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I.N. Transcendental extensions

Recall that given L/K and α ∈ L,

(I.N.1) α is transcendental over K ⇐⇒ evα : K[x]→ L
x 7→ α

is injective.

I.N.2. PROPOSITION. In this case, there exists a unique extension of
evα to ẽvα : K(x) ↪→ L, by setting ẽvα

(
f (x)
g(x)

)
:= f (α)

g(α) .

PROOF. The isomorphism K[x] ∼= K[α] induced by evα obviously
extends uniquely to an isomorphism of fraction fields, and of course
K(α) ⊆ L. �

I.N.3. DEFINITION. Given a subset A = {α1, . . . , αn} ⊂ L, A is
algebraically independent over K if

evA : K[x1, . . . , xn]→ L
xi 7→ αi

is injective. Equivalently, there is no nontrivial polynomial relation

of the form ∑j k jα
d1j
1 · · · α

dnj
n = 0 on the αj’s.

Once more, evA extends uniquely to ẽvA : K(x1, . . . , xn) ↪→ L, fac-
toring through an isomorphism K(x1, . . . , xn) ∼= K(α1, . . . , αn). An-
other characterization is given by the

I.N.4. PROPOSITION. A is algebraically independent/K ⇐⇒ αi is
transcendental over Ki−1 := K(α1, . . . , αi−1) (∀i).

PROOF. If αi is algebraic/Ki−1 for some i, then f (αi) = 0 for some
f ∈ Ki−1[x]. After clearing denominators, this equation takes the
form 0 = ∑n

j=0 Fj(α1, . . . , αi−1)α
j
i with Fj ∈ K[x1, . . . , xi−1]. But then

{α1, . . . , αi} (and thus A) is not algebraically independent over K.
The converse is left to you. �

An infinite set A is considered to be algebraically independent
over K when all its finite subsets are.

I.N.5. DEFINITION. Let S := {A ⊂ L | A is alg. ind./K}, or-
dered by inclusion. A transcendence basis for L/K is a maximal
element S ∈ S in this ordering (if one exists!).
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I.N.6. THEOREM. S ⊂ L is a transcendence basis for L/K ⇐⇒
(i) S is algebraically independent over K and (ii) L/K(S) is algebraic.

PROOF. ( =⇒ ): Let α ∈ L \ S ; then {α} ∪ S is not algebraically
independent. So f (s1, . . . , sn, α) = 0 for some s1, . . . , sn ∈ S and
f = ∑m

i=0 fi(x1, . . . , xn)yi ∈ K[x1, . . . , xn][y] (where fm 6= 0). But
algebraic independence of {s1, . . . , sn} =⇒ fm(s1, . . . , sn) 6= 0 =⇒
α is algebraic over K(S). Conclude that L/K(S) is algebraic.

(⇐= ): Again let α ∈ L \ S ; then α is algebraic over K(S) by
(ii), i.e. g(α) = 0 for some g = ∑m

j=0 gjxj ∈ K(S)[x]. In fact, the
gj belong to K(s1, . . . , sn) (for some finite subset {s1, . . . , sn} ⊂ S);
clearing denominators of the gj’s, we see that {s1, . . . , sn, α} is not
algebraically independent over K. So neither is S ∪ {α}, and S is
maximal. �

I.N.7. THEOREM. Any extension L/K has a transcendence basis. In
particular, given subsets C ⊂ A ⊂ L such that L/K(A) is algebraic and
C is algebraically independent over K, there exists a transcendence basis B
for L/K with C ⊂ B ⊂ A.

PROOF. Let B := {S ⊂ A | S ⊃ C, S alg. ind./K}. Each chain
in B has an upper bound given by the union of its elements: any
finite subset of elements in the union lies in a member of the chain,
and so is algebraically independent. Applying Zorn yields a maxi-
mal element B ∈ B. By the proof of I.N.6, any α ∈ A is algebraic
over K(B). So K(A)/K(B) is algebraic, which makes L/K(B) alge-
braic, which makes B a transcendence basis by I.N.6. Finally, to get a
transcendence basis, we can simply take A = L and C = ∅. �

The upshot of these two results is that we can separate out any
extension L/K into a “purely transcendental” part53 K(S)/K and an
algebraic part L/K(S).

