® Griv-

which is zero except for n = 2, D = 3 by Donagi-Green.
Describing monodromy by the map

p: 7T1(5,0) — Aut {Hn_l(Xo,(C)} s
we note the difference of classes
p(e)[Rp,] — [Rp,] € H"'(Xo,Q(n))

since they both go to the same [Rr,] € H" 1(X0,C/Q(n)). Now recall that

if o goes around a divisor in S\ S over which X, acquires a node ([Rp,] need
not be defined there), we may speak of the vanishing cycle 6 € H,_1(Xy, Q)
associated to «, whose “flat transport” to the nodal X is homologous to zero.
It is a fact that such ¢ span ker {H,,_1(Xo,Q) — H,_1(P",Q)}; let {d;} be
a basis (with associated loops ;) and {8;} a dual basis®® for H™ (Xy, Q),
which one easily lifts to H,!(Xo, Q).

Since [Ry ] is flat, the Picard-Lefschetz formula (see [L1] or [GH]) ap-
plies to compute

pla(rp,] - 4, ] = = ( [ ) 6.

3

Combined with the above this gives immediately
[ R € Q). 0 € ke {Hu (X0, @) — Haa(P, Q)

32In fact this is better than before, as we may skip all the IC; business: VRr, is V
of something in H% "
33that is, fé- Sj = di;.

Z/Hn—Z

Xs,var

3
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which is to say
[Br] € im {H"™(P",C/Q(n)) — H""(Xo,C/Q(n))} ;
and so (except for n =2, D = 3)
[Re,) =0 € H" H(Xo \ Vo, C/Q(n)),

since the composition H" }(P") — H" }(X,) — H" (X, \ V4) is zero.

This proves the vanishing theorem in codimension 1. One striking conse-
quence is that, if {fo}, {f,} € KM(C(Xy)) have all the same Res’ then they
have the same regulator image in H"~1(X, \ Vo, C/Q(n)) (because their dif-
ference is in KM (Xp)); so residues determine the image. By the earlier
result they are also rigid in the family if Res' vanishes. This makes one
wonder if there are geometrically constructible examples (on arithmetically
uninteresting Xy at dimension > 3) of regulator currents with interesting
[polylogarithmic| higher residues?

4.4. The Vanishing Theorem in Codimension 2

4.4.1. Extending the Koszul complex to capture H°(Q}). Let Y
be a fixed smooth projective hypersurface (of degree Dy) in P"*! and let
L = Oy(Dx) be very ample.?* Consider the family3®

X—-S8 C PHY,L)
Zar. op.

of smooth hypersurfaces X (with dimension still = n — 1). We will prove
the vanishing of the holomorphic regulator image for a very general member
of this family provided L > 0. Although X, is a complete intersection
C P! of multidegree (Dy, D), we do not also vary Y in the family. And
so this result does not belong to §4.5, where we consider, say, the family of
all complete intersections of multidegree (Dy, Dx). Moreover, while we do
not produce concrete (lower) degree bounds on Dx (to quantify “L > ("),
one can obtain such bounds and they are quite high. It may be that the
methods employed were not optimal, or it could be a result of examining a
subfamily of the complete family of §4.5 (doubtful, but it would interesting
from the geometric-constructive perspective mentioned on §4.1.1).
In a picture our situation is

34The notation L > 0 (or “for L sufficiently ample”) will always mean simply “for Dx
sufficiently large”.
35(we no longer differentiate between X — S and X — S.)
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XY y—yxs By cprtt

S
Unlike P", Y may have interesting H™?, and (as we shall see) the right
Koszul complex to use for the infinitesimal invariant does not begin with
’H}:l’o ® Q% but with H°(Q%) ® Os. We begin by introducing the first map
'V in the complex, which links these two sheaves and “precedes” the Gauss-
Manin maps, and which corresponds to cupping with a “gradient” instead of
the Kodaira-Spencer class. Define 'V as the composition

Ry s = Os @ H'(Qy)

f
Py |
I\=
R Q% | v
I
Uy |
¥
Ry O — Ry Q50 Qs

where « is given by considering once again the short exact sequences used
in defining the spectral sequence for V

L% - 9% -0 L2Q% = L10% = QY s @ 10,

L0 — L2} — QY L @03,
and building out of them the standard construction for exact A’s (or as close

as we can get)

Ry L1y === R7 Q%

I
4
v
— Ry L'Q% — Ry Q45 © Qs = Ry L20% —
ANAANAAAAAANAA
o

\%

- Ry L% — Ry Q% 2008 -
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which both defines o and shows the composition V o = 0, and therefore
V o'V = 0. We shall often omit p}- and write 'V = a o /% (i.e. identify a
form on Y with its pullback to ¥ x S).

Note that it is possible to define a ’v@) on L ® HO(Q%) analogously by
writing down the long exact sequences derived from

O St =0, 03T 5 L2058 5 QY L e g,
obtaining
az: Ry Q3 — RY Q%0 @ QF;
and then using

*)l n Y n+1 L n+1
WQS(X)Q)J/S—)Q)J _>QX

to induce

vy Qs @ Ry QY5 — Ry QY
we have the composition

/@(2) =q@golly: Q}g ® R?r* SL,/S — Q?g ® R?r*QKf/é
To define the gradient, which gives locally a map
05, — H°(Xo,Nx,v)

describing how X moves in Y, consider the “exact square” (where intuitively
((X/S — Xs77 and ((y/S — Y”)

XS .
aic/s * - 0% - 05
i [Lf] =]
Y
Px '

B s &= e ==

[bar]

~ Y
Nix/s)/wss) — Nayy

of vector fields with support on &X', where we write |y instead of® Oy. With-

out the backwards dotted arrows (this splitting is given unambiguously by

the product structure) this diagram commutes. Some directions commute

even then: i = py o 1] o L*X/S, so that [bar] o pY o [1] o /% =0 and

[bar| op*Y o [Lf] o qi1 : 77*9‘18 — N(X/S)/(y/s)

1

is a well-defined map of sheaves (even though ¢+ is ambiguous). Taking

R? this induces a map of sheaves on S

05 — Ry Nx/s))v/s)
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given locally by
8/8751 — pf(a/atz) =: Hi
which gives the desired gradient; this may be thought of as a section

grad(X;) € Q5 ® RY_ Nx/s)/(v/s)

which maps by the obvious connecting homomorphism to the Kodaira-Spencer
class

1(Xs) € Q5 ® Ry Oy s

It is easy to see that 'V is given by cup product with grad(Xj), so that we
may write locally3

Yy (Z fz(t) ® w@) = Zfi(t)dtj ® <9;c ,wg}
: ij

for f; € H°(Og) [C C(S)] and (a fixed basis) {w} -} € H(Q}).

Xt >X/S

CONCLUSION. In particular, this 'V is Og-linear like V (the f; don’t get
differentiated).

REMARK 4.4.1. This all looks more obvious if we rewrite the 9/9t; — 6F
map (using Kodaira vanishing for L sufficiently ample)

(05, =) TePH (Y, L) — H°(Xy,L|x,) = H*(Y, L) /im¢ H%(Oy)
which in case Y = P, L = Oy (D) gives back the familiar isomorphism
(observing that imy is given by multiplication by F})

T, PH(P",0O(D)) — SP /(F}) .
For reference we remind the reader that Kodaira vanishing says:

HY Q) (Dx)) =0 for

(Serre duality)
(@) D, >0 and ¢ >0 = (') D, <0 and ¢<n| or

(b) Dy >0 and p+q>n | = () D, <0 and p+q<n].

3with f;(s) = fi(t1,...,tn) = f(t); also, we have written X'/S to emphasize that
the interior product takes place entirely vertically (on X; C Y) and so naturally yields

a section of ’H}:l’o, without taking % s afterwards.
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4.4.2. Killing the infinitesimal invariant. So far we have shown:

'V \Y%
Os @ H'(OF) — Qs @ F" "Wy b — QZe@Gry *Hy ' —
is a complex of sheaves on S, where all the maps are Og-linear (given by
cup product with grad and n respectively).

LEMMA 4.4.2. This is exact at the middle term for L > 0.

(We will prove this at the end of the section.) Now if {fo} € KM (Xj) for
0 very general, then as in §4.3 we may “spread” to obtain: {F} € KM(X),
Rr € F('D?\fl) restricting to R on 7y, and to Rg, on nx,, and local lifts
(say, on a ball in §) R} having d[R}] = A" dlogF holomorphic (and closed)
on X. So

n
Ve 1= HVRIFt n_ Zdt] (34 [’}/S <8/8tj, /\legF>

gives a section of>”

v
ker | Qs @ F* M — QE@ FPRHAT ) C

\Y 'V
ker | Qs @ 7" ' HE — Q5@ Gy PHY | =im [ Os @ HO(Q}) — Qs @ PP HY
i.e. we get only that

Vg = 'V (Z fz(t) X w@) R

So we must refine our analysis a bit further to show it vanishes.
Consider the (not necessarily commutative) diagram of sheaves

Iv _ V(O,l)
H () ® 0s — HY, @ Q%

H @ 0

d v(5.0) (%)

!

Voo
HO(Qp) ® Q% — HY, 002

where V : .7:"_1’7’-[};1 Q0L — .7:"_2’7’-[};1 ® % may be split unambiguously

(0,1)

by the principle of two types, and V is exactly equivalent to V ; moreover

d is given by simply
Zfi@)w%} — dei®w§/.
i i

37see §4.3.4 (the details are the same).
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We want to prove that (x) commutes.
It is clear from the definition of V (= V(1) 4+ V1.0)) that

R) Q% RY 3t

« Qa9 ()
fnlenfl ® Ql _V> ‘7;-71,72/}_[71,71 ® QZ
Xt S Xt S

commutes®® (but note that the image of the composition is in .7:”*17{?(:1 ®
0%!). Consider wy[®1] € H(Q}) ® Os in (%), where wy € H(Q}) is a
fixed form on Y (or Y x S, omitting p}-); then by construction of 'V, we
have 'V (wy) = a0 % (wy) where t% (wy) is a section of R? Q% in (*x). The
top row of (*) being exact,

V19 6"V (wy) = Vo'V(wy) = Voa((wy)) = as (d{(wy)})

=ay (ty(dwy)) =0

%A Note on (**): Although it seems straightforward that V is computed by d,
a subtlety worth mention comes up in formally proving this. The composition V o «

is computed by the composition (where RZ Q%[—n] = R2 Q% and ]R;L:'lﬂz,(_/?szn_2 =

RTIQ3L 1)

R"C'QL[—n R"Q%L[—n
x[—nl x[—nl ~
N
AN
N
Rn£29n nplAn 1 nen—1 \
Y[—n] =& R"LQ%[-n] — Qg ®R Qx/s[_n] \
\
d
Rn£2Q:YZn RnEIQ:VZn Q; ®RnQ:\)—/an—1 9 R’n+1£2Q:YZn \
\
\

v

n+l,r2~e>n 2 n+le—2>n—2
R™MTIL2QT — 0F @RI P

In particular, Q%[-n] is not Q:YZ", while QK,;é[—n] is Q:\f/‘lsznfl. A representative of

R*"Q%[-n] = R?,* Q% is a d-closed holomorphic n-form on X (quasi-projective), while a rep-
resentative of R Q:\,Z" would be d-closed (which we do not want). The main point here is that
since Q:YZ", Llﬁ:\?n, etc. are resolved by (p,q)-forms with p > n, and total differential d (not

as for Q%!), 0 is computed by taking d. (The remainder is straightforward.)
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(Y is compact so wy is closed). It is trivial that the other direction 'V o d
in (*) on wy ® 1, is 0. Now immediately this implies

VEDIN (08 wh a) @ fi | = D (08, wilx, ) @ dfs
i,j i,j
so that the last equality in

Vod(Mwhefi) ="V (Zwmdﬁ) = > (0}, v lx) ®df;

0]

= v o'y (Z w%} ® fz‘)

holds, and the diagram (x) commutes.
Now since both pieces of V on vy are zero, in particular

0 = vy, = vk0 o'y (Z fi(t) ® wgf) ='Vod (Z fi(t) ® w@)

='V (del ®w§/> .

Assume for now the following
LEMMA 4.4.3. For L > 0,

.
\Y
HY(Q}) @ QY — /H?(:l’o ® 0% s injective.

Then for L > 0, Zl df; ® wi, = 0; and since {w! } was a basis, df; =0
(Vi) and so Y fi ® wi = 1 ® wy for some wy € HY(Q}). We now have

Vg = Iv((ﬂy) 3

or alternately, noticing that v is just a (A" dlogF),

n
« (/\ dlogF — L}u}y) = 0.

Using the diagram with exact rows
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(0 —=)R7 L1O% Ry %

Ly — 0575 © D

(0 —)R7, L2

(0 =)Ry L% —— Ry L% —— |R) Q4 20 0%

(0 )R L1Q% —— Ry L2 —— | Ry Q55 © O3

etc.
where the boxed terms are zero (Lefschetz hyperplane —- R?r* Q’f\, /s = 0

for 0 < k < n — 1) and in which we continue until we reach £"Q% = 7*Q%,
one sees that ker(a) = Q% and so (for some (s € H(Q%))

/\dlogF = Lywy + 7(s in H(Q%).
Moreover
n
/\ dlogF € F"H"(X,C) N H"(X,Z(n))

and it is easy to show that [7*](s, and therefore t%wy, has Q(n)-periods as
well.

To see this, let 8 be a form representing the hyperplane class [H] €
HY'(Y,Z) (e.g. the Fubini-Study form); noting that [y t%,6""" = DxDy
and "' Awy = 0 (by type), we have for C € Z,(S)

DXDY/CS = /CS'W*L}}ﬁn_I = / s A B!
c c —1(C)NnX

= / (7" (s + thwy) Ak = / B /\dlogF € Z(n)
r=1(C)nx = H(C)nXNpyt(HP 1)

(where py' (H* 1) = pi (Y N P?) = (Y NP?) x S is the pullback of the
intersection of n — 1 hyperplanes in Y') and so [, (s € Q(n), and
tywy € FTH"(X,C) N H"(X,Q(n)).
Now since ¢y, : H}Y — 9}1, is obviously surjective on tangent planes, and
by Lemma 1.3.7 (and the remark immediately following it) applied to X', we
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have3?

Ly F"H"(Xx,C)
0/0On 0On :
HAOy) = HAY) = S i (%, 0m)

and with the above this = wy =0, or

J\ dlogF = 7*(s € ker(a)

and the infinitesimal invariant v vanishes.

The monodromy argument is the same as in §4.3.4 and the vanishing
theorem holds (for L > 0, i.e. Dx sufficiently large) since the vanishing
cycles for the family span?

ker (Hn—l(X(]a Q) - Hn—l(Y, @)) = ker (Hn—l(Xﬂa Q) - Hn—l(Pn+17 Q)) .

4.4.3. Pseudo-Jacobi ideals and Macaulay duality. In order to
control the exactness of the sequences in the two Lemmas above, we need
an analogue (for more general Y) of the polynomial representation of the
graded pieces of ’H};lpr for Y = P™. The Jacobi ideals used in that case in-
volved derivatives of F, € H°(P", O(D)), and so we start by “differentiating”
F, € H(Y,L). In fact, following [GG4] let Sy, be the sheaf of 1st-order
differential operators on (local) sections of L; it fits in an exact sequence

0— Oy — Sy, — 03 — 0.

If locally on U C'Y we have 6 € Sy 1 (U) — v € 0L (U), f € Oy (U) and
A € H°(U, L) then one has a new section of L by §(\) or

0(f-X) = v(f)- A+ f-0(N),

and ¢ is Oy-linear if v = 0 (and may be represented by multiplication
with ¢ € Oy (U)). One also encounters in this setting the notation P)I/, L=
1st jet bundle := E}v,,L ® L.

For Y =P", L. = Opn(D), one computes

Spuoy = H'(P",0(1))" @ O(1).

Here one should think of O(1) as the dual of the tautological bundle, so that
sections are linear functionals*! (such as 3 b;z;), their duals linear differen-
tial operators (on these functionals, taking them to C, e.g. > Ciaizi)' A global

section of Xpn o(p) is thus of the form > aijzja%iv which indeed operates on

39assuming X is smooth; but even if it’s not, one can get around this by a resolution-

of-singularities argument.

“0(y has only interesting nth homology, by Lefschetz hyperplane)

41q priori on the fiber, but global sections turn out to be linear functionals on all of
C"™! (and this is what we have in mind).
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sections F € H°(P",O(D)) = SP (to give another section 3 a;;z; 9L). One

o2
may sum up the actions of all such differential operators on F' by

oF n
AF =3 o @ds H' (o0 - 1) @ HE",01))")
(3
= H(O(D) ® E[\P/””,(’)(D)) = HO(P]%",(’)(D))'

To obtain the Jacobi ideal in S¥ one simply lets Ypn o(r) operate on F'
to get a map

F € H'(P",O(D))

H® (Spno(py ® O(E — D)) — H’ (O(D) ® O(E — D))
= H(Opn(E)) = SF;
the image is Jl{? = (g—f;, - ,83712) . This map may be interpreted as U dF'.

The situation is completely analogous for Y, L, £ (£ any coherent ana-
lytic sheaf on Y): J& is just the image of
F e HYY,L)
H Sy, @@L — HY(L®E® L) =HYY,E)
and is called the pseudo-Jacobi ideal.*? One has the following “Macaulay
duality”

THEOREM. (Green [Gr2|) If L >0 anda+b=mn+1,
H(@Qy oL HYQyeL) | H(Q)% oL
n a n n 2 n+1
Tt Jprert g
is a perfect pairing (more generally one could pair EQL® and (%)2REVRLY),
i.e. the tensor factors are dual.
. .. . kD—n—1
This specializes (for Y = P", L = O(D)) to the duality between R}~ "

and Rgl_kH)D_n_l induced by Serre duality H" Fk-1(X) = HF-Ln=k(X)
and the isomorphisms of §4.2.

12

C

4.4.4. Proof of the algebraic lemmas. Now we prove Lemmas (4.4.2)
and (4.4.3), remarking that while one may compute lower bounds on the de-
gree Dx (rather than just L > 0) for which they hold, we do not know
whether our methods*® give optimal lower bounds and we do not produce

*2This is also written as U with dF € H°(ZY., ® L) = H°(Py.1).

*30ne needs to use the “hard” Bott vanishing theorem (see [KS]):

q=0 and Dx >p
HY(QF,,1(Dx)) =0 unless g=n+1and Dx <p—n-—1
p=q and Dx =0
together with Kodaira vanishing and various long exact sequences to establish for exactly

which Dx we have H?(Q}.(Dx)) = 0. Then this would be used to quantify L > 0 in the
various instances where a step holds for L sufficiently ample.
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them here. We shall refer freely to theorems and lemmas in [Gr2| (using
G(#.#)) in what follows, with the caveat that our n is his n + 1.

