118 I. GALOIS THEORY
LN. Transcendental extensions
Recall that given L/Kand a € L,
(LN.1) «is transcendental over K <= ev,: K[x] — L is injective.
X = «

I.N.2. PROPOSITION. In this case, there exists a unique extension of

evy to evy: K(x) < L, by setting ev, (%) = %

PROOF. The isomorphism K[x] = K[«] induced by ev, obviously

extends uniquely to an isomorphism of fraction fields, and of course
K(a) C L. O

LN.3. DEFINITION. Given a subset A = {aq,...,ay} C L, Ais
algebraically independent over K if
eva: Klxy,...,x,] = L
Xp =
is injective. Equivalently, there is 7o nontrivial polynomial relation
of the form Y kjaflj e ai"j = O on the a;’s.

Once more, ev 4 extends uniquely toev 4: K(x1,...,x,) — L, fac-
toring through an isomorphism K(x1,...,x,) = K(ay,...,a,). An-
other characterization is given by the

I.N.4. PROPOSITION. A is algebraically independent /K <= w; is
transcendental over K; 1 := K(aq,...,a;_1) (Vi).

PROOF. If w; is algebraic/K;_ for some i, then f(«;) = 0 for some
f € Kij_1[x]. After clearing denominators, this equation takes the
form 0 = 27:0 Fj(al,...,oci_l)oc; with F; € K[xy,...,x;_1]. But then
{a1,...,a;} (and thus A) is not algebraically independent over K.

The converse is left to you. O

An infinite set A is considered to be algebraically independent
over K when all its finite subsets are.

LN.5. DEFINITION. Let .¥ := {A C L | Aisalg. ind./K}, or-
dered by inclusion. A transcendence basis for L/K is a maximal
element S € .7 in this ordering (if one exists!).
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LN.6. THEOREM. § C L is a transcendence basis for L/K <=
(i) S is algebraically independent over K and (ii) L/ K(S) is algebraic.

PROOF. (= ): Letaw € L\ S; then {a} US is not algebraically
independent. So f(s1,...,5n,&) = 0 for some sy,...,5, € S and
f=Y",fi(x1,...,xn)y" € K[x1,...,x][y] (where f,, # 0). But
algebraic independence of {s1,...,5n} = fm(s1,...,51) #0 =
« is algebraic over K(S§). Conclude that L/K(S) is algebraic.

(<=): Again let &« € L\ S; then « is algebraic over K(S) by
(i), i.e. g(a) = 0 for some ¢ = }"Zogjxj € K(S)[x]. In fact, the
g; belong to K(sy, .. .,Sn) (for some finite subset {s1,...,s,} C S);
clearing denominators of the gj's, we see that {sq,...,s,,a} is not
algebraically independent over K. So neither is SU {a}, and S is
maximal. O

LN.7. THEOREM. Any extension L/K has a transcendence basis. In
particular, given subsets C C A C L such that L/K(A) is algebraic and
C is algebraically independent over K, there exists a transcendence basis B
for L/KwithC C B C A.

PROOF. Let Z:= {S C A| S D C, S alg. ind./K}. Each chain
in % has an upper bound given by the union of its elements: any
finite subset of elements in the union lies in a member of the chain,
and so is algebraically independent. Applying Zorn yields a maxi-
mal element B € %. By the proof of LN.6, any x € A is algebraic
over K(B). So K(A)/K(B) is algebraic, which makes L/K(B) alge-
braic, which makes B a transcendence basis by I.N.6. Finally, to get a
transcendence basis, we can simply take A = L and C = @. O

The upshot of these two results is that we can separate out any
extension L/K into a “purely transcendental” part™ K(S)/K and an
algebraic part L/K(S).

53 An extension is purely transcendental exactly when it can be written as K(S)/K
with § algebraically independent over K.
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LN.8. EXAMPLES. (a) Let K = C, F(xy,...,x,) € C[xy,...,x,] be
an irreducible polynomial, and L the fraction field of C[x1, ..., x|/ (F).
Assuming F has positive degree in x,, we have

L=C(x1,...,x5-1)[xn]/(F).

This is an algebraic extension of C(x, ..., x,_1), making x1, ..., X, _1
our transcendence basis. The subset Xr C C" defined by F = 0 is
called an algebraic variety, and L is its function field.

(b) Consider the case of L = R over K = Q. For any countable subset
S C R, Q(S) is countable. Were R algebraic over such a subfield,
it would be countable too: one could count all elements via their
minimal polynomials in Q(S)[x]. So any transcendence basis for
IR/Q is uncountable.

(o) If L is finitely generated over K, then I.N.7 provides a transcen-
dence basis which is a subset of the generators, hence finite.