53An extension is purely transcendental exactly when it can be written as K(S)/K
with S algebraically independent over K.
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I.N.8. EXAMPLES. (a) Let K = C, F(x1, . . . , xn) ∈ C[x1, . . . , xn] be
an irreducible polynomial, and L the fraction field of C[x1, . . . , xn]/(F).
Assuming F has positive degree in xn, we have

L = C(x1, . . . , xn−1)[xn]/(F).

This is an algebraic extension of C(x1, . . . , xn−1), making x1, . . . , xn−1

our transcendence basis. The subset XF ⊂ Cn defined by F = 0 is
called an algebraic variety, and L is its function field.

(b) Consider the case of L = R over K = Q. For any countable subset
S ⊂ R, Q(S) is countable. Were R algebraic over such a subfield,
it would be countable too: one could count all elements via their
minimal polynomials in Q(S)[x]. So any transcendence basis for
R/Q is uncountable.

(c) If L is finitely generated over K, then I.N.7 provides a transcen-
dence basis which is a subset of the generators, hence finite.

I.N.9. LEMMA. Given an extension L of K, together with subsets C =

{c1, . . . , cr} and A = {a1, . . . , as} (of L), with all ci’s distinct and all aj’s
distinct. Suppose that L/K(A) is algebraic, and that C is algebraically
independent over K. Then r ≤ s, and there exists a subset D ⊂ L with
C ⊂ D ⊂ A ∪ C such that |D| = s and L/K(D) is algebraic.

PROOF. Induce on r (trivial for r = 0, by taking D = A). Assum-
ing the result for r− 1, independence of C0 := {c1, . . . , cr−1} implies
the existence of D0 ⊂ A∪C0 containing C0 with |D0| = s ≥ r− 1 and
L/K(D0) algebraic. In particular, cr is algebraic over K(D0). Rela-
beling if necessary, we have D0 = {c1, . . . , cr−1, ar, ar+1, . . . , as}; and
clearly E := D0 ∪ {cr} is algebraically dependent.

Algebraic independence of C, on the other hand, means that cr is
transcendental over K(C0). It follows that D0 must be strictly larger
than C0, whence s > r− 1 (i.e. s ≥ r).

Now the dependence of E = {c1, . . . , cr, ar, . . . , as}means that for
some t (with r ≤ t ≤ s), at is algebraic over K(c1, . . . , cr, ar, . . . , at−1),
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hence over K(D) with D := E \ {at}. This makes K(E)/K(D) alge-
braic. But E ⊃ D0 =⇒ L/K(E) algebraic =⇒ L/K(D) algebraic.
This completes the inductive step. �

I.N.10. THEOREM. Any two transcendence bases for L/K are either
both infinite or have the same number of elements.

PROOF. Suppose both are finite. In the notation of the Lemma,
take C to be one basis, and A the other, thereby obtaining r ≤ s; then
reverse their roles.

If one basis is infinite, let C be a finite subset with r elements.
Suppose the other basis is finite and call it A. Since r is arbitrary this
yields a contradiction. �

I.N.11. DEFINITION. The transcendence degree of L/K, written
trdeg(L/K), is the number of elements in a transcendence basis.

I.N.12. EXAMPLE. The transcendence degree of the function field
of the algebraic variety XF = {F = 0} ⊂ Cn is n− 1, the same as the
dimension of XF.

Finally, there is a tower law for transcendental extensions:

I.N.13. THEOREM. trdeg(M/K) = trdeg(M/L) + trdeg(L/K).

PROOF. If A and B are transcendence bases for L/K resp. M/L,
then A ∪ B is clearly algebraically independent by I.N.4 (first adjoin
successive elements of A, then of B).

To see that M/K(A ∪ B) is algebraic, consider the intermediate
field L(B): by assumption M/L(B) is algebraic; the same applies to
L/K(A) hence to K(A ∪ B)(L)/K(A ∪ B) = L(B)/K(A ∪ B). �

Transcendental numbers. We want to prove that numbers like e
and π are transcendental. A first step is to understand why e is irra-
tional: it is approximated by a sequence of rational numbers “better
than it should be,” in the sense that the denominators of said num-
bers grow much more slowly than the error in the approximation
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decreases. The point is that by Taylor’s remainder formula, we have
(for the kth remainder)

(I.N.14) e− ∑k
m=0

k!
m!

k!
=

1
k!