For lemma (4.4.2), since the maps in the sequences of sheaves are Og-
linear, and we already have V o’V = 0, it suffices to show ker V C im'V at
s = 0. This is what we shall mean henceforth by “middle-exactness”. From
Remark (4.4.1) we have H*(Y, L) — 05, or Q% — H°(Y,L)"; and to get
middle-exactness of the top row in

[Os,,@H(QF) 05, ® HO(O% ") 050 @ H' (O )

o

NH (Y, L)Y @ H' (2% %)

|

H' (%%

H°(Qy)

H°(Y,L)" @ HO(Q% )

HO Qn—l
(©}) mv. D) o — ()

2
— N\H(Y, L)Y ®

imHO(QY ! @ Ox,) imH (0% % ® Ox,)

it suffices to check it at the bottom. In particular imH°(Q% ' ® Ox,) = 0
for L > 0 by using Kodaira + Serre on the right-hand term of

S H(Q ' oL ™) - HYQF Y - HY(QV ' @ O0x,) » HY(QV '@ L) —
and noting that H(Q% 1) =0 (dimY = n).
To dualize the bottom row we use Lemmas G(1.16) and G(1.8), advising

the reader again that Green’s dim X = n rather than n — 1 (so we are using
the case p = n there); namely that

n— v n— -
. H'(Q%.%) . H(Q% ' ® L")
imH(Q) 2@ Ox,) imH(Q% ' ® () ® L~1) @ L"2)

 (ker { B2} 2 © Ox,) - HZ(QX))”_ZDV “0

and
0 HO(Q};I) v - HU(QT)L(EI ® Lnfl)
imHO(Q% ' ® Ox,) imHO(QY ' @ (0L ® L~) @ L")

o (ker {H' (@ @ Ox,) = H' (@3, H}) 0

are exact for L > 0. The desired dualization is then the first row of
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HO(Y, Qn ®Ln+1) HO(QT;{*l ® Ln—1 2 HO(QT;{*l Q@ L2
Qx"/gll"“ — H(YD® o(Qnr-1 On—l 1 N /\HO(Y’ be—- o(Qn-1 On—z 1 -1
I imHY( %, ® L ®0y @ L™") imHO( %, QL ®0y @ L~
H +more +more
4 H
HO(Qp @ L™t o HO(QD @ L™) N HO(Q2 @ L™ 1)
QpeLrt! H(Y,L)® OLeL" AN, L) @ T areLr-t
Jp I IpY¥
T 2
HOQF @ L") «—+«—— HO(Y,L) @ HO(QF ® L") NH(Y,L) ® HO(QF @ L™7T)
[ U
n nt1 ? n n 2 n n—1
JEeLt HO(Y, L) @ Ty ©F < NH(v, L) 2 T+ O

where the first row is middle-exact (ker D im) if (a) the 2nd-last row is and
(b) the questioned arrow is surjective. Noting that Qf ® Ox, = Q"XEI ®L~!

(as L7t |y = ;’o/Y)’ to construct e.g. the top middle vertical arrow we
have used the commuting square

HO(Q% ® L™)

HOQ% o L")

J H'QF @ L"® (0 @ L))
Xo
H(O o L"oYy,® L™

HOQ ' @ L @6y @ L7);

while the top left term dualizes H°(Q}%) by Macaulay’s theorem.** Now

for (a) we refer to G(2.47), while for (b) using G(1.28) we are asking for
ima — imf in

H(Q} @ L' @ Sy,1) ® H(Y, L) G2 H°(Q} @ L" ® Sy 1)

o g

HAQY © 1) © HO(Y, L) ——gaogs HI(QF © L),

which is clear.

Similarly for Lemma (4.4.3) we arrive at a large “dualized” diagram (anal-
ogous to the above), whose last three rows are

4gince Jgg =0 for L > 0 using Kodaira + Serre on HO( Yy Ty L ® Lil).
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H Q@ L2 H@Qp @ L™ 4 g HO (@} © L")
Jg§®Ln+2 — H(Y.L)® J29®Ln+1 3 /\H ¥, L)® W

A A
A A

2
HY(Q% @ L™?) «— HO(Y,L) @ H'(Q5 @ L") «— A\ H(Y,L) @ H°(Q% ® L")

A

U U
+2 ? +1
L HOY, 1) & SOV

U

2
NE(Y.L)® J "

and we want to show ¢ surjective. Lemma G(2.47) shows the middle row is
middle-exact; it suffices to show (in addition to this) that both questioned
maps are surjective. The only new phenomenon here is the vertical one (so
that the upper left-hand term would be zero).

We must show (for L > 0) that

o gtz F e H'(Y,L)
T im {HY(OF @ LT @ By ) — HY(QL © L)

is all of HO(Q% ® L™*2). Noting that (as a vector bundle) Yy, has rank
n + 1(= rankfy + rankQOy), so that N2 Yy, = 0, we find that cupping
repeatedly with dF € HO(El\},L ® L) gives rise to a long-exact sequence

n+1 n
0= ASve@L o5 ASy 9L "= ... 55y ®L ! — Oy »0.
Tensoring this by Q% ® L™*? gives a sequence with terms

n—a-+1
F* =0} ® Lt @ /\ Xy, 0<a<mn+1 (0 otherwise).

By the hypercohomology trick (see footnote §4.2.2),
n—a+1

B =H'(F)=H' QoL Mo A Sy = EX=0;

since a + 1 > 0 in every term of F®, for L > 0 Kodaira vanishing —
Ef’b = 0 for b # 0. Therefore Ey must already be 0, and so (as E?H’O =0)
di : E™0 — E™TL0 must be surjective, which is what we want.
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4.5. Complete Intersections (Arbitrary Codimension)

4.5.1. Replacing X by a hypersurface Y. Let X be a smooth (n —
1)-dimensional subvariety of P"*" cut out by r+1 homogeneous polynomials

FyeSPo, ... FE.eS8Pr
in {z9,...,2r}; we can show (Fy,...,F,) as a section of
E = Opntr(Dy) & ... ® Opn+r(Dy)
with X as its zero set.*® projectivizing the fibers of E (as a vector bundle)

gives the projective bundle*® P(E) — P"*7; it contains a hypersurface Y C
P(E) with cohomology strongly related to that of X. Moreover, since it
is a hypersurface we can give a polynomial representation of its (primitive)
cohomology in the same spirit as in §4.2. Our original source for this material
was the exposition of Dimca’s work in [N].

The key is the following “toric” construction of P(E): let

m: U= C+tI\ {0} x CT'\{0} — PE)
(0 s2nir)  (@0seee )
be the quotient by this action of C* x C*:

tlfljg tllljr
(tlatZ)'(z0,~~~,zn-l—r;xO,---awr):<t230,~~~at2zn+r§tTo,“-atr
2 2

which is generated infinitesimally by
r n+r r
S 0 5 0 0
7=0 J =0 7=0 J
We also note that by the Leray-Hirsch theorem (see [BoT|)

H™(P(E)) = iﬂgi N H'(P"') @ HI (P")

with ring structure

H*(P(E)) = C[Z,X] /(Z””“, [Ix + D;-2)
§=0
where Z, X are generators for H*(P"*"), H*(P") respectively.
Now take Y to be the zero set of

F = F(z,x) = zoFy(z) + ... + . F.(2);
the zero set is clearly invariant under the C* x C*-action (although F is not).
Y has two kinds of fibers over P"*". Over z € X its fiber is all of P", as all
the Fj(z) are then zero. Otherwise (for z € P"*" \ X) F(z,x) is linear in
the {z;} and so the fiber of Y is a hyperplane P"~!. In a diagram
“5We assume all D; > 2 to avoid redundancy.

46This has dimension n + 2r, which will make our numbers different across the board
from those in [Nagel].



4.5. COMPLETE INTERSECTIONS (ARBITRARY CODIMENSION) 178

P(E) Y et pm

]P)n+r o X

L(X)=X xPr

We will show (following [N])that i : X x P" — Y induces
i HP2 (Y, C) — H™-Y(X,C) @ H¥ (P",C)
where
HI (YY) :=coker (H!(P(E)) - HY(Y)).
Consider the local systems R}, C, R C, and R?px)*(C = (R}.C)x. From

the above description of Y, since HY(P" 1) — H1(P") for g # 2r, we have

~ ~

R%.C «+— R}.C; while for ¢ = 2r, Riﬁ@ — R?;X)*(C = (Rg’;(C)X. Now

consider the Leray spectral sequences

PEPY := HP(P"*" R,.C) = HPTI(P(E),C
and

?EY? = HP(P"*",RL C) = HPYI(Y,C);
both degenerate at Fs, so that for instance

H" 2= 1(y,C) = @ HP(P"*", R _C).
p+g=n+2r—1

The proof that ¢* is an isomorphism then goes as follows: for p + g =
n+2r—1, q # 2r,

HP(P"" RS C) — HP(P"'",R%_C)
so that the only interesting Hyq,(Y) is found at ¢ = 2r:
H'2r=1(y,C) = ® coker { HP(P"*", RZ C) — HP(P"*", R% C)}

var
p+qg=n+2r—1
&~ coker {Hn—l (]P;n-i-r, R?)CC) — Hn—l(Pn-H“, Rii (C)}

= -1 2 -1 2
i—*> coker { H" (P"”,RP’;C) — H" (X, Rp’*"@)}

= coker {H" 1(P"*") » H" 1(X)} ® H* (P, C)
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~ fgr1(X,C) ® H* (P",C).

var

Since this isomorphism is induced by restriction it preserves periods of forms.
We shall write ¢ € H2(P",Z) for the generator of H*(P") so that, for [a] €
HM2r-1(Y) [i*a) N €27 € H, 1 (X) also has the same periods as [a].

var var

4.5.2. Polynomial representation of rational forms. By way of
analogy with §4.2, set

AGt = HY(CH2 2 Qo) A™ := rational m-forms on C""?"2

AP = AM(Y) := rational m-forms on P(E) with poles of order <k along Y
(and no other poles)

= H°(QF(p)(kY))
A™ = A™Y) = AT = HY(QF 5 (+Y)).

Recall that we used eigenvalues with respect to [d,z] (where 1z was
interior product with the euler vector field €) to extend the notion of degree
from polynomials Clzy,... ,z,] to A™. Here we will use eigenvalues with
respect to the (anti)commutators [d, iz | and [d, tz,] to define a bidegree on
A™ (including polynomials). To begin with,

degy(z;) - zj := [d,1a,]x; = d (€2, z)) + (€2, dzy)

=0+ <ZZZ ZD (L‘]a dxj> = —Dj-(IIj,

and similarly deg;(z;) = 1, deg;(z;) = 1, and degy(z;) = 0; so z; and z;
have, respectively, bidegrees (0,1) and (1, —Dj).
This gives a bigrading on the ring of polynomials: just as in §4.2 we had

Clzo, ..., zn] = ®S?, now

b
C[Z07"'7Zn+7“;m07"'7m7"] = ©S" ;

the bigrading corresponds to elements of Pic(P(E)) = Z? (while Pic(P") &
Z) via the divisors cut out by the bihomogeneous polynomials. For instance,
F has bidegree (1,0), i.e. F € S0 (and F* € §%9), and cuts out Y.

Now we show how to evaluate the bidegrees of some forms we will use:
defining

dz Adx:= dxg A...dzpsr Adzo AL . Ada, € A6L+27"+2,

we have

0 0 S
deg,(dz) - dz = d<Z Gig > D " o, dzg AL A dzn+r> + (€2, ddz(= 0))

=d) (-Dzidzg A Az A Adzpyy = (nt+r+1) - da
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and similarly

i
degy (dz) = 0, degy(dx) =7+ 1, degy(dx) = — 3Dy,
§=0

so that the bidegree of dz Adx is (r+1,n+7+1—> D;). We will need
the following two abstract computations for rational forms ¢ € A™ with
well-defined bidegree (i.e. “bihomogeneous”).

LEMMA 4.5.1. If (€5, (€1, p)) # 0 then it has the same bidegree as .

PROOF. (deg; (&, (€1,¢))) - (€2, (€1, ¢))
= d (&), (&, (81, o)) (= 0) + (&1,d (8, (€1, )

= — (€1, (€2,d (€1, p))) + (degy (€1, ) - (€1, (€1, ) (= 0)
= (€1, (€, (€1,dy))) (= 0) — (deg; v) (€1, (€2, ¢))

= (deg, @) - (€2, (€1, 9)) -
The only difference with deg, is that one should switch €; and e, at the
beginning (using (€2, (€1, 9)) = — (€1, (€2, ¥)))- O
LEMMA 4.5.2. For i = 1,2, if (€;,p) # 0 then it has the same bidegree
as ¢.

ProoF. The case of deg; (€;,¢), i = j, is easy and left to the reader.
On the other hand, ¢ # j is harder than Lemma 4.5.1. From

d (e, (€1, ) = —d (€1, (€, p))
we get
—(€2,d (€1, ¢)) + (degy (€1, p)) (€1, 0) = (€1,d (€2, p)) — (degy (€2, p)) (€2, )
and then
(€2, (€1,dp)) — (deg; ) (€2, ) + (degy (€1, ) (€1,p) =

— (€1, (€2, 9)) + (dega ) (€1, ) — (degy (€2, 0)) (€2, ) ;

the first terms cancel and

(degy (€1, ) — degy ) (€1, ) + (deg; (€2, ) — deg; p) (€2,) = 0.
Taking interior product with €5 gives
degy (€1,¢) = degy o if (€1,) #0

and with €

deg; (€2,0) = degyp if (é2,¢) #0
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An easy corollary of Lemma 4.5.1 is that the important (nozero) form
Q = (&,(&,dz Adx)) € AL

has the same bidegree (r +1, n4+r+1—->" D;) as dz A dx.

Now ¥ € A™ is invariant if deg; ¥ = deg, ¥ = 0 and an invariant ¥
“descends” (¥ = 7*w) to P(E) iff (¢1,¥) = (e2,¥) = 0 (i.e. if ¥ is also
horizontal). Clearly if P € S%°, ¥ = (PQ/Fk+7+1) € A2 has bidegree

(a-i—(r-i—l)—(k—l—r—l—l),b—i—(n-i—r—i—l—ZDj)—O)

- (a—k,b—{ZDj—(n+r+1)}).

So a W of this form (which is automatically horizontal as (€1,Q) = (€2, Q) =
0) is invariant, and thus satisfies ¥ = 7*w, iff

a=Fk and b= ZDj—(n+r+1) = deg(Kx) =: D(X).

So PQ/Fk+r+1 “descends” to AZI?:I if P e §kD(X).

Conversely, if ¥ = 7*w (€ A"?") for w € AZIZ:_I, ¥ is of the above
form by an argument somewhat more complicated than the corresponding
one in §4.2. Namely, set ¥g = FFH+10 € AMH?; sinceV is invariant (and
must have bidegree (0,0)), ¥ has bidegree (k 4+ r + 1,0); and since ¥ is
horizontal, (€1, V) = (€, ¥g) = 0. We need to define another “degree”
deg, , as eigenvalue of [dz, tg,]; this is not necessarily well-defined on Wy,
which we may have to break into “eigenpolynomials” ¥, (with the same
bidegree (k +r + 1,0) and horizontality). Now deg, , z; = degy ,dz; = 1,
deg, , z; = degy , dz; = 0; since Vg, has no denominator it is made up of
these, and in view of its bidegree must have at least one z; or dz;, so that
degy , Vo, > 0. Using the fact that [d.,.z] =0,

(k+7+1) (degy (Vo)) Yo, = degy (Vo) [z (&2, Toy) + (€2, Tppy)]
= deg1(‘1’0,7) <€27dz‘1’0,7> = (52,dz[deg1(‘1’0,7)‘1’0,7]>
= <€27 dZ [d (517 \I]U,’Y> + (517 d\IIO,“/H)

= (€,d, (€1,dWy)) = (€2, (€1,d.dz Vo))

and so, setting

— s c An+ r+2,
7Tkl Z degy (Vo) "
we can write
T - Vo (€2, (€1, 9))

T Fktr+1l T Fk+r+1
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Obviously the only possibility for ¢ € al™ "2 is Pdz A dx, and so ¥ =
PQ/FF7+1 In summary, we have worked out a polynomial representation

§EP0 s A (v)
PQ
P— s
Next we give a representation for dAZiET*I (Y)—I—AZI?T(Y) C AZL?:I(Y)
Namely, let*7
Jobo (26 OFOF OF\
0zp O0zZntr 0T oz,

and R“F’b = Sub /J%’b; then the claim is that under the above map,

[

TP Ay ARy,

If n e AZL?’"*I, mn = U = Uo/FF7 T, € AP 1 the exactly the
same argument as above expresses Wo as (€2, (€1, ¢)) where ¢ € ANTHH!

has bidegree (k + 7,0) by Lemma 4.5.1. Such a ¢ is necessarily of the form

n+r r
p = Z(—l)iQi(zaX)dZ(i) ANdx + Z(—l)jRj(z,x)dz A dx)
=0 j=0

where dz() = dzoA...A(i/,z\iA...Adzn+r, dx() = dxo/\.../\d/x\j/\.../\dx,«.

Now we shall differentiate ¥ in two steps. First, since ¢ has bidegree
(k + 7,0), ¢/F*™ has bidegree (0,0) and so does®® (&, %) by Lemma
4.5.2. So

R
:AO
~ (deg, &) (@) — (30 (8,555 ))
( < F F F
=0
Yt N
= (@@ d(Fm))) - (oo ) (% o)
/L ), Fdp—(k+r)dF Ae (e, (e1, Fdp — (k+r)dF A )
(o By Gl nrs)

“note OF/0x; = Fj(z)!
“8of course (&1, p) # 0 because (&, (€1, p)) = ¥o(# 0).
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Next we plug in the above formula for ¢ and

n+r r
= + — = + — .
de g . dz A dx ]Eo os,; dz A dx ( E o2 E os,; dz A dx

im0 9%
We get
(&0, (@1, F (X 9% £ 50 58 ) dz ndx — (k + 1)dF A (S(=1)'Qidz® A dx + X(~1)7dz A dx1) ) )
dv = i i
Fk+r+1
(o (e {F (292 5 25) - (S(-182Q: + S(-1)7 22 R;) } dz ndx) )
- Fk+r+1
(FP, — P5)Q
= Rl
where we have set P| = %—%:I:Z Wj, P, = Z(—l)lg—ZQi—l—Z(—l)J g—éRj €

Jr (and note that P\ F € Jp trivially’®). So dn € dA}T> "' (Y) is of the
form PQ/FF++1 for P € Jp, and clearly any P,Q/FF+7+1 (with P, of the
right bidegree) may, modulo (P;Q/F*+") € AZI?T(Y), be expressed as such
a dn.

We have shown that the map P~ PQ/FF+"+! induces an isomorphism

R : AR (Y)
E dAPE =N YY) + A2 (Y)

HO (Q;;,jg;((k ot 1)Y))

A (7 (1)) 10 (9 (6 1))

4.5.3. Rational forms and C*° dlog forms on P(E) \ Y. The miss-
ing link between Jacobi rings R7" and cohomology of X, is an argument re-
lating the right-hand side of this isomorphism to the cohomology of Y. We
want more than just “an” isomorphism for this missing link. We should be

able to take a representative form w € HO ( Q%2 (k +r +1)Y)), add some
P(E)
coboundaries (of C* polar forms), and end up with*® 8 € Z9 (Q&j(%_))gf+r(dlogY))

so that o 1= z=Resy € Z (Qgﬂ_k_l’kw), and the corresponding class

[i*a] N €2 € H"F~1F(X)), have the same periods as w. The spectral se-
quence approach that got pushed into a footnote in §4.2.2, if the isomorphism
it provides is interpreted correctly (on the right representative forms), will
give such a procedure. So we say some words to resurrect this in our present
context.