LN.9. LEMMA. Given an extension L of K, together with subsets C =
{c1,...,c+}and A = {ay,...,as} (of L), with all ¢;’s distinct and all aj’s
distinct. Suppose that L/K(A) is algebraic, and that C is algebraically
independent over K. Then r < s, and there exists a subset D C L with
C C D C AUC such that |D| = s and L/K(D) is algebraic.

PROOF. Induce on r (trivial for r = 0, by taking D = A). Assum-
ing the result for r — 1, independence of Cy := {cy,...,¢,—1} implies
the existence of Dy C AU Cy containing Cy with |Dy| =s > r —1and
L/K(Dy) algebraic. In particular, ¢, is algebraic over K(Dy). Rela-
beling if necessary, we have Dy = {c1,...,¢r—1,4r, 8741, ...,45}; and
clearly E := Dy U {c,} is algebraically dependent.

Algebraic independence of C, on the other hand, means that ¢, is
transcendental over K(Cp). It follows that Dy must be strictly larger
than Cy, whences > r — 1 (i.e. s > 7).

Now the dependence of E = {cy, ..., ¢, ay,...,as} means that for
some t (with r < t <'s), a; is algebraic over K(cy, ..., ¢, ar, ..., ai-1),
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hence over K(D) with D := E \ {a;}. This makes K(E)/K(D) alge-
braic. But E D Dy = L/K(E) algebraic = L/K(D) algebraic.
This completes the inductive step. O

I.N.10. THEOREM. Any two transcendence bases for L/K are either
both infinite or have the same number of elements.

PROOF. Suppose both are finite. In the notation of the Lemma,
take C to be one basis, and A the other, thereby obtaining r < s; then
reverse their roles.

If one basis is infinite, let C be a finite subset with r elements.
Suppose the other basis is finite and call it A. Since r is arbitrary this
yields a contradiction. O

LN.11. DEFINITION. The transcendence degree of L/K, written
trdeg( L/K), is the number of elements in a transcendence basis.

LN.12. EXAMPLE. The transcendence degree of the function field
of the algebraic variety Xp = {F = 0} C C"is n — 1, the same as the
dimension of Xr.

Finally, there is a tower law for transcendental extensions:
LN.13. THEOREM. trdeg(M/K) = trdeg(M /L) + trdeg(L/K).

PROOF. If A and B are transcendence bases for L/K resp. M/L,
then A U B is clearly algebraically independent by I.N.4 (first adjoin
successive elements of A, then of B).

To see that M/K(A U B) is algebraic, consider the intermediate
field L(B): by assumption M/L(B) is algebraic; the same applies to
L/K(A) hence to K(AUB)(L)/K(AUB) = L(B)/K(AUB). O

Transcendental numbers. We want to prove that numbers like e
and 7t are transcendental. A first step is to understand why e is irra-
tional: it is approximated by a sequence of rational numbers “better
than it should be,” in the sense that the denominators of said num-
bers grow much more slowly than the error in the approximation
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decreases. The point is that by Taylor’s remainder formula, we have
(for the k™ remainder)

Y ok 1 g1 ) 3 3/(k+1)
(LN14) ¢ — =1 —H/Oe(l—x)dt<(k+1)!— s

So if e was of the form A/B (for some A, B € Z-() then multiplying
through by k!B would give

k
k! 3B
LN.1 1A — =< 22
(LN.15) 0 < k Bm§_0m! <o

where we know the middle term is positive because the integral was.
But the middle term is an integer, and by taking k > 3B we obtain a
contradiction.

Here is another approach which looks markedly different at first,
but is in fact closely related, and generalizes well to prove linear in-
dependence over Q of collections of exponentials. We’ll need the fol-
lowing basic calculation: given a polynomial P(z) € C|[z] of degree
d, consider the integral

(LN.16) Ip(s) = /O T Ep(2)dz

along the segment from 0 to s in the complex plane. Integrating by
parts, this

S
- —eS_ZP(z)‘g—F/ e *P'(z)dz
0

= ¢*P(0) — P(s) + Ipi(s) = - - -
= eS(P(O) + P/(O)) - (P(S) + PI(S)) + Ip//(S),

and continuing along in this vein (since P(4*1) = 0) yields
d
(LN.17) Ip(s) =¢ Y P(0)— Y Pim(s).
m=0

Now suppose that By + f1e = 0 for some B; € Z\ {0}. Pick
a prime p larger than the |B;|, and let P(z) := zP~1(z — 1)P. Then
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using (I.N.17), we have
J := Polp(0) + B1Ip(1)
= (Bo+ B16) Loy P (0) = Tk—o1 Lnfp BcP™ (k)
= — Yaeo1 oy BP™ (K),

in which one notices that P(") (k) is divisible by p! unless k = 0 and
m = p — 1, in which case it is divisible by (p — 1)! and not by p!. So
J#0and (p—1)!| ], whence |J| > (p — 1)!. On the other hand, we
would be silly not to notice that Ip(0) = 0; and writing |P| for the

polynomial with its coefficients replaced by their absolute values,’*

1p(1)| = | [) e 2P(2)dz| < e [; |P|(2)dz < e|P|(1) = 2Pe

yields the bound |J| < C? for some constant C independent of p.
Since p was arbitrary, we must have (p —1)! < C? for all p > 0,
which is of course a contradiction.