∫ 1

0
ex(1− x)kdt <

3
(k + 1)!

=
3/(k + 1)

k!
.

So if e was of the form A/B (for some A, B ∈ Z>0) then multiplying
through by k!B would give

(I.N.15) 0 < k!A− B
k

∑
m=0

k!
m!

<
3B

k + 1
,

where we know the middle term is positive because the integral was.
But the middle term is an integer, and by taking k ≥ 3B we obtain a
contradiction.

Here is another approach which looks markedly different at first,
but is in fact closely related, and generalizes well to prove linear in-
dependence over Q of collections of exponentials. We’ll need the fol-
lowing basic calculation: given a polynomial P(z) ∈ C[z] of degree
d, consider the integral

(I.N.16) IP(s) :=
∫ s

0
es−zP(z)dz

along the segment from 0 to s in the complex plane. Integrating by
parts, this

= −es−zP(z)
∣∣s
0 +

∫ s

0
es−zP′(z)dz

= esP(0)− P(s) + IP′(s) = · · ·

= es(P(0) + P′(0))− (P(s) + P′(s)) + IP′′(s),

and continuing along in this vein (since P(d+1) = 0) yields

(I.N.17) IP(s) = es
d

∑
m=0

P(m)(0)−
d

∑
m=0

P(m)(s).

Now suppose that β0 + β1e = 0 for some βi ∈ Z \ {0}. Pick
a prime p larger than the |βi|, and let P(z) := zp−1(z − 1)p. Then
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using (I.N.17), we have

J := β0 IP(0) + β1 IP(1)

= (β0 + β1e)∑
2p−1
m=0 P(m)(0)−∑k=0,1 ∑

2p−1
m=0 βkP(m)(k)

= −∑k=0,1 ∑
2p−1
m=0 βkP(m)(k),

in which one notices that P(m)(k) is divisible by p! unless k = 0 and
m = p− 1, in which case it is divisible by (p− 1)! and not by p!. So
J 6= 0 and (p− 1)! | J, whence |J| ≥ (p− 1)!. On the other hand, we
would be silly not to notice that IP(0) = 0; and writing |P| for the
polynomial with its coefficients replaced by their absolute values,54

|IP(1)| = |
∫ 1

0 e1−zP(z)dz| ≤ e
∫ 1

0 |P|(z)dz ≤ e|P|(1) = 2pe

yields the bound |J| < Cp for some constant C independent of p.
Since p was arbitrary, we must have (p − 1)! < Cp for all p � 0,
which is of course a contradiction.

If we take P(z) := (1− z)k instead, then (writing β0 = −A and
β1 = B), the calculation of J yields something like the middle term
of (I.N.15). Moreover, J = BIP(1) is, up to a constant, the Taylor
remainder for e−x at x = 1. So, up to some signs, this recovers the
first proof. So now we thoroughly understand why e /∈ Q, and we
are also prepared for the hardest part of the proof of the

I.N.18. LINDEMANN-WEIERSTRASS THEOREM. If u1, . . . , un ∈ Q̄

are linearly independent over Q, then eu1 , . . . , eun are algebraically inde-
pendent over Q̄.

Before proving it let’s derive some consequences:

I.N.19. COROLLARY. e and π are transcendental over Q; equivalently,
they do not belong to Q̄.

PROOF. Since the single-element set {1} is linearly independent
over Q, the set {e1} is algebraically independent over Q̄; that is, e
satisfies no polynomial equation with coefficients in Q̄ (a fortiori in
Q) and is therefore transcendental over Q.
54Of course, here this is just zp−1(z + 1)p, but I will use this more generally later.
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Suppose we had π ∈ Q̄. Then also iπ ∈ Q̄, and by I.N.18 (argu-
ing as for e1) we would conclude that eiπ is transcendental. Which,
you know, contradicts the formula by Euler on my coffee cup. �

BAKER’S PROOF OF I.N.18. We use Galois theory (Steps 1-3) to
reduce to a statement that can be checked using the integrals (I.N.16)
(Step 4).

Step 1: It suffices to show that α1, . . . , αn ∈ Q̄ distinct =⇒ eα1 , . . . , eαn

are linearly independent over Q̄.