9 Consider sz% = sz% (zoFo(z) + ...+ z.F.(z)) = > z;Fj(z) = F, which
J J

— FeJp.
%079 just means d-closed sections; we use this and I" for C* sheaves.
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We use the following notation, for F a holomorphic (analytic) sheaf on
a variety V. First, we write H(V,F) for sections as usual (and H*(F) for
ordinary Cech cohomology), but wish to point out that while a section of

such a sheaf is necessarily 0-closed, it is not always d-closed — unless one is
in a special case like F = Q]?,(Eg; (kY'), where there is nowhere to go (since

dimP(E) = n + 2r). Next, let
AY(V,F) = T(RL ® F);

these form a complex with d as differential, and we denote thea—closed ele-
ments as Zg’J(V, F) and cohomology by H%(V,F). Note that H3(F) = H(F)

and Z3°(F) = HO(F). It F = Q7 (kY) then A%/(F) =T (Qm’j (kY)) :

P(E) (P(E))>
Suppose we have a long exact sequence
] d
0O—-Fp— ... —m F,,—0

of holomorphic sheaves on V; then as a complex F, ~ 0 and the hypercoho-
mology spectral sequence converges to zero:

EY = HI(V,F) = H(V,F.)[=0).

There are different ways of setting up the Ey-term: Eé’j = CI(V,F;) will
work, but for our purposes

By = AM(VF) (= 0)

is preferable. In fact since both differentials (6 and ) are defined on Eg”, one
can view this as a double complex, with associated simple complex (under
the total differential § + d) computing hypercohomology. Then we have that
this simple _C_omplex‘r’1 is exact. We also point out that the rows of the double
complex E(Z)’J are exact.

There is a version of (“weak”) Bott vanishing for ample divisors in toric
varieties, which says for Y C P(F)

H(jg) (P(E),QED(E)(kY)) =0 for j,k>0 (and i >0) ;

in particular this means for us that

7% (Q]iP(E)(kY)> — A% (pr(E)(kY)> g k> 0.

Let Fo (0 < ® < k+ 17+ 1) be the exact sequence of holomorphic sheaves
(again see [L1])

9 qnir—kti(gyy 0 O QM2 (k47 +1)Y)
n+r— n+r— P(E) P(FE)
(0 =) (dlogY) — Qt=kF(y) — P — ... — -
P(E) P(E) Q]}»?_E) k+1(Y) QP?FEZ‘) ((k‘ T)Y)

lthe terms are just the sums @iH:.Eé’j of diagonal elements.
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viewed as a complex, so that®?

P (@3 (dlogy)), i =0

. —k,j .
B = A () F) = 4 D 1), is
o)
n+r+i—k—1,5,/. 9 ? Z 2
I‘(QP(E)OO ’]((zfl)Y))

(I) converges to 0 (taking dy = 0, di = 0, etc.) as a spectral sequence,
(II) is exact as a simple complex under the total differential d = 0+ 0 ;

and as a double complex:

(III) has, by Bott vanishing, exact columns (under 9) except at i = 0

or 7 =0,
(IV') has exact rows.

Using (I) and (III) we obtain an isomorphism

0,k+r __ 0,k+r k+r+1,0 _ pk+r+1,0
dyoyrr - (E = Y ) — (E — B )

k+r+1 k+r+1
where
B n+r—k,k+r
Ok _ Zo (QIP’(E)oo (dlogY)) and
T ({4 (dlogy) )
= n+2r
ke kerd CEETHO Zy (O (b + 7+ 1)Y))
; _ = _
P {ker dc E§+’"’°} 07; (Qgp(ﬁg;‘;l((k n r)Y)) + 7 (Qﬂzg;‘m((k n r)Y))

2
B HO (12 (k47 + DY) ) A
- ntor— N2 - n+2r—1 n+2r "

AHO (Qp2 N (k+1)Y)) + HO (2 (s +r)y)) AR+ AR

Perhaps it makes more sense to regard Ef’kﬂ as the (n +r — k)th Hodge-

graded piece of

Z4 (Q;;g;m(dlogY))

s =~ {7 (B(E)) \ Y, )
dr (922" (dogY))
one gets better-behaved representatives by observing that

—k,k ~
Za (OB (dogy)) =

3 n+r—k—1,k+r—1
00T (S (dlogY) )

EDFT

>2We remind the reader that for sections of C* sheaves I'(E/F) = I'(E)/T'(F) (think
partitions of unity), in contrast to the holomorphic case (where partitions of unity are not
available).
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To trace through this let

B e Zy (Qin M (ogy)) € BYFT (< ByFT)

be any representative (of a class in E(l) KFTY Then there are forms

G el (Qg”“"“‘l”“*’"“(ey)) L f=1,...  k+r

(E)>
op €l (QI’;(EC;“[”“’HT’[(EY)> Y R
(here {(¢} live in the numerators of Eé’k+r4, {o¢} in the denominators of
Eg+1’k+r_e) satisfying
dor = 08 =8
dog = Odoy aCZ = aCl — 01
0kt = 004 yr 1 OChgr = Ohgr—1 £ Opyr_1
0= 80k+r

and
Ohrr — Ohrr € Zg (Qﬂ’;(*g;;f((k tr+ I)Y)) = H° (Q]’;(*g;((k tr+ I)Y)) :

In a picture,

(Oktr-1)

| Ctr (Ok1r)

where the lower diagonal (or rather the images of those forms in the Ej™
quotient-terms) is an (Ej,d)-cycle — this gives dgyr+1 — while the sum of
all the upper diagonal terms is d-closed without taking quotients. Putting
everything together gives the lousy relation

B —(dG —dG+... £dGer) + (o1 + ..+ Optr) = £ (OCktr £ Oppr) -

But if it is observed that taking S to be a d-closed representative (see above)
makes all op = 0, this relation becomes

BF O hyr = d(C1 — Q2+ ... £ Cpyr)

which is not lousy at all. It says that the isomorphism dg,41 may be inter-
preted as sending d-closed representatives 8 € Zg4 (Qgg)fof ’k+r(dlogY)> of

E?,k+r to representatives (g4, € 0255 (QE?‘EQ;‘;I,O((k + r)Y)) of E§+r+1,0,
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to which they are related by a d-coboundary which does not change the pe-
riods.

4.5.4. Putting everything together; representation of V. Using
Leray-Hirsch to count rank, one finds that for 2r — 1 < x < 2n + 2r — 1,

U[H]
H(B(E)) — H™(B(B)),

where the hyperplane class is given by a tacit embedding (of P(F) in some
PV) which realizes Y as a hypersurface section (possible since Y is very
ample — see [N]), say of degree Dy. If n > 2 (dim X > 1) then n+2r —3 <
x <n+4 2r+1 will do. On the one hand this shows

~

H;Lr-l—Zr—l (Y) ;> Hn+2r—1 (Y)

var

via the diagram (with coefficients € Q)
Hn+2r71(Y) — Hn+2r71(P(E))

~ |U(lH]-Dy)

U([H]-Dy) Hn+2r+1(HD(E))

~ |U(lH]-Dy)

Hn+2r+1 (Y) . Hn+2r+3 (]P(E))

On the other hand we get

Res
Hn+2r (]P)(E) \ Y) — H;},,.+2T71(Y)

by considering

o mrr(y) S () — B (BE)\Y) — B N(Y) S (B(E)

~

U([H]-Dy)

1%

UH] U[H]

Hn+2r72(ED(E)) Hn+2r+1 (Y) - Hn+2r+3(ED(E))'
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Writing
Zq (FGQ%(E)m(dlogY»

dr (Fm[’;,zg)m(dlogY)) V74 (Fa+1Q[’;,( E)oo(dlogY))

G Hiyjogy (P(E) \ Y, ©) :=

we now have the whole composition

e

> Gy UK, <C)|

f—

R?D(X)

Gr?ﬂ—kfl Hn—l (X, (C) [®H2r(ﬂpr)]

var

~ ~

PQ
P~ FREATT
n+2r
Ak+7‘+1 (Y)

n+2r—1 n+2r
dAk+r + Ak+r

Gr?7+r7kfl Hn+2r—1 (Y, (C)

var

~ ~

dk+r

Za (O (dlogy)) = ~

- G n+r7an+2r P(E Y.C
" (BE)\Y,0) —

n+r—k—1 +2r—1
[dlogY] Gry Hy ==Y, Q)

98T (144 (dlogY) )

All the maps of forms/cohomology classes respect periods (at least in the
graded sense®?), so that if

X, =V (F(@),...,F@t), Ft) =F+tGd, GeS8Y

. - . L Ap (%)
is a 1-parameter variation of X (and Y'), differentiating w; € T (V) L AT ()
at t = 0 leads (by exactly the same argument as in §2.2) to a formula for
Vaor:
= Anter (Y) =
k,D(X) k4r+1 n—k—1yn—1
+2r—1 +2 F pr
dAZ«H"r + AZ«H"T
xG (?3/&) v8/8t
~ An+2r (Y) o
k+1,D(X) k+r+2 n—k rrn—1
Ry — — Gry "H)7H (X).
+2r—1 +2 F pr
dAF AT

For§ C  PHYP"" E) we have that
Zar. op.

05,2 S0 /(F)

33The maps themselves respect periods on the nose, including dy 1 (or d,:iT) provided
P(H)Q
F(o)k+rF1

such a representative for each ¢, 9/d¢t of it is not (it may be of the form 9¢ — o rather
than 9¢); the way one remedies this situation involves ignoring periods of the next higher
filtration. Details are left to the reader.

the special representatives (see above) are used; the problem is that, even if is
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so for a “full” family X — S one gets at 0 € S

2

F

1
/\S“’/ R0 2O g0y g gl P pernp)

2
1

>~

2

/\950®Gr” kH" I(X)—>980®Gr" k— IH” L(X) Griy™ k— 2Hn 1

where the bottom row dualizes to the Og-linear part of V
o1 =2
\Y V(k)

(k+1)
Gri' Wy L, — Qs®GrEHL L — QseGaryHY L

Xs,var Xs,var

at 0. So ,u(k) and V(k), “(k+1) and V(k+1)’ are dual.

4.5.5. Algebraic lemmas and multidegree bounds. Now we have
set everything up so that the Proposition and Theorem below will go through

(for complete intersections C P"*"), by exactly the same arguments as in
§4.3 (for hypersurfaces C P"), if the following two algebraic lemmas are

proved.

LEMMA 4.5.3. u% is surjective for | < k+1<n—1, if deg(Kx) > 0.

k+1)

(The resulting injectivity of WM) then yields the proof of Proposition.)

deg(Kx) >0, n=2

5 , L
LEMMA 4.5.4. Hin—1) ¥ surjective for { deg(Kx) >0, n>3

(Injectivity of ?%nil) then is used to show the infinitesimal invariant of the

regulator image is zero. Recall that for deg(Kx) < 0 this is automatically
zero and no lemma is needed.)
For Lemma 4.5.3 it is enough to show

mult.
§L0 o ghD(X)  _ gh+1,D(X).

Referring to |[N] Lemma 3.4, we need to check that

,
Y D;I; + D(X) >0

for all “multi-indices” I with |I|(:= ) I;) = k. If Dy is the smallest of the D;

then setting I = (0, ... , k, ...,0) minimizes the left-hand side; using
l

D(X) = degKx = Y Dj — (n+r+1) we have
ZDj—I—kDZZn—i—r—I—I for 0<k<n-2

(X)
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if deg(Kx) > 0. (So this boils down to k, D(X) > 0, which is what one
would expect.)
For Lemma 4.5.4 consider the diagram

2
/\ S0 g Jgle(X) S0 JlgfLD(X)

1 m |

2 2 1 4

/\ §L0 g gn—2.D(X) M(n—l) L0 g gn—1.D(X) M(n) gn.D(X)

1
m

Y
Y

n—1,D(X n,D(X
SI,O QR (X) RF (X)

2
n—2,D(X
/\51,0 ® RF ( )

2 2 1
_ e, o 1 .
/\ SI,O/(F) ® RZ‘ 27D(X) (n 1) SI,O/(F) ® RF 17D(X) (n) RF’D(X)

We will show (for certain multi-degrees)

(a) ker u%n) C imu%n_l)
(b) RmPX =,

Together these — ,u%n_l) surjective as desired. By a diagram chase (a)
reduces to

(al) surjectivity of m%n)

(a2) ker M}, C imM?

(n) (n=1)"
Now (b) follows from our residue representation of H?,.}(X), since R}, DX)

var

Gr;ngfl(X ) = 0; while (al) and (a2) are covered respectively by [Nagel]
Lemmas 3.6 and 3.8 (where we must substitute n for p and n + r for n).

We work out the multi-degree requirements for these, if necessary re-
indexing so that Dy > ... > D, > 2. Nagel’s assumption “r < n — 3”
corresponds for us to n > 3; this is a superfluous assumption and plays no
role in the proofs, so we assume n > 2 and r > 1 (codimension > 2; no need
to repeat §4.2 — 3). Since there is no work to do in case Kx < 0 we assume
also 370 oDj >n+r+1(Kx >0).

Nagel’s conditions are (for us)

r
(%) ZD]- + n—=2)D, > n+r+2
=0
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r
(xx) ZD]' + (n—1)D, > n+r+1.
j=1
The left-hand side of (%) is > 2r+(n—1)-2=2n+2r-2>n+r+1
since n + r > 3; so the second condition offers no resistance. We break (x)
into cases:

(X = curve) for n = 2, we have 3% _o Dj > n+r+2 which demands Kx >0
(no elliptic curves, please!)

(dim X > 2) for n > 3, Kx > 0 cinches it: since D, > 2, (n — 2)D, > 1.
This proves Lemma 4.5.4 in the cases/degrees claimed.

4.5.6. Statement of the Main Theorem. In order to state the final
result, we define two types of complete intersections C P"*". Either type
requires X to be smooth, of multidegree (Dy,...,D,) with all D; > 2 (to
avoid redundancy), and that dimX =n —1 > 1 (i.e. n > 2). Furthermore,
type |B| disallows the case

{n:2 (dimX = 1), deg(Kx) (= Y Dj— (n+r+1)) = 0}

of elliptic curves. On the other hand, type [A] requires a non-negative canon-
ical bundle (> D; >n+r+1).

PROPOSITION 4.5.5. Let X C P"*" be a very general type [A] complete
wntersection. Then

im {H"~"(X,C/Q(n)) = H" "' (nx,C/Q(n))} ..

li% (coker{H{}_l(X, C/Q(n)) %anl(X,C/Q(”))}) =
Vc

Hy, M (X,C/Q(n)) [# 0],

where the limit is over all (arbitrary unions of) divisors V. C X.
THEOREM 4.5.6. (Main Theorem)

(I) [Vanishing] Let X C P""" be a very general type |B] complete inter-
section. Then the image of the “holomorphic regulator”

R: KM (X) — im{H"*(X,C/Q(n)) — H" *(nx,C/Q(n))}
is zero. [Collino has proved the counterexample for elliptic curves.|

(I) [Rigidity] Let X - S C  PHO(P"" . O(Dy) & ... ® O(D,)) be
Zar. op.

a family of type [B] complete intersections. Then if {fs} € ker(Tame) C
KM(C(X)) is a local section (on an open ball), its regulator image

[Ry,] € H* H(nx,, C/Q(n))
is flat.



CHAPTER 5

Applications to Algebraic Cycles

5.1. Higher Abel-Jacobi Maps

5.1.1. Relative Chow groups revisited. Our work on regulator for-
mulas in Chapters 1 and 2 turns out to be useful in the study of rational
equivalence of cycles, in particular the detection of rational inequivalences
not picked up by ¢p (an amalgam of the cycle-class and AJ maps). The
most immediate application is in fact to relative cycles (and relative rational
equivalences) on (00", 900") = (P! —{1}, {0, 00})"; this is what we start with.

Let £ C C be any subfield with trdeg(k/Q) =: ¢t < oo, and consider
a relative cycle Z € CHP ((O",00")(k)), p < n. We may exchange the
extension k/Q for geometry by spreading! over a projective variety S/Q,
k2 Q(S), to a relative cycle

¢cezr ({ng x @, 00m} @) = i 27 ({(5\D) <O, (51, D) x 901} (@)

As suggested in §1.3.4, we may then consider the “Abel-Jacobi” R({) of the
spread; the resulting composite

CHP (0", 00 (k) —s CHP ({n$ x @,00m} @)

IR

R
20—
—  CH"(ng,n) — HZ "(§,Q)
see §1.3.4 see §2.4

may be used to detect # 0 (and is well-defined by construction). Provided
rat

an extension of the Bloch-Beilinson conjecture to relative quasi-projective
varieties holds, it is injective (modulo torsion) and detects rational = or #
completely. Our point of view is that we are using analysis (really calculus)
to detect complex geometry.

In §1.4 we performed a calculation for p = n which in hindsight amounts
to saying that the Milnor regulator

R: CH"(S\D,n) — Hp(S\ D,Q(n)) (under lim pcg)

see §4.3 or also [GGS5|

192
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is “in the same spirit” as the classical Abel-Jacobi map. That is, performing

the integrals
/Qf/\w and /R'f/\a,
s s

where w € T (Ff—ilﬁ?gg)m> and o € I (Q?;?)J)ﬁi), is the same as finding

the bounding chain 8, ¢ for 7§ (if possible) and computing [lime_]

/ A"dlogz; A méw  and / A'dlogz; A m5a,
Ve 0 e

where the latter is the intuitively “obvious” extension of the classical AJ
map.

In §5.1.2 we will look at the classical AJ on spreads of cycles Z €
ZP(X (k)) for X smooth projective /Q. To see that we are doing essentially
the same thing here (for (0", 90") instead of X) with the above composite,
it suffices to check that R identifies with the “logical” extension of the A.J
map. But we never did this for p < n, so we sketch the argument now.

If¢ezZP((S\D)xO" (S\D)x 00" is a relative cycle then (for p <
n) one can show that the topological cycle ¢, on (S, D) x ((J"\ 00") [derived
from Lemma 1.3.3], is always a boundary. This takes the form 9(d, (),
where 9-1¢ ~ 0(C.) + (S1)" x (9(_51D) (T¢); since this avoids S\ D x N (900",
the integrals ,

/8:14 N"dlogz; A\ wgar, aeTl (Q(S\D)oo )

make sense. Taking their limit defnes by duality the natural extension
AJ() € H* 1S\ D,C/Q(p)) =: HF({(S\ D) x O (S\ D) x 90"}, Q(p))

of the Abel-Jacobi class (to this particular relative case).

We can both show the map is well-defined (respects relative rational
equivalence) and accomplish our objective (relating AJ to R) in one blow,
by showing commutativity of

CHp(ﬂS X Dn,ﬂs X 6|:|n)

~ CHP(USan)

Zp(ﬂs X Dn,ﬂs X c‘)EI”) R

AJ

HIZDP(”S X Dnﬂ?s X al:l”:@(p)) j H%pin(nsa(@(p))
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This reduces to the equality

lig% e AN'dlogz; Ao = /SR'C Na,

which one proves essentially by “integrating” A"dlogz; along the fibers of
0(¢) — ¢ (which gives (7 RfY) and pushing down to S.

We remind the reader of the complete absence of Hodge-theoretic con-
strants on a: for AJ of a codimension-p cycle on the (¢ + n)-dimensional
variety (S\ D) x (0", 00") one expects to integrate formsrepresenting “suf-

ficiently holomorphic” classes, namely: in
Ft+nfp+1H2t+2n72p+1((S,D) % (ljn \ aﬂn))

But the only class? in H*((J" \ 801") is [A"dlogz;] € F"H™([" \ 0"), and
so the forms reduce to

[A"dlogz; A o] € FPH™(O"\ 900" @ FtPH g2=r—n=1)(g D) =

FrH™(O"\ 0" @ H#~@r—=1) (5 D).

Since n > p, A"dlogz; already makes the form sufficiently holomorphic, and
so we have total freedom with a. For this reason, completely special to these
relative AJ maps, we can always replace integration against « by integration
over topological cycles C on S\ D.

We give a few examples of the computation of AJ on the spread of
Z e ZP((O™,00")(k)) by a “regulator current” on S, starting with the case
n = p of relative 0-cycles.

EXAMPLE 5.1.1. Assuming for simplicity ¢ < m, one has a composite

1

KM (k) KM (Q(9))

CH™ (0", 007) (k) — CH"({n$ x (O",00")}(Q) A H"'(ns,C/Q(n))

computed by f— Rg, which one conjectures is injective.
EXAMPLE 5.1.2. More interesting are 1-cycles (p = m — 1). The case
n = 2 is trivial as CH((O%, 00?)(k)) — CH!(k,2) = 0 (for algebraically

closed k); in fact one can show by geometric arguments CH' (P! x P!, #) = 0.
For n = 3 we just get back (from AJ({)) AJ(Z), since

~ A
CH*((O°,00°)(k)) — CH*({ns x (O°,00°)}(Q)) 5 Hp(ns,Q(2)) = C/Q(2)

2recall " = (P!, {1})", O*(P' — {1})".
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is computed by a (constant mod Q(2)) zero-current. (This is nothing more
than our AJ on CH?(C,3). Is this, then, injective — in spite of the codimen-
sion 27) However, to compare with n = 4 we give the following formula: let
Z be a sum of rational curves of the form

Zroni= {2 (F(2),9(),h(2)} = ( —ay 2= fy 2= %)

z—a1 2—51 2—71

(so that e.g. o, a1 record the values of z € P! where the curve intersects
the faces z; = 0,00, and so on). Provided Z is also a relative cycle we can
taje AJ(Z), to which Rz, , contributes

Z (—=1)""Lis (CR{c1, g, i, B;}) + log (cH) log (CR{w, Bo, 1, 1 })
i,j=0,1
—2m Z log f.

TN Ty

ExaMPLE 5.1.3. For n =4 the composite

= A
CH? (O, 00%(k)) — CH?({ns x (3%,009}(Q)) 5 H(ns, Q(2))

= H'(ns,C/Q(3))

is much more interesting, and goes beyond AJ on the original cycle Z €
Z3((O*, 00%)(k)) (which is always zero!). Again we expect this composite is
injective. If Z is a sum of rational curves as above, so that

(7661 9ta), 1), PG) = aZ250) = Zpgne

is a component, then ¢ has (sg5r (Where {ap, a1, ..., A1} € Q(S)) as
a component. Using the fact that AJ(() is computed by R, we see that
R¢; . 18 Zf,9,0,F’s contribution to the composition. By a computation not
unlike that in [G — Z], the interesting terms of R¢, , . are

> (—nttE Y01 (=1 Lis (CR{v, vk, Ay, Bi}) dlog(A )
_ " o
£,k=0,1 +1log Al ’30) log (CR{av, oo, Aty Vi }) glAe — Yk

Neither computation is at a point where it can detect # of explicit relative
rat

cycles, but there is hope for progress; further comparison with the work in
[GZ] might be a good place to start.

5.1.2. What comes after the Abel-Jacobi map? Now let X/Q be
a smooth projective variety (d = dim X) and Z € ZP(X(Q)). According to
the Bloch-Beilinson conjecture (BBC),

CHY(X(Q) ©Q = HE (X,Q(p))
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and so [Z] and (if [Z] = 0) AJ(Z) completely detect the situation Z # 0

rat
(modulo torsion). BBC does not apply to ¢p on CHP(X(C)), however, and
so if Z € ZP(X(C)) one expects

Wo=[]
CHP(X(C)) S HgPP(X) := FPH*(X,C) N H*(X,7)

U=AJ H»1(X,C
(X) =) ker(To) - — JP(X) = sk <c)(+ HQP—I(X,@

(CHE

hom

to be followed by a series of maps

W; : ker(¥; 1) — { Hodge-theoretically }

defined objects

These target objects cannot be finite-dimensional abelian varieties like J?(X),
even in the case of zero-cycles, by a result of Mumford [Mu] (or see [L1]).
For any natural number N and base point py € X, there is a map

SM(X(C) 5 cHEPm(X(C)

SymN(pl’ s ,pN) L Z[pj] - N[pg].
j=1

Mumford’s theorem as generalized by Roitman [Ro] (or see [L1]), states that
[given an appropriate definition of dim(im(7y))]

HY(Q%) #0for any £>2 = (N -d>)dim(im(ry)) > N.

This result is clearly different from the case (d = 1) of X a curve, where for
all N, dim(im(7y)) < g(=genus of X). It applies, for example, in case d > 2
and dim(Kx) > 0.

Letting N — 0o, we see that (when this theorem applies) C H2™ (X (C))
is “oo-dimensional” in the sense that no finite-dimensional variety parametrizes
it (or classifies rational = classes). Also, we see that there are always rational
equivalence classes that that cannot be represented by a cycle involving < N
points: just take a generic element of im(7y.q41). So the best target spaces
for ¥;>o we can hope for are lzmits of finite-dimensional Hodge-theoretically
defined objects, and this is exactly what we get below.

Now any Z € ZP(X(C)) is defined over some subfield k¥ C C, with co >
trdeg(k/Q); so once again we may exchange the field for additional geometry,
and spread? the cycle over S/Q, where Q(S) 2 k and dim¢(S(C)) = t. There
are ambiguities in the “complete” spread [(] € CHP(X x S(Q)) but not its
restriction [(] to X x ng. Working modulo torsion and assuming a Bloch-
Beilinson conjecture (BBC?) for quasi-projective varieties, from the diagram

3This idea (in this context) has been around for a while; apparently it originated with
S. Saito.
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(BBC)

CHP(X x 5(Q)) @——— HZ(X x S5,Q(p))
cp
®
BBCY)

CH?(X(K)) = CHP(X x 15(Q)) HP (X x 1s,Q(p))

CH
we see (with [L2]) that

v
CHP(X(k)) = H3(X x ns,Q(p)) := im(®).

Lewis points out that im(®) is the lowest weight part of Hy;, and constructs
on it a Leray filtration £'H. gf (with £° = H. gf ) which induces

LICHP(X (K)) := UL HDD).
Notice that one may automatically chop W into pieces
;= ker(Vi1) = L'OHP(X (k) — GriHi7 (X x ns, Qp))-

Writing p : X X ng — ng for the projection, according to [L2]| these graded
pieces sit in a short exact sequence

4

0
GritJP(X x ng)— GriH3P(X xns,Q(p)) — GriHgP(X x ns)

I | I |
Bxtl , (QO0),W—1 B (ns, R} 'Q(p))) hom,, , (Q(0), H' (15, R ~'Q(p)))
hom, , , (Q(0),Grd, H?P=1(X xns5,Q(p)))

If [Z2] € L'/CHP(X(k)), then U;(Z) = Gric, (¢), and . 0(¥;(Z)) =: [(];,
is defined; if [(]; = 0 then ¥;(Z) pulls up to [AJ(];—1 in the first term of
the above sequence; and if [AJ(];—y = 0 then [Z] € LT CHP(X(k)), and
so on. We will compute (pieces of) the outer terms for 0-cycles in §5.3 (in

AThis should be viewed as an extension of earlier work chopping up the ordinary
cycle-class of the spread, to the entire Deligne (or absolute Hodge) class. Writing

GT’ZQI;(/Q = QIS/Q ® Qi’?;‘ ,
Esnault and Paranjape ([EP] or [Gr4]) filtered the image space of the map:

CH?(X(0)) ® C — H (X, 0% 4 ,0) ©C = HY (X, 0%, )

and obtained graded pieces lying in the middle cohomology of the complex

v v
- Q5 @ RIS — Qs ROV — QT @ RETTOATT -

which are essentially our [(]; in §5.3 (the infinitesimal invariants of the differential char-
acters we will define there).
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particular the image of the denominator in the Ext! term will become more
clear). We want to emphasize here, that even without BBCY the ¥; and L
are still (well-)defined; they just don’t exhaust CHP (X (k)).

This computation of the Gr%ﬁ gf, combined with hard Lefschetz, shows
that (see [L2], Prop. 5.0)

LPHICHP(X(E)) =0;

this says rational equivalence classes are already captured by ¥o, ¥y, ..., ¥,.
Moreover, [(]o and [AJ(]p recover [Z] and AJ(Z), so that we recover our
original ¥y and ¥, (the latter enlarged by [(]1), at least for cycles defined
/k. To express the ¥; as maps on (filtered pieces of) CHP(X(C)), we first
define (with [L])

L'CHP(X(C)) = h% LICHP(X(C))
kC

(where the limit is over k& with finite transcendence degree /Q), and taking
a limit over all finite-dimensional varieties S/Q, map

v, .
L'CHP(X(C)) — 11% GriHP (X x ng, Q(p)).
S/

In the case of 0-cycles, if X is regular (H°(Q%.) = 0) then Gr: Hg? (X xng) =
0 for all S/Q, and the target space for ¥; is just JP(X(C)) (and is finite
dimensional). If H°(Q%) # 0 for some (p >)¢ > 2, then the target space for
Uy is infinite-dimensional; this gives the connection with Mumford.

We want to point out the equivalence of the above approach with the
work [GG5] of Griffiths and Green, who look at (graded pieces of) ¢, ({)
instead of ¢,, (¢) [= ¥(Z)]. Suppose one has a Leray filtration on H%p(X X
S,Q(p)) and a spread ¢ of Z with ¢p () € LPTLH?P; in order to show Z = 0

rat
on X, one must produce I'p € ZP~1(X x D(Q)) (for some divisor D/Q C S)
such that fi I'p = 0on X x&. The construction of this I'p involves
rat
the Hodge conjecture (HC), which never explicitly appears in [L2]; this is
because it is already contained in BBCY (which essentially =BBC+HC).

For example, let Z be a 0-cycle on a 3-fold X, and for simplicity suppose

that the fundamental class of ¢ lies entirely in®

Hg*(X x S)n{H*(X) x H*(S)}.

Then we may annihilate this algebraic obstruction to rational equivalence
(¢ = 0on X x S) without negotiating Z, by adding cycles with support on

rat

D/Q C S. The idea is to take a “cross-section” of ¢ by a hyperplane section

Por at least (in the sense of [G-G]) [(Jlo =...=[¢]a =0, [AJl]o = ... =[AJ(]> = 0.
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XA/Q of X N (X4 x S) is then suported on X5y x D. This “cross-section
map” may be formulated as a correspondence

[A X Agl € CH*((X x S) x (X x 5)),
so that the isomorphism of hard Lefschetz is induced by its action:

[AxAg]«
H*(X) x HY(S) — HYX)® HYS).
According to the Lefschetz standard conjecture (<= HC + hard Lefschetz),
there exists a correspondence [A~!] (algebraically) inducing its inverse: [A7!], =
([A]+) "t or the composition [A~! x Ag], o[A x Ag], = the identity on coho-
mology. But because it is “algebraic” (i.e. induced by a correspondence), the
composition operates on cycles, and is not the identity on f . In particular,

since already [A x Ag] - ( is supported on X x D,
Tp = [A! xAS].([AxAS].E) C X x D.
As cohomology classes, though,
[[p] = [A7" x Agleo [A x Aglu[(] =[] € H*(X) ® H*(X)

and so the modification ¢ — yp kills (the graded piece of) the fundamental
class without altering the spread’s restriction to Z on X x ng. Griffiths and
Green say that such a class is “in the ambiguities”.

5.1.3. Some formal computations for relative varieties. For the
rest of Chapter 5 we will be dealing with 0-cycles, continuing the present line
of thought with X smooth projective in §5.3. As motivation for this in the
meantime we return to relative varieties where we can compute everything,
starting (once again) with X = (0", d0"). There is a perfect pairing

H*=H(O", 00™), Q) @ HY(O™ \ 90", Q) — Q(—n),
while

Q(—n) i=n

0 otherwise

O\ 00, Q) = {

becayse [A" dlogz;] has weight 2n (due to the n dlog’s; see e.g. [GS]). So
the Q(—n) must pair with a Q(0), and

gy = A0 1=
* 0 otherwise

which we emphasize is highly peculiar; it has the effect of giving H*(ng) in the
computation below where for X smooth we would have im { H*(S) — H*(ns)} .
In particular, H"~!(ns) has mixed Hodge structure with weights (in general)
between n — 1 and 2(n — 1); therefore H"~!(ng,Q(n)) has weights between
—(n+1) and —2 so that W_; is everything and GrY, = 0. Using this fact

= R, Q(n) = Qn),
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and pretending the work described in §5.1.2 applies to X = (O", 900"), we
may compute formally

Gri. H3(X x 15,Q(n)) =0 for i #n, and
GryHg" (X x ng) =2 hom,,, (@(0),]—[” (nS,RZ*@(n)))

= F"H"(ns,C) N H"(ns,Q(n));
while
Ext! . (Q(0), W 1H" '(ns,Q(n)))
hom,,,, (Q(0), Gr¥, H2"~1(X x ng,Q(n)))

GT%JP(X X 7’]5) =

Extl, (Q(0), 7" (ns,Qn)) H" (15,C)

1

- hom,, (@(0), {GT?,VH"—I(nS, Q(n)) = 0}) {FrH" Y(ng,C) =0} + H" 1(ng, Q(n)

=~ H" '(ns,C/Q(n)).
In other words,
GriH3 (X x 1s,Q(n)) = Hp(ns, Q(n))

is just the target space for the “composite” of §5.1.1 for n = p, which simply
amounted to (see Example 5.1.1) spreading®

2] =[a] = [ Y mjlenjs. - any)| € CHY(@", 00" (k) = KM (k)

to [ =1l = [ m(fijs- - s fu)| € CHM({(T"00") x 15} (@) = K (Q(S))
and applying R. In terms of our formal analogy R consists of
[¢ln = ([A\"dlogz]"®) [A"dlogf] € GrEHg"(X X 1)
and if this vanishes
(ATt = ([A"dlogzi]"®) [RY)] € Grip™ T (X x ng),

while automatically (for geometric reasons) all the preceding [(];, [AJ(]i—1
are zero.

REMARK 5.1.4. More generally for CHP((O",00")(k)) [p # n] the mas
defined in §5.1.1 compute [(]2p—p and [AJ(]op—pn—1 (that is, Uy, ;) while all
the other ¥; are 0. So for p =2, n = 3 we had just [AJ(]o(= AJ(Z)) while
for p = 3, n = 4 there was the much more interesting invariant [AJ(];.

Here it is understood that f;; — «;; under the embedding Q(S) — k C C (which

one should think of as “evaluation at a generic point”).
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One expects that a similar formal procedure with X = (P!, {0,00})"
— that is, assuming the ideas of §5.1.2 apply — should also predict correct
results. We'll do the predictions here, then prove them in §5.2 from a different
angle. Understanding the situation for this X is the key for the transition
between §5.1.1 and §5.3: (P!, {0, 00})™ is at once similar to (0%, 900") [except
that I"(=all permutations of {1} xP! x...xP!) C (P})" is not thrown away],
and to a product of curves [since (P!,{0,00}) is essentially a degenerate
elliptic curve].

Let o; (or o) denote a choice of 4 indices

1<oi(l)<...<0i(i) <n
with corresponding projection

771 (CF)™ = (T

There are < TZL > of these, inducing maps on cohomology

1
< mdlogzoi (1) /\.../\dlogzoi ) >

which dualize to

IR

H? (P!, {0,00)") — @, H'((P',{0,00})")  [s0 RZ"'Q(n) = &,,Qn)].

This induces the top = in the following diagram, in which we are also (for-
mally) applying functorial aspects of the £* (which we have not discussed
but are covered in [L]):

~

GriHZ (P!, {0,00})" x 15, Q(n)) — ®,GriH3i (P!, {0,00}) x ns, Qi)

W, (n) D,V (Z)

o
@TFZ’ %

LiCH™ (P, {0,00})" (k) B, LICH! (P, {0,00}) (K)) .

This says that U;(n) factors through @n7.; combining this with injec-
tivity” of the W;(4), we have that

Ci""lC'H"((Pl,{O,oo})n(k)) = ker(¥;(n)) =ker(@dn),) = {Z|77(Z) = 0 (Vo)}

rat

consists of 0-cycles whose projections to “i-faces” (P!, {0, 00})" are rationally
equivalent to zero. [In §5.2 we rigorously construct such a filtration on CH",

"of coutse, one has to believe a version of BBC here.
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and produce maps from the resulting F, CH" to the upper right-hand term
GBUGTZE% of the diagram.|

Moreover, the n-boxes Z = B, of §1.4.5 lie in L"CH", since 77 (Ba)
actually = 0; and it is in fact easy to see (§5.2.2) that the B, span LTCH™.
By the geometric argument in §1.4.5, [A"dlogf], [Rg] on S still give the rel-
ative cycle-class and AJ image of ¢ = B(y¢). So |according to this formal
argument| ¥, (n) is given by Milnor-regulator currents on S; moreover, so is
U; (i) for every i. Therefore it is no surprise that a formal computation [ex-
actly like that for (0%, 90")] of the upper-right term in the diagram shows
that the target is

GTZEE%—? ((Pl’ {0’ OO})n X 18, Q(TL)) = GBO'H%)(/"]S)@(Z.))‘

The geometric argument in §1.4.5 is an important connection and inspired
our approach in §5.3.

5.2. Zero-cycles on (P! {0,00})"

5.2.1. Abel for a degenerate elliptic curve. We start by reviewing
Abel’s theorem, to put the case n = 1 in context. Let X/C be a compact
Riemann surface, and Z = Y m;{p;} € Z*(X) a zero-cycle. We seek a series
of Hodge-theoretic invariants ¥;(Z) of the cycle-class [Z] € CH'(X(C)),
that can tell us when Z = 0. That is, the filtration given by their kernels

rat
should “exhaust” CH', so that Z € NF'CH! =: Nker¥; = Z = (f) for
some f € C(X).

So suppose Z = (f): what maps should send Z +— 0?7 The degree deg(f)

of the divisor of a function is always zero so we may take

Ty :=deg: CHYX) — Z = Hg'(X)

Z — ij
as the first map. Now viewing f : X — P! as a “correspondence” in
ZHX x PY)
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the 1-chain I' := W/{, {(w]{;)*l 0,00]} satisfies O = (f). If w € QY(X),
then

few = Wﬂél*ﬂ'ﬁ*w € Ql(]P’l) =0 = /w = / fsw = 0.
I 0

However if we have before us Z[= (f)] € ker ¥y but do not know f, the
“ideal path” T" is not available. We can only “connect the dots” with some
I for which dI' = Z, and since [I" —T] € H(X,Z) one has [, w =
[ w =periods (# 0).
Accounting for this ambiguity, we have a well-defined map
(= AJ] : ker Vg — QYX)Y/im{H(X,Z)} = J'(X).
Abel’s theorem (see [G2] for a more complete treatment) says that ¥; is an
isomorphism; the resulting exact sequence
wrt W
0—JY(X) — CHY(X) — Z =0

is easily split by a choice of base point {0} € X. In particular, the projection

CH'(X) — ker ¥

> milpil — D mglpi] = (3 my)[0)]
splits CHY(X) 2 Z & JY(X) 2 GrlCH' & GrLCH".
Let X = E) C P? be the smooth elliptic curve defined by the homoge-
neous equation
Fy(z,y,2) = 2> +4* +2° = 3hazyz = 0
for A € C\{cube roots of unity}. Let u) be the meromorphic form on P? to
which (A #0)
Q zdz Ady —ydx Adz + zdy A dz

Ar =2
Fy 3+ y3 + 23 — 3hzyz

descends, and define w = Resg(p), v = [, w (a multivalued coordinate on
E)), so that (w = du) = Q'(E). The periods of w (or ambiguities of u) form
a lattice A C C with dimz A = 2, and the conditions for ) m;[p;] = 0read

rat

Y-m; =0, m;-u(p;) €A. Pulling back along the local parametrization

~

C — Uy =P\ {z =0}

(X, Y) — (X:Y: 1),
we have

dX AdY

Fy=X34+Y34+1-3XXY, pu=2A\
Fy
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so that e.g. where 9Fy/0Y #0,
wy = Res _AdX A dFy Aidx
AT TP me= \gR oY F ) T T3(Y2 - AX)

Now suppose the above conditions for rational equivalence were still a
mystery for Ey; we might degenerate it in P2 by taking A\ — oo and study
rational equivalence on the resulting variety (=union of 3 P!’s):

{3+ P +2° -3 ayz =0} = E\, — FEy:={2zyz=0}

Ea=

N — o -

A o

dX dX
The study of rational equivalences on E., via functions which agree at A,
B, C is equivalent to the study of = on {y = 0} via functions with fixed

rat

values, say 1, at A and B. But this is just the study of = on the relative

a

-
=+

variety ({y = 0}, {4, B}) ~ (P!,{0,00}). That is,

Z= Y mi{o} € ZP{0,00}) (o € C)
|| rat
0 «— Z=(f), feCMP")and f=1o0n {0,00}.