Consider distinct vectors k(i) ∈ Nn (i = 1, . . . , r). Since the {ui}
are LI/Q, the {k(i) · u}r

i=1 ⊂ Q̄ are distinct. By the statement dis-

played in “Step 1”, the ∏n
j=1(e

uj)
k(i)j = ek(i)·u are LI/Q̄. So no nontriv-

ial Q̄-linear combination of monomials in the euj ’s can be zero; that is,
the {euj} are algebraically independent.

Step 2: It suffices to show that α1, . . . , αn ∈ Q̄ distinct =⇒ eα1 , . . . , eαn

are linearly independent over Q.

Given a Q̄-linear dependency 0 = ∑ aieαi (with ai ∈ Q̄∗), we take
L/Q a SFE for the product ∏ mai of minimal polynomials. Write55

(I.N.20) ∏
σ∈Aut(L/Q)

(∑
i

σ(ai)eαi) = ∑
`

b`eβ` ,

where the β` are distinct, and show the b` are rational numbers that
are not all zero. By assumption, the σ = 1 factor of LHS(I.N.20) is
zero, and so 0 = ∑` b`eβ` . This Q-linear dependency contradicts the
statement displayed in “Step 2”.

To see that the b` belong to Q, first regard the eαi ’s as indeter-
minates xi. Since the product polynomial ∏σ∈Aut(L/Q)(∑i σ(ai)xi) is
Aut(L/Q)-invariant, its coefficients lie in Q. Substituting eαi ’s (as in
LHS(I.N.20)) and collecting coefficients with equal exponents (differ-
ent sums of αi’s may be equal) doesn’t change this. But how do we
know that this last step doesn’t make all b`’s zero?

55At this stage, we do not collect together eβ with eβ′ if eβ = eβ′ but β 6= β′. The
same goes for the RHS of (I.N.21) below.
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To see that this doesn’t happen, introduce a fake “order” on C:
A < B means Re(A) < Re(B) or Re(A) = Re(B) and Im(A) <

Im(B). It is at least respected by addition, and since the αi are dis-
tinct, one of them (say α1) is the highest in this “order”. The term
(∏σ σ(a1))e|Aut(L/Q)|α1 in the expansion of LHS(I.N.20) therefore does
not get “combined” with any other terms, so its (obviously nonzero)
coefficient is one of the b`’s.

Step 3: It suffices to show that mγ1 , . . . , mγn ∈ Q[x] distinct =⇒
∑γ∈R1

eγ, . . . , ∑γ∈Rn eγ are linearly independent over Q. [Here Ri :=
Rmγi

are the roots of each minimal polynomial, which is to say the
Galois conjugates of each γi; we shall write Ri = {γi1, . . . , γidi},
where γi1 = γi, and d = ∑i di = deg(∏i mγi).]

Suppose we have a relation ∑n
i=1 bieαi = 0, with bi ∈ Q∗. We

may assume that all bi ∈ Z \ {0} by multiplying the relation by an
integer. We need, once more, to reach a contradiction.

Denote the Galois conjugates of each αi (=: αi1) by {αij}di
j=1, and

let Sd (d = ∑ di) act on the 2-tuples ij. Note that the polynomial

P(x11, . . . , xndn) := ∏
τ∈Sd

(
n

∑
i=1

bixτ(i1)

)
vanishes on (eα11 , . . . , eαndn ) since the τ = 1 factor is 0 by assump-
tion. Moreover, since the product is symmetric, the coefficients of

(say) ∏i,j x
hij
ij and ∏i,j x

hij
η(ij) (for any given η ∈ Sd) are the same. So

expanding
(I.N.21)

0 = P(eα11 , . . . , eαndn ) = ∏τ∈Sd
(∑n

i=1 bie
ατ(i1)) = ∑hche∑i,j hijαij ,

the coefficient of e∑i,j hijαij is the same as that of each e∑i,j hijαη(ij) for η

in Sd a fortiori G := Sd1 × · · · ×Sdn .
This means that, taking a system of representatives {γI}N

I=1 of the
G-orbits in the ∑i,j hijαij’s appearing on RHS(I.N.21), the latter takes
the form

(I.N.22) 0 = ∑I CI(∑γ∈R′I eγ)
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where now the R′I denote roots of mγI
. Here we collect terms with

equal exponents as in (I.N.20). Again, some CI is nonzero because
in each factor of the product in (I.N.21) we can pick the term with
“highest” ατ(ij) in the “order” on C described before. The linear de-
pendency (I.N.22) thus contradicts the statement in Step 3.