Clearly if Y m; =0, [[a;" =1 then f :=[[(z — ;)™ does the job. Since
w)y degenerates essentially to dX/X so that u) becomes log X, rewriting the
second condition Y m;loga; € 2miZ =: A could perhaps lead one towards
Abel’s theorem were it not known. Choosing {1} as base point we have the
splitting CH(P',{0,0}) 2 Gr%CH'® Gri.CH' = Z @ C*.

For the K3 surfaces X, C P3 cut out by

Ga(z,y, z,w) = zt +y* + 2* + w' — Azyzw

(A € C general), ¥y = deg[— Hg?*(X,)] and ¥y = AJ(= Alb)[— J*(X))]
are well-defined on CH?(X(C)) by similar arguments; here we say a zero-

cycle Z = 0 if there are (possibly singular) curves C; C X, meromor-
rat

phic functions f; € C(C;) such that Y t.(f;) = Z. But ker Wy Nker ¥; C
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CH?(X(C)) is not zero; in fact according to Mumford it is huge, since we
have

Q*(X) = (Res(2/G))) # 0,
where
Q=zdy ANdz Adw — ydz Adz A dw + zdz Ady A dw — wdz Ady A dz.

On order to understand how this form influences rational (in)equivalence to
zero, and find a Wy, we again take A — oo, degenerating X to a tetrahedron
and (locally on the Z = 0 plane of the tetrahedron)

dX A dY
9G, /0Z

to dlogX A dlogY. Once again we exchange the singular X, for a “relative”
one, namely (P2, A) or — which turns out to be the same as far as zero-cycles
are concerned — (P!, {0, 00})? = (P! x P!, #). The formulation of the solution
(the ¥y in §5.2.4) in terms of differential characters produced by membrane
integrals (of dlogX A dlogY) influences heavily the route taken in §5.3 — the
first two subsections of which do apply to X (although we can only get a
“piece” of ¥y in terms of the membrane integrals).

Q/\ = )\RGS(Q/F/\) =\

5.2.2. Computation of CH?(P' x P!, #). This computation is origi-
nally due to Bloch and Suslin. R
Recall the Tame symbol map for a smooth curve C

Tame : K;'(C(C)) — [ K (Cp)) =[]
peC peC
defined on generators by

. v y f T vp(9) )
Tame,{f,g} = %gr;)(—l) »(f) p(g)thzch

reduces for {f, g} “good” (|(f)| N [(g)| = 0) to f(p)*»¥ /g(p)»V). Weil

reciprocity states that for any f, g € C(C)
HTamep{f,g} =1eC.
peC

We can prove thos using our regulator currents as follows (see [G-H] for the
standard proof). It is always possible to “move” {f, g} by a Steinberg (which
have Tame, = 1 Vp) to a product [[{fe, g¢} with |(fe)] N [(ge)] = 0; so it
suffices to examine the case where |(f)| N |(g)] = 0, and prove

> (vplg)log £(p) — vp(f)logg(p)) =0 mod 2miZ,
peC

Since 9C = 0

1 1 1
_ Y = [ d|—— log fdlogg — log g - &
! /aé 2t U0) /c [%iR{f’g}] /c [%i o8 fdlogg —logg - 01
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/ (35;dlogf A dlogg + log f - d(g) +dlogg - 5Tf)
“ e - (dogg-or, +logg - 8y + 2midynsy, )

= /c~ {logf . 5(9) — logg . 5(]0) + 27Ti5Tfng}

= > wp@log flp) = Y vp(f)logg(p)
(mod 2miZ) pe|(g)| pel(f)]

as desired.
Similarly one has a map

Tame : K3'(C(C)) — [ K3"(O)
peC
defined on good generators by

Tame,{f,g,h} = {f(p),9(p)}"* " {g(p), h(p)}**{h(p), f (p)}**'9,
and Suslin reciprocity states that (for any f, g, h € C(C))

HTamep{f, g, h} =1¢€ KéM)((C).
peC

The form of this we will use (and which is proved in the Appendix) is that
if h=1 on |(f)|U(g)], then 1= J]{f(p),q(p)}»™

peC

(since in that case the other two factors in Tame,{f, g, h} vanish). In the
additive Milnor K-theory notation, we write 0 = - s vp(h) - {f(p), 9(p)}-
A zero-cycle

Z = ij(aj,ﬁj) S Z[C* X (C*]
J

on (P! x P!, #) = X is rationally equivalent to 0 if there are curves

ék—»CkC]PIX]PI

with fj, € C(Cp) such that > imjlay, Bi) =2 t(fi) and fr =1 on (i
#). The Cr may be singular, and may intersect the corners of # since the
functions will be = 1 there (see Chapter 1).

There are cycle-class (=degree) and AJ (=Albanese) maps

Ty : CH*(P' x PL#) — Z = Hg?(X)
(dlogX, dlogY)"
im{H,(C* x C*,Z)}

(where C*[= exp(C/2miZ)] comes from writing C/Z(1) multiplicatively),
and we write F1CH? = ker Uy, F?CH? = ker ¥, F3CH? = 0. Of course

T, : ker(¥y) — C @ C* = >~ J2(X)
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Uo(Z) = > my, ¥i1(Z) = (H a;nj,l_[ﬁ;-nj) for the above Z, and there are
standard projections to the graded pieces induced as follows by maps of
cycles (€ Z[C* x C*]):

m: CH*(X) - Gr%.CH?*(X) (o, B) = (1,1)
m : CH*(X) - GrpCH?*(X) (a, B) = (a0, 1) — (1,1) + (1, 8) — (1,1)
Ty : CH?*(X) - [Gry =]F?CH*(X) by sending

(a,8) = Bla,B) == Zap) = (a,8) = (L,B) = (a,1) + (1, 1)

= (0[,,6) + 7T0(0[,,6) - 771(0[7/6)'
Here 75 surjects because it is the identity on F2CH?(X):

[Z] €ker¥pNkerV, = [1(2)] =[m(Z)] =0 = [m(2)] = [Z]

since mop = id + mp — 7. Now if B (on the level of cycles) sends the three

generating Steinberg relations to cycles = 0, we may factor it as follows to
rat

produce a well-defined =:

Z[C x C]

F2CH?(P' x P, #)
mod (S := (o, 8) + (7, 8) — (av, 8))
C ®;Z c*
mod (Ss := (a, B) + (8, @))
o he

z

mod (S5 := (a,1 — a))

[11

K3'(C)

Assuming this, we can prove injectivity of = using Suslin reciprocity.
Writing Ko(C) additively, choose an element {a} = ) mj{«;,[;} with
Z{a} = 0, or equivalently a cycle Z = > mj(a;,0;) € Z[C" x C*] with
B(Z) = }>miT(,; 5 Et 0. That is, there is a collection of curves (and

ra

meromorphic functions)

~ Lk ~
{Crk — P' x P! by, € C(Ck) [ =1 on o (CkN#)}
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such that B(Z) = >, t«(hg), i.e. (writing p for ¢(p))
S omiTia sy =D 2 vl p =03 vlh) - (X0),Y()
J k- pel(h)] k pecy,
on the nose (in Z[C* x C*]). Put fr = Xowg, gr =Y o, € (C(CNk), and note
that hj, =1 on |(fx)| U|(gk)| = ¢ (C, N #). Therefore Suslin =
0= Z vp(hie) {fx(p), 9k (p)} € K3'(C)
peCr
and summing over k,

0=2 > wph){X(p),Y(@)} = Y m; ({ay,8;} — (e, 1} — {1, 5} + {1,1})
j

k pec,

= ij{aj,ﬁj}-

1l
o

To complete the proof that = is an isomorphism we must show B(.S;)
rat

fori=1,2,3,0or (Va, §,ve€C)
(A) Z(a,8) + Z(4,8) = Z(ar.8) = O,

rat
(B) Z(a,5) + Z(8,a) = 0,

rat

(C) Z(a,l—a) = 0.

rat
(A) and (B) are easily obtained by “plotting” the cycles on (P! x P!, #) and
writing down an “explicit rational equivalence” {Cy, fr} with ), tx(hg) = Z
(and each hy =1 on Cp N #), to”solve” the diagram. The functions are all

variations on the % theme.
(A) B) :
Jeeg ool <p1aR i
ﬁ &--d-6 gloa ﬁ"@ @\/XY_<@
<to @ fo! Crg
rTe 6 68 1% © © I-»i%eézeg— -
1< YooY 1< B | < g =<p

We temporarily replace (C) by
(C) XomjZ(a;1-a;) = 0for Y mj(a;) € Z[C" \ {1}] such that Ha;nj =

[I(1 — a;)™i.
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Denote by A2(C) the image in Ba(C) of the set of such ) m;(e;).

If we take C to be the curve C P! x P! parametrized by t — (¢,1 — t)
then f(t) =J[; (t — ;)™ /(t — (1 —«a;))™ is 1 at 0, 1, co and so we have
Zy = ij[(aj, 1- O{j) — (1 — aj,ozj)] = 0, which =

rat

0 = B ZO Zm][ (0,1—a5) _T(l—aj,ozj):| :

rat
But (B) =

Zm][ (0,1—ax5) +T(1 oz],aj)] = 07

and so (modulo 2-torsion) adding these — (C’).
Now By(C) sits in an exact sequence

st
0 — ker(st) = By(C) — AZC* » KSM(C) >0,

where ker(st) contains all sums of the form Z?ZO(—l)i {CR(ap,... ,05,... ,04)}s.
One can show (see |GG2]|) that such sums, together with Ag, generate By (C);
50 st(Ag) generates all Steinberg relations a A (1 — a) in A\ C*. Therefore
0-cycles of the form (C’) (combined with (A) and (B) to give the relations
in /\% C*) generate those in (C), which means they are = 0.
rat

We have shown Z is an isomorphism and so (mod torsion) F?CH? =

KM(C); in summary we have

PROPOSITION 5.2.1. CH?(P' x P!, #) =, Z® (C* & C*) ® K3'(C).

On the one hand this gives a concrete demonstration of the Mumford
theorem since K5(C) is “infinite-dimensional”: in particular, the map 7y :
SN(C* xC*) — K (C) fails to surject, for all N (there are always elements
that cannot be presented as a product of < N symbols). On the other hand,
the above proof applies just as well to any algebraically closed® subfield

k C C, including Q. So F2CH?((P' x P, #)(Q)) = KM (Q) 2 1 (see [R] for
a proof) gives a concrete demonstration of Bloch-Beilinson.

5.2.3. Extension of the computation to higher (co)dimension.
Here we show how to generalize the above to zero-cycles on (P!, {0,00})?,
p > 2. The considerations are “combinatorial”, and in particular higher Bloch
groups do not come in (just as higher logarithms do not enter in §2.1 —2.2).
[The F'CHP here are the F! C HP referred to in §5.1.3.]

We begin with the observation that the result actually applies to any
nonsingular complete toric variety 77, modulo the principal divisors {Dgfl}
arising from the codimension 1 faces of its fan (see [Fu|). So (working over

8or (mod torsion) any k C C.
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C) the generalizations to higher p > 2 of (P?,A) are also covered by the
following

PROPOSITION. One can put a filtration on CHP(T?,UD% ) so that

, F'CHP
GriCH? = o = K'Co.. oK.

e

(‘?) copies

This filtration comes from the product structure on T”\UD]&_1 > Cx...xC.
—_——

p copies

Preliminary observation: To prove this we may revert to 7?7 = P! x ... x P!
N—— ———
p copies
where the principal divisors are just every permutation of {0} x P! x ... x P!
and {00} X P! x ... x PL. So from now on that’s what 7% and D% ' mean.

DEFINITION. Let all permutations of {1} x ... x {1} x P! x ... x P!
N , N—— ——

p—1 v
be called standard i-planes. We write 7 for the projections to these, where
o (or o;) denotes a choice of 7 indices. An i-plane is just any plane parallel
to a standard i-plane. By an i-boxr we mean a (codimension p) 0—cycle
consisting of a rectangular configuration of signed points (in an i-plane),
such that adjacent points have opposite sign. By a standard i-box we mean
an i-box with a corner at {1} x...x {1} (these are contained in some
—_———

p
standard i-plane).

Now we produce (among other things) filtrations on the abelian group of
0-cycles CP that will induce the desired filtrations on the Chow group CHP? =

cr/ rjt . Note that CP(T?, UDg_l) and CO(T”\UDQ_I) = Ch(C* x...xC")
are just the same thing.

Four conditions on zero-cycles:

(1). F'Hlor = {Z e C? | nf(Z) rit 0 (Va)}, where the rational = is
taken inside each relevant i-plane. Write (rat)! if Z € Fi  ,CP(T?,uUD% ™).
(2). Writing F,C'(P',{0,00}) = C' and F3,C' = {Z 1z 0},

define FLCP := {Z|Z € @,egp(Fpr X ... X FQ) X (Fgy X ... x Fg))} =
{Z | Z = ¥ i-boxes} (in particular, these i-boxes are not necessarily stan-
dard). Write (x)'if Z € F CP.

(8). (st)! means: 77(Z2) rzt Y standard i-boxes (Vo).
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(4). (K)! means: 77(Z) is “KM(C)-equivalent” to 0 (Yo). For this to
make sense we must already be thinking of 77 (Z) as standard i-boxes, and
then the elements of K} (C) are the coordinates of the corners opposite

{1,...,1}. So (K)* implicitly includes (st)".

Remark on the descent to C'HP: Towards the end of the argument
we will use the fact that F’,, and F’ descend to rational equivalence classes
[Z] in a well-defined fashion. This is really easy for F!,,, since (A) below
implies trivially that 7y descends to CH?. For F' i one just defines

FLCH? := {[Z] | 3 representative Z of [Z] suchthat Z € F.CP}.

However at present (directly below) we are still working over CP.

Facts concerning (1)-(4):.

(A). (X)) = (X)), (rat)) == (rat)"~'. To see the second of
these (which says that F',,' D F? ) for i > 3, one must note that rational
equivalences are given by functions on the normalization of an algebraic
curve (so the equivalences “project down” just fine); for 7 = 3 use pullbacks
of dlog(z) to the relevant curves (which are in this case branched covers of
the PVs via projection); i < 3 is trivial.

The obvious interpretation is that under the descent described above,
F},, and F} define filtrations on CHP (and of course also on CP).

rat

(B). (x)* = (rat)’. Recall that (rat)’ means that the projection of Z
to (i — 1)-planes is rjt 0. So this merely says that collapsing an i-box to
(i — 1)-space gives 0 on the level of cycles, because the signs cancel.

(C). (x)! = (st)'. An i-box (in any i-plane) may be made “standard
within that i-plane” by adding j of the same points. Projecting this
to a standard i-plane gives a standard i-box (or 0).

(D). (K)![+(st)!] == (rat)"*' (“Steinberg relations — cycles ratio-
nally = to 0”). We work in a standard i-plane, say the one corresponding
to mf. The generating relations are “one or two-dimensional™ (i){...,[zx =
la,...,[zj =]1—a,...} =0; (i) {... ,[#; =|ab,... }—{... ,a,... }={... ,b,...} =
0; (i) {...,a,...,b,... }+{...,b,... ,a,...} = 0. Here we are writing Mil-
nor K-theory additively. The hypothesis (K)® says that 77 (Z) is a formal
sum of standard i-boxes; and moreover, that the corresponding formal sum
of corners opposite {1,...,1} consists entirely of these Steinberg relations
with different k£ and j. Now consider the 2-plane given by fixing the “...”-
coordinates and letting z; and z; vary. Intersecting it with 77 (Z) gives a

standard 2-box which is rz . 0 by the well-known argument for p = 2; e.g.,

in case (i) we have Zy,1_qy = (1,1) — (a,1) — (1,1 —a) + (a,1 — a). One can
cover the box with planes parallel to this one obtained by changing some of
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the “..."-coordinates to 1; these intersections are also rjt 0 by the p =2

case.

REMARK. This is the step where we needed the i-boxes.

(E). (rat)*! + (st)! = (K)' (“cycles rationally = to 0 — Steinberg
relations”). Again we're working in a standard i-plane. Recall that (K)’ is
a priori a statement about the corners of the standard i—boxes opposite
{1,...,1}. However, it is sufficient to prove that the element of K} (C)
generated by all the points of Z (not just those corner points) is trivial,
since — using (st)’ — all other vertices of a standard box are K-theoretically
trivial (because each has one coordinate z; = 1). Now the generators for
rational equivalence are individual curves {C,} with meromorphic functions
{hy} defined on their normalizations. Since h = 1 whenever any coordinate
function 2z blows up (this being the definition of rational equivalence relative
the faces {D‘gfl}), Suslin reciprocity on each algebraic curve, summed over
n, reduces to

0= > wln)ia,....a} e K(O),

n pel(hn)l

where >° [T einy vp(ln) = Z € C'(i-plane). This is exactly what we
wanted.

(F). (rat)® = (st)*. Using (A), we see that (rat)’ = all W?,(Z) rat 0

for j < 4, so that for each of the o; (there are ( IZ) > of them),

7f(Z) — al(Z2)+ Y (1)1 N 2?(Z) = Bi(«{(Z))

rat .
1<t o' Co

But the right-hand expression is just a sum of standard i-boxes, as desired.
(The point is that this gives, for each o;, an element of KM (C).)

(G). Given (rat)t, (rat)’*! < (K)*. (This is just the first part of the
proposition; see below for more details.) . .
(=): by (F), (rat)® = (st)’; this is then just (E): (rat)'*! + (st)! =

(K)".
(«<): this is just (D).

Interpretation: Together with (F), this yields an isomorphism as de-
scribed in the first part of the proposition. (F) gives a homomorphism FC? —
®KM(C), while (G,=) tells us that this is well-defined modulo F;'CP.

rat
Surjectivity is trivial: standard i-boxes in standard i-planes certainly surject

onto the KM(C) summands, and such boxes are in F!,, by (B). Injectiv-

. . Fi,CP ~ Fi,CHP
ity follows from (G,<). Finally we have to check that —rf=> = Fri;—:l Cor

rat
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Cpr

“naturally”. This is clear from the canonical isomorphisms CH? = =,

FiCHY = I

= Foticr-
To prove the second statement of the proposition we need one more fact:

(H). (rat)® = (x)" mod (rat)P*! (converse of (B) in CHP). This says
that if all 77 (Z) = 0, then Z is rationally equivalent to a sum of i-boxes.
rat
For 4 = 1 this just says that if the multiplicities in Z of points €|Z| sum
to zero, then one may “connect the dots” using line segments parallel to the
coordinate axes, and take their boundaries as the desired 1-boxes. This can
(in a slightly altered form) be generalized as follows. Let a= (ai,... ,a,) €
|Z| have multiplicity n, in Z. Define, for an integer k between i and p, an
(i — 1)-index 1 < 1< k (which means: 1 <[} < ... <l;—1 < k) and an i-
plane Pf , 1= (1,...,1,2z1,1,... , 1,2k, Qk41,... ,ap). (The notation means

that z;,,...,2,_, all appear in their respective slots.) There is a natural
projection of a to this P, and a natural way of making a into an ¢-box C P,
which is like what we did in (F), but there we did it for the projection of
all of Z to a standard i-plane. For example, in the case p = 5,7 = 2 we
have in PJ ) , = (1,29,1, 24, 25) the 2-box (1, a9, 1,a4,as5) — (1,1,1,a4,a5) —
(1,a2,1,1,a5) 4+ (1,1,1,1,a5). We denote this i-box by B2y, (so the 2-box

in the example would be B}, 4)- Then
p
Z naz Z By =7 + Z{ i_ }of the same points + ZZ(—I)i_j Z W;’(Z),
aclz| k=i 1<1<k o j<i o} Coi
where the second term is 0 and the last is = 0, proving that Z = ) i-

rat rat

boxes. We note, for a given 1, that the { P} }ac|z| are all the same standard

Lp
i-plane; and the corresponding {Bflp}, with the exception of some points
that go to the second term, are where the third term comes from [o; corre-

sponds to (1, p)]. The points for the first term Z come from the {Bf(1 i) iYae|z|-

Interpretation: Together with (B), this says that the filtrations F’ and
F!,, on CHP are the same.. From the definition of F7 it is clear that this

filtration respects products, in the sense that we have a (surjective) map
FeCHP(T?,UD5™") @ FPCHY(T?,UD§ ') — F*PCHPTI(TP+, uDptaT),

REMARK 5.2.2. As in the case of p = 2, all the results hold if we replace
C by k C C algebraically closed, or (modulo torsion) for any k C C.

5.2.4. Description of the invariants. In §5.1.3 we promised a filtra-
tion on CH™((P!, {0, 00})"(k)) and maps from the graded pieces to @y, Hx(ns, Q(3)).
Write X"(k) = (P}, {0,00})", and £, for an element of ®iZ[]P’(1@(S) \ {0, 00} ]
such that B;(7%(Z)) below spreads to Bi(7y,) (the “i-box” of the graph).
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Then by composing with projections to the standard i-plane we have now

n
el ]

GrpCH"(X"(k)) — @, GrpCH'(X'(k) — & KM'(k=Q(9) 5 ®  Hp(ns, Q)

z — Y m(2) = Y B@L(Z) — D {f} — > (9,,Ry,)

a’

-
=

or in the formal notation of §5.1.3
()i = ) ([N'dlogzy,]Y®) [A'dlogfs,] € GriHg"(X™ x 15)
and if this vanishes
[ATClicr = Y ([N'dlogzs,]Y®) [Re, ] € GrizJ"(X" x ns).
For simplicity we restrict ourselves to examining the map
F'CH™(X"(k)) — Hp(ns,Q(n)),

first reviewing the sense in which the invariants are computed as cycle-
class/AJ of the spreads of n-boxes

Z = By(Z) =B (ij(alj"" ,Oénj)>

rat

to ¢ = B(y), {f} = [I{fijs--- s fnj}™ € KN(Q(S)) where fij <— ay
under Q(S) £ k. In fact if?

[A"dlogf] € H" (ns,Q(n)) N F"H"(ns,C)

vanishes then so does!? [T¢] € Hj(gim 5)—n(Srel, Z), so that one may exhibit
B(7¢) as a topological boundary of Ty = 0~ 1(B(y)) = 0(B(ys) + (SH)™ x
8(_51,D)Tf in a sense described precisely in §1.2 — 1.4 (and §1.4.5). To find
AJ(B(7)) one integrates over this

//\?ldlogzi/\wgw = /R'f/\w
T s

or replacing forms w by (n — 1)-cycles C (on ns), [, R (mod Z(n)).

Rather than conceiving of [B(vy¢)] and [AJ(B(7¢))] in this sense as two
separate invariants, we would like to combine them into one geometrically
defined unit. In §2.2.2 we observed that since d[Rg] = Q¢ — (2mi)"T¥, [, Re

?A™dlogf can also be thought of in terms of Kihler differentials on the original cycle,
without spreading to S.
1051‘91 = hﬂ (Sa D)

D/QCS
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defined a holomorphic C/Z(n)-valued differential character (and thus an ele-
ment of H3(ng,Q(n))) even when [Q¢] # 0. The geometric basis behind this
involves membrane integrals. To produce the membrane we start with a lift

(7§)7'C = B(y) n{(B")" x C}

of C to each component of B(vy¢) (with multiplicity/sign). As classes (wg)—lc
[dimension n — 1] and T% x S [codimension n] do not intersect,'! and so

applying @ directly'? gives an initial membrane on (C*)" x §, 9((W§)*IC)
with boundary (ﬂg)_lC. Now we project this to (C*)™ and define

Ie:=7x {0 ((W%)_IC>}
so that, writing f(C) for Wg(((ﬁg)*IC),
ale = f(C) on (C)".

The key to understanding how the form A"dlogz; on (P!, {0,00})™ controls
rational equivalence, and to the generalization to smooth X in §5.3, is then

/ A"dlogz; = /Rf
Te C

and that any other choice of membrane changes the value by a period of
A"dlogz; (€ Z(n)). Such membrane-integral constructions in fact always
yield differential characters.

In the case dim S = 1, n = 2, the first figure in §1.4.3 shows essentially
what I'¢ would look like for a couple of loops [=(I)+(III) for one loop and (II)
for the other|. Although this picture is drawn for ¢ on (02, 90?) x g instead
of B(7¢) on (P! x P!, #) x ng, the only difference (which is formal) is that I'¢
bounds also on the components B, in ({1} x PLUP! x {1}) x ng =1? x ng
instead of using it as a “topological trashcan”.

5.3. Zero-cycles on a Product of Curves

5.3.1. Reduction of the target spaces. In the first two subsections
we establish the “reduced” invariants we will use, in the more general case of
X/Q smooth projective. We take dim X = n and Z € Z™(X(k)) a 0-cycle,
the coefficients of whose defining equations generate k. Since the equations
defining X have coefficients in Q, X does not spread with Z and so one has
the situation /Q

"In the case where (P!, {0, 00})™ is replaced by X smooth projective (in §5.3) so that
the invariants []; are defined, this step is replaced by the following: because we consider
a cycle Z € FP"CH", [(]n—1 must be zero, so that [75{(75)7'C}] = 0 automatically.
The point is that [¢],—1 € homg{H, 1(S,Q), H,—1(X,Q)} describes that action of [r o
(7)™ on (n — 1)-cycles (which is exactly what C is).

2rather than to all of B(~¢), under the condition [Q¢] = 0 (which we want to avoid
here).
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- ¢
X<+—Xxnpg+——>2(
s
p
P¢
ns

where as usual S/Q is smooth projective with Q(S) = k. We will show how
to simplify essentially a quotient of the graded pieces of H3/'(X x ng, Q(n))
in this case, obtain maps into them and then specialize to products of curves
and obtain very explicit formulas for (the “quotients” of) the maps ¥;.

Let Hg be a MHS, and write He = Hg®zC, WyHc = (WyHg) ® C and
so on. Then (see [Cal)

homMH (Q(O)v H@) = FOWUH(C N WyH,

WoHe
Ext! Hp) =
xt) (Q0), Ho) WoHg + FOWoHe

so that
hom,,, (Q(0), Ho ® Q(n)) = {F"Wa,Hc N WapHg} (n)
Wop H

We will omit the (n) frequently when it is not important.

Reduction of Gr. Hg"(X x ng). Set
H@ = Hi(TISv R?)f’iz ) = HZ(US?@) ® HZnii(Xv @)7
so that the fact that H?"~*(X,Q) has pure weight 2n —i =
WZnHQ = WlHZ(n57 Q) b2 HZnii(Xa Q) = Ei(nSH @) b2 H2n7i(Xa Q)
where
Therefore

Gr%Hg"(X x ng) = hom,, , (Q(0), Hp @ Q(n))

= F"{H'(ns,C) ® H" (X, C)} N {H'(ns,Q) ® H"*(X,Q)}

= Z Fkﬂz(ns,(c) ®Fn_kH2n_i(X’(C) m{ﬁl(nSa@) ®H2n_Z(Xa@)} .
0<k<i

The sum is a bit overwhelming, but if we quotient by
FYGrh Hg™(X x ng) == GriHg"(X x ns) N {H'(ns,Q) ® F* """ H*"~(X,C)}
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then all but the £ = ¢ term of the sum gets swallowed. So
GriHg"(X xng) — GriHg"(X xns) /F)?_H'l{num}

- {rHies.0 8 om0 0 (0@ 0 (. 0)

= home {F'H'(X,C), F'H'(ns,C)} Nhomg {H,(ns,Q), H;(X,Q)}

where H;(ng, Q) := coim {H;(ns, Q) — H;(S,Q)} consists of topological cy-
cles avoiding certain'® divisors D/Q C S, modulo those which are ~ 0 under
< S. We strategically rewrite this N, setting V := (F'H'(X,C))Y and
A =im(H;(X,Q)) < V (these are the periods'*), as

F'H' (15, V) N H'(ns, A)

and explain why later.

Explanation of the Ext/Hom quotient. Now let
Hg = H''(ns, B"™'Q) = H'™'(ns,Q) ® H" (X, Q)
50 Way—1Hg = H  (ns, Q@ H** (X, Q), and Hg := H*" (X xng,Q) —
Hg by Kiinneth projection. We want to do the same sort of thing for
Ext,, , (Q(0), W_1(Hg ® Q(n)))
hom,, , (Q(0), Gri¥ (Ho ® Q(n)))

_ Extl,, (Q0), (Wau 1Ho) ®Q(n)) _ Extl,, (Q(n), Wan_1Ho)
hom,, (Q(0), (GrjyHo) ® Q(n))  hom,,, (Qn), Griy Ho)
as we did above for Gri. Hg"(X X ng).
Although we will not have much use for it we first explain how the

denominator maps naturally into the numerator. In fact this amounts to
computing the connecting homomorphism

GritJ™(X x ng) =

A
hom,, , (Q(n), GT%HQ) — EXtII\/[H (Q(n), WZn—lHQ)
in the long Fxt-sequence associated to the short exact sequence
0 — Wa, 1Ho — WanHo — Gryy Hy — 0

of mixed Hodge structures (and then composing with the map induced by
Hg — Hg). A is obtained by composing ¢ € hom,,, (Q(n), GrY Hg) with
the extension class

hOIIlMH (GT%H@, Wgnflﬂ@) ®yz C
hom,,, (GrY', Wy,_1) + FO{num}

e € EXtLH(GT‘gZﬁ@, Wgn,lﬁ@) =

13(but not all; this would be impossible. One takes a representative cycle on some
S\ D, that survives in the direct limit; more on this later).

“which for once are not in (27i)"Z
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to get eo & € ExtLH (Q(n), Wgn,lﬁ@). Therefore e is the important object;
we may describe it (as a lift) in hom,, , (Gry Ho, [(Wan_1Hc)Y]Y) as follows.
First, GTZWnI:IQ is represented by differential forms with dlog-poles along di-
visors D/Q C S but not along their intersections (no dlogz; Adlogz; locally),

modulo forms with no residues. Writing Sy :=  lim (S, D), under the
D/QcCs

isomorphism

H2n_1(X X 7757@) = H2t72n+1 (X X Srela@)
such forms are Poincaré dual to certain (relative) topological cycles C bound-
ing on X x D/Q C X x S. Let [C] € Gry Hg be such a class and pull it
back to Wo, Hog; this will pair with the pull-back of [w] € (Wa, 1Hc)Y to
(WanHc)Y (in the dualized short exact sequence, ®C). [Note that

(Wan—1He)Y = (im {H* (X x 8,C) - H* (X x ng,(C)})v

= coim { H* ?""(X x S,¢,C) — H* ?"*1(X x $,C)}

92t72n+1

(Xxs\D)oo>, whose classes survive in the Jim.|

is spanned by certain w € I’ (

CONCLUSION. One should think of Ext! (Q(n), Wa,—1Hg) as function-
als on [w] € (Wa,_1Hc)Y (modulo periods/etc.), and hom,,, (Q(n), Gry Hg)
as a certain subset of the (Poincaré dual classes of) cycles [C] € GrY Ho,
whose image (in the double-dual) is computed by the functionals [, w.

Reduction of Gri'J"(X x ns). Now that we know that the image of
the hom,, . -denominator makes sense, we proceed to eliminate it. Observe
that this image factors through the Kiinneth projection of the denominator
to
~ F"Wy,Hc N WanQ
~ {num} N Wa,_1Hy

hom,, (Q(0), (Gry, Ho) ® Q(n))

{Zigjgi—l Fsz'Hi_l(Tls,(C) ® F”_jHZR_i(X, (C)} N {WiHi_l(ﬂsyQ) Q HZn_i(X, @)}

o~

{num} N Wa,_1Hg
since H?"~*(X,C) is pure, and'® j >i = F/H'"!(ng, C)

hand, by the calculation at the beginning the numerator

Bl (Q0). (Wau-1F) & Qn)) = bl
n— n-

50)
On the other

=
A

B ﬂi—l (775, (C) ® H2n—i (X, (C)
ﬂiil(ﬂsa@) ® HZn_i(X, @) + ZOSkSi—l Fkﬂz?l(ns,(c) ® Fn_kHZn_i(X, (C)'

'2(it is also tempting to use j < & = 2(n—j) >2n—i = F"7H"7/(X,C) N
H?""(X,Q) = 0, but this does not apply in the ®.)
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Now if we divide by
FEtar ' JM(X xng) == im {H'" ! (ns,C) ® F" "M H** (X, C) — Gri; ' J™(X x ns)}

~ im {ﬂifl(nk%(@) ® ani+lH2n7i(X7 (C) N G,r,i‘fl!]n(X % 7]5)}

then both sums (over j and k) get swallowed, since both j, £ <i—1 (in all
nonzero terms). Therefore

GT?IJ"(X X ng) — Gr’i,flJn(X X ng) /F)@*iﬂ{num}

_ H''(ns,Q) ® H* (X, C)
H'"(ns,Q) ® Fr—i+1H2—i(X C) + H (ns,Q) ® H?—i(X,Q)

H?""{(X,C) >

>~ hom (ﬁi—l(nsa@a Frn—i+1 2n—i(X C) + H?—i(X, Q)

= hom (Eifl(TISUQ)a (FZHl(X7(C))v /lmHz(Xa@))

=: ﬂi_l("?S, V/A)
5.3.2. “Reduced” higher Abel-Jacobi maps for 0-cycles on a
smooth projective variety/Q. Let
Ai)p =A =050V =@V ... 50 0V =0
and define
Hp(S, A(i)) == H (S, A(i)p).
If we put
Hp(ns, A(i)) := im {Hp(S, Ai)) — Hp(ns, A(i))}
some algebra shows the top row of

0— Hi ' (ns,V/A) Hiy(ns, Ai)) F'H'(ns,V)NH'(ns,A) =0

A A

q p

0 = Grim ' (X x ns) — GriH2M(X x 15, Q(n)) ——» Gri. Hg™(X x ns) = 0

is exact. The two extension classes could still be different, though it seems
unlikely, but we can get around this anyway. If £°Z"(X(k)) denotes cycles
with class in L'CH"(X (k)), then below we will define (once again spreading
Z=()

Xi+ L'Z2"(X (k) — Hp(ns, Ali)
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as a holomorphic differential character. This gives rise to invariants ﬁ =

n(xi(Z)), and if this is zero x;(Z) =: v([AJ(]i—1). Recall that we have
mapps

U L'Z7M(X (k) — GriH3! (X x ng,Q(n))
which kill £i*! by definition (and in particular this includes all Z = 0). The

rat

one can show that p[¢]; = [(];, and if [(]; = 0 (a stronger condition than
@ =0), q[AJC)i 1 = [AJ();_1. This is enough to show that x; kills £+
(and .. in particular is defined on L'CH"(X (k))), since [(]; = [AJC]i 1 =
0 = [C]z = [AJC]i—l =0. )

We now define for each Z € £'Z™(X(k)) a holomorphic V/A-valued
differential character y;(Z). This must be defined on all topological (i — 1)-
cycles C on S\ D for some divisor D/Q in the limit (we will explain why
later). Since Z € L', its spread has [¢];_1 = 0, in particular as an element
of homg (H;_,(ns,Q), Hi—1(X,Q)) . Therefore WC(pC_I(C)) has trivial class
in H; 1(X,Q), and so may be written OI' (for I' defined up to an i-cycle on

X). If {wy} is a basis for F*H'(X,C) then the integrals

Xi(Z2)C = {/sz}

give a “value” in V/A. If C = OK on S then (again modulo i-cycles on X)
I'= WC(pEI(IC)) and so

Xl(Z)(?IC = {/ pg*ﬂ'c*am}
mod A K

amounts to integrals of holomorphic i-forms (or a V-valued holomorphic i-
form) over K. Thus x;(Z) is a differential character and (slightly extending
a standard fact, see [Ga]) gives an element of H%(ns, A()), as promised.
Formulas for [¢]; and [AJC];_ come out of this construction; the minor
miracle here is that [AJC]; | is defined “before” [AJ¢]; 1 is. Although [C]; =
0 == [¢]i =0 (and so [AJ(];—1 is not yet defined), the fact that x;(Z) is
a well-defined element of H? (ng, A(i)) does mean that [¢]; = 0 is enough to

pull x;(Z) back to define [AJ(]i—1. Now [(]; is computed by the “V-valued

holomorphic i-form” {p¢.m¢*we} or in more down-to-earth language [(]; =

Z[wg]v ® [peemc*wi] € home (F'H'(X,C), F'H'(ns,C)) Nim{homg}.
l

Vanishing of this invariant does mot mean [(]; is zero as an element of
homg (H;(ns,Q), H;(X,Q)); it merely means that the classes [p¢.m¢*we] =
0, which by easy Hodge theory == the forms p¢.m¢*w, = 0 exactly. This
has the effect of making the differential character pull up to a cohomology
class, since if C = 0K on S (<= [C] =0in H; ;(ns,Q)) the integrals over
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K are zero. Therefore in [(]; = 0 the integrals { [ w;} yield a cohomology
class

—_— Vv (F'HY(X,C))

[ JC]l 1 € hom (_1—1(7]5,@), A 1mHl(X, @)
One slight problem is that we may have dimg A > dimg V, which makes it

difficult to tell when [AJ(];—1 # 0 in practice — there are “too many periods”.
But in return for this inconvenience, it is easy to set up a situation in which
[¢]; = 0: namely, dim S (= trdeg(k/Q)) < i. We also remark that everything
we have done up to this point should work (with different numbers) for
codimension p (< n) cycles Z on X (k) as well.