Step 4: Verify the statement in Step 3.

Let a linear dependency

(I.N.23) 0 = ∑i,j βieγij

be given, with βi ∈ Z \ {0}. Pick N ∈ N such that Nγij ∈ Z̄, and a
prime p greater than N and the βi. Define polynomials

fij(z) := Ndp(z− γij)
−1∏i′,j′(z− γi′ j′)

p,

and note that the f (m)
ij (γk`) ∈ Z̄ are divisible by p! for m ≥ p, and

otherwise vanish unless m = p− 1 and (i, j) = (k, `), in which case
they are divisible by (p− 1)!.

Next recall from (I.N.17) that

Iij(s) := I fij(s) :=
∫ s

0
es−z fij(z)dz

= es
dp−1

∑
m=0

f (m)
ij (0)−

dp−1

∑
m=0

f (m)
ij (s).

The integral definition gives that |Iij(γk`)| ≤ |γk`|e|γk`|| fij|(|γk`|) ≤
Cp

ijk` for some constants independent of p. Defining

Jij := ∑
k,`

βk Iij(γk`) and J := ∏i,j Jij,
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this means that |J| ≤ Cp for some constant C ∈N independent of p.
On the other hand, the sum formula yields

Jij = ∑
k,`

βk

(
eγk`

dp−1

∑
m=0

f (m)
ij (0)−

dp−1

∑
m=0

f (m)
ij (γk`)

)

=

(
dp−1

∑
m=0

f (m)
ij (0)

)
��

��
�
��*

0(
∑
k,`

βkeγk`

)
−∑

k,`

dp−1

∑
m=0

βk f (m)
ij (γk`)

= −∑
k,`

dp−1

∑
m=0

βk f (m)
ij (γk`) ∈ Z̄ ,

where we used (I.N.23). Since p! divides all but one term of this
sum, which is divisible only by (p− 1)!, we get that (p− 1)! | Jij and
Jij 6= 0.

Finally, we notice that ∏i′,j′(Nz−Nγi′ j′)
p is a polynomial with Z-

coefficients, since it belongs a priori to Z̄[z] and is Galois-invariant.
Since f is obtained by dividing this by (z− γij), it is an easy exercise

(left to you) to show that we may write f (m)
ij (z) = ∑r grm(γij)zr for

some polynomials grm ∈ Z[z] independent of i, j. But then

dk

∑
`=1

f (m)
ij (γk`) =

dk

∑
`=1

∑
r

grm(γij)γ
r
k` = ∑

r

(
dk

∑
`=1

γr
k`

)
grm(γij)

= ∑
r

Mrkgrm(γij)

with Mrk ∈ Q; and so

Jij = −∑
m

n

∑
k=1

βk Mrkgrm(γij) =: G(γij)

takes the form of some fixed G ∈ Q[z] (independent of i, j) evaluated
at γij. So the product J = ∏i,j G(γij) is Galois-invariant and must
belong to Q. But it also belongs to Z̄ (because the Jij do), and so in
fact J ∈ Z. Moreover, since (p− 1)! | Jij, we have (p− 1)!)d | J; hence
|J| ≥ ((p− 1)!)d. We reach a contradiction now since ((p− 1)!)d ≤
Cp cannot hold for all p� 0. �
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Another transcendence result is the Gel’fand-Schneider Theorem,
which states that if α ∈ Q̄ \ {0, 1} and β ∈ Q̄ \Q, then αβ /∈ Q̄. This
is generalized by Baker’s theorem, which states that if eα1 , . . . , eαn ∈ Q̄

and α1, . . . , αn are linearly independent over Q, then 1, α1, . . . , αn are
linearly independent over Q̄. An extremely important conjecture in
algebraic and arithmetic geometry is Grothendieck’s transcendence
conjecture, which is about transcendence of periods (integrals of al-
gebraic differential forms on real semialgebraic sets) and is largely
open; for instance, it is expected that ζ(3) = ∑m>0

1
m3 is transcen-

dental, but it is only known that it is irrational. For (say) ζ(5), we
don’t even know irrationality.