In summary, we have two invariants for zero-cycles Z € L.CH™(X (k)),

which we write

(®Q)

;. GrCH"(X(k)) =  GrpH3X xns,Q(n))
and
xi : GriyCH"(X(k)) — Hbp(ns,A(0)),
where both maps are well-defined (kill L) but the bottom one is not
injective: ker(x;) 2 LTYCH™ in general. As for invariants into which these
“split”, [¢]i = p[Cli, and [AJ(li1 = q[AJ(]i—1 when both are defined ([¢}; =
0). However we will be interested below in a situation where [(]; = 0 (but

possibly [¢]; # 0), and where we can show [AJ(];—1 # 0, so that Z # 0.
rat
[This is meant to be analogous to Milnor regulator currents Ry, {f} € KM, on

(n — 1)-dimensional varieties (so that Q¢ = 0).] We emphasize that arguing
Z # 0 in this way, does not rely on BBCY.

rat

5.3.3. The situation for products of curves. In fact, we now spe-
cialize to X = C x ... x C,,/Q for two reasons.

The first is that in this case, L.CH™(X (k)) is easily described via the
product structure. (This is necessary because we cannot, e.g. for Z € £'~!,
use x;(Z) = 0 to push Z into £%; we need some other means for obtaining
elements in £°.) Asin §5.1 (for the relative varieties) one uses the projections

ﬂg : X — Cgi(l) X ... X Cgi(i) = Xgi
to induce isomorphisms

i %
[SeX A

Hl(X,@) (j @O'i Hi(XUi,@)

H*"(X,Q) — @, H'(X5,,Q)

and (together with the formulas for the Gr}H3,) a diagram
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®o, L'CH' (X, (K))
BBCY

¥;(n) D,4(4)

[

GTZLE%—? (X X ns, @(TL)) @ai GTZE’%—;(Xm X ns, @(Z))

Setting
FLCH™(X (k) = ker(@[ri].) C CH"(X(K)),

in particular

F}CH"(X(k)) := { products of n —1 curves, are = 0

rat

_,
= |l

0-cycles whose projections to /

one has from this diagram
FLCH™(X(k)) C L'CH™(X(k))

and equality if BBC? holds (or without BBC? for i < 2). (Here the L
are defined, as usual, via kernels of successive ¥;; note that BBC? —
LPHCH™ = 0, while F*T'CH™ = 0 by definition.) Tt is easily shown by an
argument like that in §5.2, that FZCH"(X (k)) is spanned by cycles of the
form

Za = Zay,. an) = (a1, yan) — Z(al,... yDjs-e s 0n)+
J

Z (@1yeee s Pjrseee s Djorevs r0n) — oo+ (=1)"(p1,... ,pp)
J1<]2
for all {a;} € C;(k), where {p;} € C;(Q) are fixed base points. So such
cycles are in L"CH"(X (k)) (and if BBC? holds, they span it); therefore we
may in principle compute [(],, [AJ(],_1 for these “n-boxes”.

The second reason for specializing to products of curves, is that we may
compute these invariants, in particular [AJ(],—1, as (V/A-valued collections
of) (n — 1)-currents on the base S. The idea is to extend the “standard
homotopy 6” of §1.3 from (C*)™ to Cy x ... x C,, using the fact (as with
C*) that eaxg C; can be cut into a fundamental domain. One then applies
this 0 to the spread of Z, (in exactly the same way as 6 was applied to
n-box-graphs in §1.4.5) to standardize the chains I" used in the differential
character construction above. (We will not produce '8 explicitly but it will
hopefully be clear from our construction of the (n — 1)-currents below, how
to do so.) So we can push x, down to a collection of (n — 1)-currents on S,
one for each

wp € F"H"(Cy x ... x Cp) 2 HY QL) ®... @ H(QF,)
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which we write by abuse of notation [AJ(],—1. The fact that x, is a holo-
morphic differential character is expressed by

d[AJC]n—I = [C]n + TC
where T is a {topological (2t —n + 1)-chain}®A giving a A-valued current.

If [(]n =0 (e.g. if t =dim S < n), then [AJ(],—1 no longer abuses notation
and gives a cohomology class

ATy € 5 (ns,

As a point of reference to Chapters 1 and 2, { F"H"(C* x ... x C*)}"/periods
= C/Z(n).

Now to finish a point left open above, one obtains this cohomology class
by integrating over topological (n — 1)-cycles C, which can be moved (in
their class on S) to avoid an unspecified set of divisors D/Q. (This is the
leaning of the limit; the set of such cycles is just the group H,,_;(ns, Q) from
above.) From the perspective of [GG5], this is so that the class [AJ(],—1
is unaffected by any modifications of the full spread ¢ (on X x §) over any
D/Q. Algebraically,

H" " (ns, V/A) 22, coim {H" (S, V/A) — H" ' (ns, V/A) }

~ ) hom(H,_1(S,Q), V/A)
= R {im{hom(Hn—a(D,@), V/A)}}

{F"H™(Cy X ... X Cn)}v>

periods

where the image is computed by ND : H,_1(S) — H,—3(D). If Sis a
curve the H,(ns,Q) = H;(S,Q) while if'® § = C; x Cy the Hy(ns,Q) =
H,(Cy) ® H1(C5). So there are plenty such cycles.

An analogy (because of the lack of residues along D) between [AJ(],—1
and “holomorphic” Milnor regulator currents (coming from {f} € KM (S)),
is certainly apt. Fortunately, however, nothing like the vanishing theorem
could hold because all S’s in the present context are defined over Q (and ..
not general).

5.3.4. Formulas for the invariants and a concrete example. We
now show how to write down general formulas for the currents representing
[AJ(]p—1, first for n = 3. Let Cj=1 2,3 be curves defined over Q, and p, ¢, r be
points in the respective C;j(k), k C C. Writing 0 for all three base points/Q),
consider the “3-box” cycle

Z= Z(p,q,r) = (pv q,T‘) - (O)qu) - (pv O,T') - (p;qv 0) + (07 O,T') + (O,Q, 0) + (pv 0;0) - (0)07 0)

in Zy((Cy x Cy x C3)(k)) with class [Z] € L3CH?((C} x Cy x C3)(k)), by the
above discussion. As usual we will consider its spread ¢ to ng, for S some
projective variety /Q with Q(S) = k.

'6as might occur if the cycle being spread involved general points on each of two

curves in a product X = C1 x Ca x Cs.
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Let agzl"“ggi (with g; the genus) be topological cycles on C; spanning
H;(C;,Q) and all based at 0. We take & to be a dual basis of “markings”
avoiding 0, and based at another point which the ag avoid. Things are set
up as usual so that [a]] = [« 7] (but & # o) 7%), and o' N a? is empty
unless ji = jo (and then it is a point). The interior of our fundamental
domain (with “center” at 0) is then given by C;j\ U;&!, and we denote its
closure by D).

The forms {wle""’gi} € QYC;) integrate to give functions z¥ on D)
which are zero at 0. They may be viewed as discontinuous, complex-valued
functions on C; with cuts at the markings, i.e. as 0-currents like log z on C*,
so that

29;

= uf = > ube))

where w(a) := fa w. Now the spreads of the points p, ¢, r give maps s; : S —
C;, and by composition with the 2¥, zero-currents fF¥ := 2¥os; € "D(S), or
functions on S with branch cuts T = s; '(47). We have

29;

d[fF] = dfF - Zw

where dff := sfwF. (This is of course the analogue of the formula d[log f] =
dlogf — 2mi - o, .)

Provided [(]3 = 0 (see below) one then has for [AJ(], the vector-valued
current

291

Pt ndaif o+ 3 A DI 0y + 3 ) ) A

Ji=1 J1,J2

which gives a well-defined class in H?(ns, {F2H?(Cy x Co x C3,C)}V /A) =

hom(H,(ns,Q), V/A). (The “vectors” here consist of g1 X g2 X g3 entries, each

of which corresponds to a choice of ki, kg, k3.) Notice that d of this current

is a lattice-valued current (trivial) plus dfk1 A dfk2 A df , its “infinitesimal

invariant” or [(]s; if this is not zero the “AJ” current gives a differential

character instead of a cohomology class, but we still write [AJ(]y anyway.
Similarly, for Z, ;) € Zo((C1 x C2)(k)) one has for [AJ(]y

291
a3 Gp] € H ms, {F*H(Cy x Gy, ©))Y/A)
Jji=1

provided the class of df; N df vanishes, as for instance in the case where
dim S = trdeg(k/Q) = 1. We now give an example of such a case, where

[AJC]1 # 0.

-0

J1
Ty

J2
nTJ
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We mentioned in §5.3.2 that dimg A might be larger than dimg { F2H?(C} x
Co,C)}V; one situation where this does not happen is for C; = Cy = E an
elliptic curve with complex multiplication. In particular, take E = {y? =
23 — bx} with w = dz/y € QY(E) and topological 1-cycles a, 8; for the
0-currents resulting from the integrals fo w on D we will write simply 21, 23.
(These are just the standard “plane coordinates” on the factors F x E.) For
the periods on E we write @ = Q= [ wand Q» =iQ = [yw (where 2 € C
is some transcendental number), so that faxﬁ dz1 A dze = (iQ)Q = iQ?
fﬁxﬁdzl ANdzy = (iQ)(iQ) = —Q?, [ dz Adz = QF give the period
lattice (Q2,iQ?) = A CV = F2H*(E x E)V = (dz; Adz)’ =C.

Now take a base point 0 defined over Q, and a general point p defined
over k =2 Q(F) (so that S and F will be birationally equivalent). There also

exists a nontorsion rational point &, which means that f(f w is not torsion!”

in C/ (9,iQ),. We study the cycle

zZ = Z(p,pfﬁ) = (p7 p— f) - (07 p— f) - (p7 0) + (07 0)7
with class [Z] € L2CH?((E x E)(k)) and spread ( C ExEx E, and [(]y = 0
(since dim § = 1).

The spreads of p and p — £ give rise to maps (s1,$2) = (id, id — &) :
S~F — E x FE. We choose our cuts &, B so that z = fo w takes values in
the square —Q/2 < ¥(z) < /2, —Q/2 < R(z) < Q/2 centered at 0, and
pick «, 8 to have support along the real and imaginary axes, respectively.
Composing (id, id — £) with z gives zero-currents f and g on S ~ E, with
cuts T¢ Tf (and T, Tgﬁ). Using df, dg (both = dz) for the pullbacks of w

f )
(by s1, s2), we can now write down the basic 1-current

[ATCl = [f dg + Qg - 91y + iQg - dps] € hom (H, (), C/ (2,i27))

Now in fact, since f = zo1d, T]?‘ = & and T]? = B So integrating the current
term by term over o € Hi(E) = H,(ng), we have

Q/2
/fdg:/zdz:/ zdz =0,
e @ —Q/2
2

> Q)= > Q-g(p)ZQ-g(iQﬂ):i%—ﬁQ,

pETJ’,’ No caNa

Z i-g(p) = 0 since fNa =0 (they are parallel).
pETfBﬁa

The only nonzero entry is nontorsion in C/<QZ,iQZ>Z, which is to say
nonzero in V/A, and so 0 # [AJ(]i, which = 0 # [Z] € L2CH?*((E x

E)(k)). So we have just used basic calculus to show a cycle Z,, ¢ €

or nonzero in C/ (Q,i9) (unless otherwise indicated all lattices are Q-lattices).
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ker(Alb) is not rationally equivalent to zero.'® For purposes of compari-

son (and this is easy to show explicitly by solving a diagram as in §5.2.2),
the cycle 2Z, ) is rationally equivalent to zero.

Though it follows from the theory we have developed above, we wish to
emphasize that there is nothing conjectural about this argument. If Z were
rationally equivalent to 0 then its spread ¢ over ng would also be = 0, and

rat

so one could not have a concrete piece of the AJ-map coming up nonzero. In
fact, it’s possible to see by a direct geometric argument (using a homotopy
'9) that integrating the above current over « is the same as taking ¢ = 9T’
(on X x ng) and integrating a cohomology class in H3(X x ng) over I'. But
I’ becomes much harder to find (at least directly) for even the next example,
that of Z2 = Z,, p 4 ¢)on X = E x E X E, say, for ¢ and p algebraically
independent general points on E(C). Yet the current constructed for the
n = 3 case remains easy to compute with, and one can easily show [AJ(]s #
0.

The next step would be to apply this to a more interesting X, perhaps
a K3 by viewing it as an elliptic fibration. One wants a more general con-
struction for pushing AJ down to currents on 7g, a formula valid for more
than just X =products, and in principle this should be possible. Also the
question arises, of how to compute the remaining portions of ¥;; it would be
interesting to see what form a cycle with all x;(Z) = 0, but say ¥,,(Z) # 0,
would take.

18The n = 2 example just given (but not the n = 3 one below) appears to be covered
by the very general result regarding 0-cycles on products of two curves in [RS]. (That
result generalizes Nori’s examples, which exclude CM curves and thus do not include our
cycle.) However, we feel that this very concrete approach to computing (quotients of) the
higher W; is in itself an attractive alternative to the more abstract theory of M. Saito.



Appendix: An Elementary Proof of Suslin
Reciprocity

Let X be a compact Riemann Surface. We define abelian groups

_ CX)" Az C(X)”
with elements written as products of “symbols” [ {fas ga}- The“A,” means
that (i) {£,g} = {g, 1}~ and (i) {/"g} = {/,"} = {f,0}" (multiplica-
tive bilinearity” — this is the “Z”). We also have (iii) {f,1 — f} = 1; these
(sometimes together with (i) and (ii)) are called the “Steinberg relations”, and
the notation above means that we quotient out by the ideal they generate.
Similarly set

(aN(l—a))
Now let f, g, h € C(X)* with h =1 on |(f)| U|(g)]-

KQ((C) =

PROPOSITION. (Suslin Reciprocity)
[T ). gy = 1€ K (0,
pi€|(h)]
that is, the expression can be rewritten as a product of Steinberg relations
(1), (1), and (iii).
In the following two sections we develop the ideas of regulator and norm
on (Milnor) K-theory which are employed in the proof.

I. Regulator
Define a map'®
Rx : K3(C(X)) = lim zexH'(X — 2,C") =: H' (nx, C")
by sending
(1,9} — {7 € Bi(X = (N1 U(9)], Z) - 357y o Slosalosglpordioe

YHere nx is the “generic point” of X: Z C 2/ —= X -Z D2 X -7 =
HY (X — Z,C") C H'(X — Z',C"), so the direct limit is of course highly nontrivial. Tts
prettiest strategic side-effect: in checking Rx{f,g} = Rx{f’,g'}, we may have the paths
avoid a finite point set, say |(f)| U [(g)| U |(f)]U|(g")].

227
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where py is the base point from which we continue log f, which is to say it will
function as the branch cut for log f along 7 (since this is not a regulator on
1-forms but merely on 1-cycles, the choice of branch of log g doesn’t matter).
This map is extended “ x-linearly” to products of terms [, {fa,ga} by using
the multiplication induced on lim H Y(nx,C*) (by multiplication in C*) as
its abelian group structure. We now show that it is well-defined. Some facts
in this direction:

fv(‘ ..) is independent of the choice of py € |y|, branch of log f
and “branch” of log g(py). Indeed, if pg and p; are two points on 7,

{(log f)odlogg — log g(po)dlogf} — {(log f)1dlogg — log g(p1)dlogf}

Ypo Tp1

P1
= - / dlog f / dlogg + [log g(p1) — log g(po)] / dlogf = 0.
Y

Po Y

The first step uses the fact that (log f)o and (log f); differ only from pq to p1,
where the difference is — f,y dlogf, and the second follows from the bracketed

quantity being equal to f;:)l dlogg.

R(1-f,f)=1. It’s sufficient to check the case where f ~ z” locally, and
7 encircles 0. In fact we may assume f = z” locally since f = z¢, ¢(0) =
l=1-f=(1-2")G, G(0) =1, so that g and G drop out of the integral:
in

log[(1 — 2")G]dlog(2"g) — log[z(po)”g(po)]dlog[(1 — 2*)G],
the G, ¢ and 1 — 2”, g terms integrate to 0 trivially, while

/ log Gdlogz" — log z(po )" dlogG
.
vanishes since G(0) = 1. So we are left with
/log(l — 2")dlogz"” — log pydlog(1 — 2),
y

which for v > 0 again vanishes by the residue theorem. If v < 0, replace v
by —v, write 1 — 27" = Z;;l, and give log(1— z") the corresponding product

branch; the integral becomes

/ vlog(z¥ — 1)dlogz — % log zdlogz — v log podlog(z” — 1) + v/ log podlogz.
g

To compute this we shall take radius(y) = % (not 1, since it must avoid the
zero of 1 — f), and py = %; then

(g7 ()
/lst term = 2miv log(—1) S (—1)",
y
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21 2 v . Lo Lo
2nd term = —°= [ d[(logz)’] = ——= |(2mi + log =)* — (log =)
., 2/, 2 2 2

2

1
= —%27T’i [2 log 3 + 27Tz'] = 2mi [v*log 2 — Vi) ,

1
/Srd term = 0, /4th term = 1%2mi log 5= —2miv? log 2.
v v
And so
€210 5

/last 3 terms = 27202 £ (—1)V.
v

2

But (—1)Y(—=1)"" = (=1)*#**+Y =1, which is what we wanted.

R(f,g)=R(g,f) '. As « starts and ends at py, log -2~ and log % —

9(po)
which are zero at pg — each change by a multiple of 27i. Hence

Lo L = 0(mo 7i)?
fyd[log o) gf(p())] = 0(med (2mi)°Z),

and so

[ 105 dlogf 1o £ (p)dlogg = ~ [ log fdlogg ~ log ).
Y Y

ﬁ (each side)

Taking e
R(f'f,g)=R(f',g) xR(f,g). This is obvious.

gives the result.

So R is well-defined and it makes sense to write Rx{f,¢g}, or more gen-
erally Rx [[,{fa>9a}. Now if this yields 1 (i.e., is trivial) on I-cycles

v € ker{lim zc x Hy(X — Z,Z) — Hy(X, Z)}

(loops around points), then we say [[,{fa,9a} € K2(X). Such elements
constitute a subgroup of Ko(C(X)), and we have the series of inclusions
Ky(C(X)) 2 K2(X) D ker(Rx) 2 K2(C). What if Ry is trivial on all
1-cycles?

CONJECTURE. ker(Rx) = K>(C).

We prove this for X = P'. The interplay of (local) analysis and global
algebra (on the function field) will show why this is so hard in general (for
X of higher genus). We manage to get around this later (for the purposes
of the “norm” algorithm) by working with “ K, of meromorphic functions on
branches of X” (since there we are only concerned with the information that
the algorithm “commutes” with the local evaluation and regulator maps on
K5). But here we need a real global computation (1.6).

First of all, since H'(P') = 0, K3(P') = ker(Rp1). So we’ll prove
K5 (P') = K5(C).
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Local Analysis (for all Riemann surfaces X). Let 5 € X be some
point and write f,g € C(X)* locally as f = (z — 8)*6) f g = (z — B)*89g.
We compute R{f,g}(v3), where 73 is a very small path about 3, and pick
po € X so that, in this local parametrization, pg— 8 = 1. (Note in particular
that this = ¢g(po) = g(po).) The integral is

[ {1og((z — BV fdlog((= ~ ) @g)  log glpo)dlog((= — B>V f) }

211 8

1

= 9 { vs(g) log fdlog(z — B) — v5(f) log g(po)dlog(z — B)
B

+v3(f)log(z — B)dlogg + vg(f)vs(g) log(z — B)dlog(z — ) + inessential terms }

[now use the residue theorem; also, on third term above use [ by parts to
get the last term below; and in the last term above use pg — 8 = 1 plus
integrating d{log?(z — )} to get the third term below]

= vg(g)log f(B) — v(f) log g(po) + v (f)vs(g) mi

+V§7(£ ) [ 1 dlog(z — B)log ] — log galog(= — ) }
RE]

= vg(g) log f(B) — vs(f)log §(po) + vs(f)vs(g) mi + vs(f) log d(po) — vs(f)log G(B)

= v3(g) log f(B) — v(f) log G(B) + vs(f)vs(g) mi.
So, taking e(ﬁ(')),
2\vs(9)
RF.0} ) = (1200 B — 7.,

and we call T3{f,g} the “tame symbol of f and g (evaluated at 3)”. Now
Weil reciprocity says that

11 7sif.9} =1,
peXx

i.e. some kind of “global reciprocity” law always holds. Our computation
implies, on the other hand, that if a pointwise “local reciprocity” Tg{f, g} =
1 holds at S for two functions, then the corresponding K-theory element
must have trivial regulator around . We restate this more generally in the
following

PROPOSITION. [[ {fa;9a} € K2(X) <
vg(9a)
i (1) S V8 (a5 (0a) HM — 1, ][ _
fm (=) (a ga(zyat ) = oL e gk = 1VE € ).

This holds for all X. What follows does not.
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Global Arithmetic in Ko(C(P')). We establish yet another
PROPOSITION. T[] {far9a} = 1 (VB EP!) &

H{fa,ga} € K»(C) (C K»(C(PY))) .

Combined with the previous result, this will prove Ky(P!) = K5(C).

The implication “<=" is of course trivial since constants have no poles or
zeroes (and so the vg(.) are all 0). We shall begin the other direction with a
single term

[ [

{fog} = {H<z —a)™, [z~ by)™ }

where a; and b; are all distinct, and the following

LEMMA. {z —a,z — b} = {2z —a,a — b}{b —a,z — b}.

PrROOF. Put A=2—a,B=2—-b,C=a—b. Wehave B=A+C, i.e.
1= % + %, which implies by the Steinberg relations that

A C

1= {E’ E} = {4, C}{A’B}_I{B’O}_I{BaB},

and so
{A,B} = {A,C}{C,B}{B,B}.
Now {B,B} = {B,B} ! = U500 = (158, B} = {4 - 1,B} = {§ -
Lt t={-1,5{1-4, 5} '={-1,B}. So
{A,B} ={A,CHC,BH{-1,B} = {4,CH{-C, B},
which is the desired equality. O

CASE 4. Assume one term, f and g monic with |(f)|N](g)| =0 or {oc}.
(We are assuming Ts{f, g} = 1 for all B € P1.)

{f,9t = H{Z —ai,z — b} = H ({z = ai,a; — b}, {bj — ai, z — bj})™"™

1] ]

= [[{z - ai, [ [(ai = b }™ /H{Z —bj, [ [ (b —as)™ ™
i j i

J

= [I{z - ai, ()™} /H{Z = bj, f(bj)™}
i J

:H{Z_ai,1}/H{z—bj,1} =1,
i J
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where the second-to-last step comes from local reciprocity, since a; and b; are
distinct. Two quick proofs that {4,1} = 1: either use {A4,1} = {4,1°} =

{A, 1} =1o0r {41} = E’ﬁ = 1. Trivially 1 € K5(C) so we're done.

CASE 5. Remove the assumption on divisors.
Assume, with all a;, bj, ¢ distinct, that

f= HZ—Ck quz—a)m’ andg—H(z—CK)”H(z—bj)"i

0
satisfy local reciprocity at each . Then {f,g}

= H ({kk} T4z — chz—coymere H{z—ck,z—b yosns H{z ai,z — e} )

£k

X H{z — aj, 2z — b}

Z-’j
= H{z — ¢k, — 1}k X H {z — ¢k, cp — o} % H {co — ¢,z — cg}Ir™
ke 0£k e
X H ({z — ¢k, ek — bj}{bj — ek, 2 — bj })*" x H ({z — as,a; — e ek — ajyz — e }) ™"
k,j ki

x [T (2 = ai,ai — b} {bj — @i,z — b})™™
o
[now switch & and £ in the third factor above]

(Meeer = e T en — b )™
(IMier = a)™ Mezaler = )™

<11 {z - a;, (H(ai —b;)" [J(ai - ck)r’“> } X (H {z —b;, (H(bj —a)™ [](b; - c;c)q’“> })
i J k j i k

:H{z—ck,l}H{z—ai,l}/H{z—bj,l} = 1 € Ky(0).
k i J

CASE 6. Separate |(f)| and |(g)| again but remove the requirement that
f and g be monic.

That is, let f = &f and ¢ = ng, where f = [[;(z —a;)™ and g =
[1;(z —b;)". Then

= H Z_Cka(_l)qkrk
k

—1

{f,9} =& n}H{f,z—b}’”XH{z ai,n}™ x [[{z — ai, z — b;}™m

2%
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= {ﬁ,n}H{ﬁ”i,z—bj} X H{Z_a/ianmi} X (H{z_aug(al)ml}/H{Z_bj7f(bj)n]})

[Ii{z — az,( ng(ai))™ [= 1]}
[T;{z = bj, (£ (b5))" [= 1]}

Combining the Cases. (Remove all assumptions on f and g.)
So we have essentially f = {[];(z —a;) [[(z — cx)% and g = n[];(z —
bj) [1,(z — cp)". Defining for every g € X
o g P f
98 °= (z — B)vel9) and fg := (z — B)ref)’

from the previous computations it is clear that

:{57 }

= {5777} € KZ((C)

vg(f)

95(P)
{f,9} = [T {2 B (-1ysm@ 0
BEl(FIUl(@)\oo F5(8) @

For a product [],{fa,9a} we have therefore in Ko(C(P'))

| x{&n}

H {Z—,B,H( )Vﬂ(fﬂ)”ﬁ(ga)w} % {fom'r]a}
BE|(fa)|Ul(ga) [\ o faz(B)5

= H{faana} € KZ((C)7

since the big product over a is just T3[[,{fas 9o} (= 1 by assumption). This
completes the proof that Ko(P') = Ko(C).

II. Norm

From the Riemann-Roch theorem follows the existence of a “primitive
pair” of meromorphic functions h, z : X — P!. What we mean by “primi-
tive” is the following:

(i) Geometrically, they give an embedding X < P! x P! (not P? — there
you get at least normal crossings in general — P! x P! has a bit “more”
structure, being the compactification of C* x C* by four P's rather than

three). We write (z,w) for coordinates on P! x P!, and think of X 2 P oas
giving a branched covering of the z-sphere. When convenient we write z in
lieu of h to denote the function on X (an exception would be “h~!(2)”).
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(ii) Algebraically, they generate the function field: sending w
gives an isomorphism C(z)[w] /(®(z, w)) 5 C(X), where ®(z,w) = w"
w" 'Ri(2) + ... + Rp(z) is the minimal polynomial of x, and R;(2)
C(z) are rational functions. The “graph” of (i) is the solution set Xg
{(z,w) | ®(z,w) = 0} (every Riemann surface is algebraic!). Since C(z)
C(P'), this expresses C(X) as an extension of C(PL).

w1 m+ s

Galois Ks-norm for splitting field extensions. Preliminary re-
marks on strategy in the function-field case. We will describe an al-
gorithm similar to the Galois norm which maps K2(C(X)) — Ky(C(P)).
Simplifying for a moment to subfields of C, suppose we have a splitting field
extension L/K, L = K(z) (z € C), with ®(z)[= 0] the mimimal polynomial
of z over K, with roots {x = z1},z2,... ,z,. Sending w — z gives an iso-
morphism K[w] /(®(w)) = £, and so we may write F, G € L as f(z), g(x),
where deg(f(w)), deg(g(w)) < n. (F = f(z) and G = g(z) are numbers,
f(w) and g(w) are polynomials.) Define

n
NepelF,GY = [[{F @), (@)}

i=1
Notice that, while the extension L/ has degree n, (K[w]/(f(w))) /K =
K(o)/K and (K[w]/(g9(w))) /K = K(1)/K are lower-degree extensions not
contained in £ and with degrees not necessarily dividing n. (Here o and 7
are complex numbers satisfying f(o) = 0 and ¢g(7) = 0 — that is, g(w) and
f(w) are their minimal polynomials — with conjugates o; and 74.) So, if we
could somehow exchange the role of ® with that of f and/or g, we could
pass from terms € Ky(L) to terms € Ky(lower degree extensions) (or so I
claim). We’ll work this out completely in the function field case below.

Passing back to function fields, the roots x; get replaced with the branches

x; of z over the z-sphere, which are no longer € £ = C(X) (that’s the only
real difference). [Likewise for o and 7.] So the computations which follow are
not really in Ko(C(X)); they merely constitute an algorithm. However, they
are “correct” locally and pointwise (almost everywhere), enough to preserve
(commute with) the regulator and Ks(C)-evaluation at z, in a sense to be
described later.

The norm algorithm. This is based on an idea in [GG3|. Let

£(<n) m (<n)
f(z,w) = H (w—aj(z)), g(z,w) = H (w_Tk(z))
j=1 k=1

be general (monic, for simplicity) elements € C(z)[z]/(®(z,x)), and of
course
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(The “functions” o, 7, ; all have branch cuts and so are not meromorphic
over the z-sphere.) It’s important in what follows that £, m < n. Omitting

the z-variable?’ we write “Ng{f, g} 2 := [LAf (i), 9(zi)}

~ 14 T - o T~ 70

J k

[now use the Lemma from IJ

= H{(IIZ — 04,05 — Tk}{Tk —04,%; — Tk}
1,5,k

=11 {H(wz — o), [[(os - Tk)} < [T4 L% = o). [ [ (i — )
i ; ;

3 J )

= [T{(=1)"®(0)), 9(0)} x [[{/ (7), (=1)" @ (7)}
J k

[now we reduce, e.g. in the first factor, (—1)"®(w) and g(w) modulo f(w)

to get, respectively, ®(w) and g(w), both of degrees < £. Since f(o;) =0,

®(0j) = ®(05) + ¢(0)f (o) = (=1)"®(0;). Similarly g(o;) = g(0;).|

= T1{®(05), (o)} x [J1F (), B(m)}
j k

= ﬁf{(i)7g} X Ng{f,i)}
These should be thought of as norms on K(C(Xf)) and K(C(X,)) rela-

tive to the extensions C(X;)/C(P.) and C(X,)/C(P.) (rather than C(X =

X3)/C(PL)), where e.g. X; = {(z,w)| f(z,w) = 0} 27 pI x p1 22

Continuing this process, we reach degree 0 (in w, corresponding to a
degree 1 [trivial] field extension of C(IP,)) so that everything is rational func-
tions of z. Thus we land in K(C(P)), and define by abuse of notation

POwriting, for instance, f(z;) for f(z,zi(z))

2l(really a placeholder, since what follows is not, strictly speaking, a quantity)

*?X; and X, are not intermediate in the covering X — P.. Rather all three are
intermediate in some covering Y — P.. The “dictionary” of meromorphic functions on
these Riemann surfaces is:

X:X‘PH(Z:h7 f,g,w?x)

X (z=hfg=3 =2, w=0)

Xy (z=hy, f=Ff, =0, w=r1)

Y & (z=hy, w, 0, 7, x);0, T, , together with z, give maps from Y to (the embedded
images in P! x P of) X, Xy, X, respectively. The oj, 7, «; are just the branches of
w on X7, Xy, X over P., respectively. On Y one may write the branches of o as oijk(2)
(resp. T as 7i;k(2), © as ;% (2)), where changing i or k (resp. i or j, j or k) has no effect.
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“Np{f,g9}":= No{f,g} :=the element so obtained. So in retrospect, this can
formally be seen as a recursive definition of an element in Ky (C(P)).

Behavior with respect to evaluation and regulator maps. For any
Riemann surface Y one may verify?? that pointwise evaluation ©y{f, g}(p) :=

23To show this is well defined one needs to prove the following fact:

[Tt4: Biy™ =[[{'A;,'B;} ™ in K>(C(Y)) and A;, Bi,'A;j,'B; all #0,00 at p

= [[Aw), B} =T]{ 4,/ B} ™ in K (O,

The nontrivial thing to show here is that it doesn’t matter if the Steinberg relation by
which the K2(C(Y')) equivalence is accomplished, contains terms with zeroes or poles at p.
Rewrite the hypothesis in Z[Pgy \ {0, 00}] as a term-for-term equality

(#) > miAi@Bi—» 'mi’A;®@'B; = ) (W @Ean. —w. @& —w. D)

+ ) (we®'tt'ee'w) + > nod-"n).

Fix a function e with a first order zero at p; if ¥ = P! then it could be (z — p). For
a € C(Y) we will write & = €@ where a(p) # 0,00. Some terminology: if a = 0 then
a is “reduced”; if both a and 3 are reduced then o ® 3 is; and if all (1, 2, or 3) terms in
a Steinberg are reduced then that Steinberg is. Furthermore, for any a ® 8 = €*a@ ® ¢’
there is a fixed algorithm to produce a (very lengthy) sum of Steinbergs S(a ® 8) such
that (term-for-term)

ab db

(##) a®pB=8@ep)+a®B+ex(-1) 3

If o ® B is already reduced then S(a ® 8) = 0.

Now develop the r.h.s. of (#) as follows:
(i) set aside the Steinbergs that are reduced to begin with, and apply the fixed algorithm
(#+#) to every term of each remaining Steinberg (the reduced terms among these will be
unaffected).
(ii) The resulting (nonzero) S’s are in 1-1 correspondence with all unreduced terms from
the original r.h.s. of (#). Since these terms had to cancel to give the (entirely reduced)
terms of the L.h.s., by the same cancellation scheme the S-terms all cancel (oddly enough
some of these will be reduced).
(iii) Since the only remaining terms containing e are now of type e® (- -- ), and (obviously)
none of these are reduced, they also neatly cancel out.

The upshot is that we have rewritten the r.h.s. of (#) (after some pair cre-
ation/annihilation)
> (w ® Euife — @u ® E. — . ®ﬁ*) +5° (’w* ®'E. +'E. ®’®*) +3 i o (1= ).
The first two sums are of reduced Steinbergs and therefore evaluate to Steinbergs at p.
On the other hand, ‘7. ® (1 —'n.) may not be a Steinberg. For example, if a > 0 and
o = €"@ then

a®l-a=a®(l-ea)

is not a Steinberg, while if instead & = ¢~ “& then

—~—

aRl—a=a (" —a)
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{f(p),g(p)} induces a well-defined map
®Y : KQ((C(Y)) — {T]y — KQ((C)}

Somewhat more exotically, we would like to be able to hit Ny and Ng (the
beginning and end of the norm algorithm) both with © to obtain

(%) I[I (@9} = [Oer(Na{f,9})] (2)

pi€h—1(2)

where the p; are counted with multiplicity if z is a branch point. Unfor-
tunately this is true only almost everywhere: while the norm algorithm
commutes with evaluation (in the sense that the same manipulations would
be correct in K»(C) over a fixed zp), the introduction of o; — 73 in the norm
algorithm (via the Lemma from I) produces zeroes (and poles) where there
weren’t any.

On the other hand, if we knew a posteriori that Ny{f,g} were of the
form Ko(C) C Ko(P'), then we would know that these zeroes (and poles)
had been removed either (i) in the remainder of the norm algorithm, or
(ii) in the use of the Steinberg relations in ®2Z[P&P1) \ {0,00}] to reach
®?Z[PL\ {0,00}]. In either case () holds for all z € P! for which the right
hand term makes sense — that is, for which A= (2)N(|(f)|U|(g)]) = 0. To see
this one can simply repeat the algorithm of the well-definedness argument
(extended to include fractional powers of ¢€) locally on P!.

So towards this objective we show that the norm algorithm commutes
with something which (a) yields local information and (b) doesn’t flinch at
the sight of zeroes: the regulator (whose paths may avoid going through any
specified number of points, because of the direct limit). We claim that

() [Res(Ni{f,91)] (7) = (Rx{f,9}) (h™"),

where h ™17 is a path in X with (possibly non-closed) branches 7; over the
z-sphere. There is absolutely no problem with the meaning of the left-hand
side, because Nj{f,g} is an element of K5(C(P!)).

In what follows we rewrite the regulator in an equivalent form, which
results from changing _f“/ log g(po)dlogf to 2mi qu’YﬂTf +logg(q). Here

Ty = f~'(R™) is shorthand for the branch cuts of log f on X (unlike z; or
fi, this has nothing to do with the branches of X over P!), and the sign is
positive for a jump (along ) from 0 to 27i and negative for the opposite.
Now, writing f; = f(z,zi(z)) and ¢g; = g(z,x;(z)) for branches of f and g

isn’t either! However, evaluating them at p (since e(p) = 0) yields respectively
alp) ®1 and a(p) ® —a(p)
which are Steinberg relations in Z[P¢ \ {0, co}]. Therefore we have expressed
> miAi(p) @ Bi(p) = > _'m;"A;(p) ® 'B;(p)

as a sum of Steinbergs, the corresponding element of K»(C) is zero, and we are done.
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and working on the right-hand side of (+#), we have: (Rx{f,g})(h 1v)

1
= enplly = ), losfdioss) + 3 logg(q)]

L]E"/ﬁTf

:Heq;p[(#__l/ logfidloggi)—i- Z IOggi(q)]
i Vi

qe’YﬂTfi

= Rp: (H{ﬁ,g&) (7) = Ry (J\th{f,g}) (7)-

Again, Ris just a placeholder rather than an actual regulator, although we
do have a well-defined quantity here. Our claim is that the norm algorithm,
applied to the expression [[,{fi, i} in parentheses (to obtain Ny{f,g}), pre-
serves the value of this quantity while gradually turning it into an expression
which is a regulator of something (on P'). We outline how to see this. If
one backtracks through the proof of our algebraic Lemma, one finds that the
Steinberg relations forgotten in the stage of the norm algorithm which we
have written out are

I1 <{L_Ujv 1- $i_gj} x {—(z; — k), xi—Tk}>-
i \zi =7 T — Tk

We want to show that [Rp(.)](y) applied to this gives 1. Referring to the
footnote on p. 8 for the discussion of Y, this is (a power of)

T—0 ., T-—0 o B 1
o ({2220 220 ko= e - ) ),
which clearly is 1. So the right-hand side of (%) becomes
Re (Nj{®,g} x No{f,®}) = [Rx, {8, g} (h ') x [Rx, {, ®](hy 1)

by essentially the same computation as above in reverse. In this way we
gradually “descend to P and the left-hand side of ().

The Proof of Suslin. This is now slick: suppose h =1 on |(f)|U|(g)].
Then (Rx{f,g})(h=ty) = 1 for all 4 on P! avoiding 1 (simply slide 7 to
{0} on P\ {1}). By (¥*), Nup{f,g} € ker Rp1, which by our work in part

Iis K5(C). So Np{f,g} consists of constants, and % = 1

Moreover, since Np{f,g} € K2(C) and only h=!(1[= z]) intersects |(f)| and
|(g)], it follows from the discussion following (*) that we may use (x) at
z =0,00. That is,

0O _ hen10l/®):g I o

Op1(No{f,g1)(00)  [lgen-1(00){f(9), ()}
Q.E.D.

p)}r®

p€|(h)]
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