If we take P(z) := (1 — z)¥ instead, then (writing By = —A and
B1 = B), the calculation of | yields something like the middle term
of (IN.15). Moreover, | = BIp(1) is, up to a constant, the Taylor
remainder for e”* at x = 1. So, up to some signs, this recovers the
first proof. So now we thoroughly understand why e ¢ Q, and we
are also prepared for the hardest part of the proof of the

L.N.18. LINDEMANN-WEIERSTRASS THEOREM. If uy,...,uy € Q
are linearly independent over Q, then e"1,..., e"" are algebraically inde-
pendent over Q.

Before proving it let’s derive some consequences:

I.N.19. COROLLARY. e and 7t are transcendental over Q; equivalently,
they do not belong to Q.

PROOF. Since the single-element set {1} is linearly independent
over Q, the set {¢!} is algebraically independent over Q; that is, e
satisfies no polynomial equation with coefficients in Q (a fortiori in
Q) and is therefore transcendental over Q.

540f course, here this is just zP~1(z 4 1)?, but I will use this more generally later.
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Suppose we had 7w € Q. Then also i € Q, and by I.N.18 (argu-
ing as for e!) we would conclude that e'” is transcendental. Which,
you know, contradicts the formula by Euler on my coffee cup. O

BAKER’S PROOF OF I.N.18. We use Galois theory (Steps 1-3) to
reduce to a statement that can be checked using the integrals (I.N.16)
(Step 4).

Step 1: It suffices to show that ay, ..., a, € Q distinct = e1,..., e
are linearly independent over Q.

Consider distinct vectors k) € N" (i = 1,.. ., 7). Since the {u;}
are L1/Q, the {k¥) . u}_, C Q are distinct. By the statement dis-

(i) i _
played in “Step 17, the [ Tj_; (¢" )kf = ¢ are LI/Q. So no nontriv-
ial Q-linear combination of monomials in the e"/’s can be zero; that is,

the {e"/} are algebraically independent.

Step 2: It suffices to show that oy, ..., a, € Q distinct => e“1,...,e%
are linearly independent over Q.

Given a Q-linear dependency 0 = Y a;e% (with a; € Q*), we take
L/Q a SFE for the product [ | m,, of minimal polynomials. Write>?
(LN.20) [T (Eoa)e) =Y befr,

ceAut(L/Q) i ]
where the B, are distinct, and show the by are rational numbers that
are not all zero. By assumption, the ¢ = 1 factor of LHS(I.N.20) is
zero, and so 0 = Y, byePt. This Q-linear dependency contradicts the
statement displayed in “Step 2”.

To see that the by belong to Q, first regard the e*’s as indeter-
minates x;. Since the product polynomial [Ty aut(r/0) (i 0(4i)xi) is
Aut(L/Q)-invariant, its coefficients lie in Q. Substituting e%’s (as in
LHS(I.N.20)) and collecting coefficients with equal exponents (differ-
ent sums of &;'s may be equal) doesn’t change this. But how do we
know that this last step doesn’t make all by’s zero?

At this stage, we do not collect together ef with e if ef = ef' but B # B'. The
same goes for the RHS of (I.N.21) below.
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To see that this doesn’t happen, introduce a fake “order” on C:
A < B means Re(A) < Re(B) or Re(A) = Re(B) and Im(A) <
Im(B). It is at least respected by addition, and since the «; are dis-
tinct, one of them (say «1) is the highest in this “order”. The term
(TL, o(ay))elAut(L/Qla jn the expansion of LHS(I.N.20) therefore does
not get “combined” with any other terms, so its (obviously nonzero)
coefficient is one of the b,’s.

Step 3: It suffices to show that m.,,...,m,, € Qx| distinct —
Yer, € o Yoer, €7 are linearly independent over Q. [Here R; :=
Rom,, are the roots of each minimal polynomial, which is to say the
Galois conjugates of each 7;; we shall write R; = {vi1,...,%ia, },
where vj; = v;,and d = }; d; = deg(I1; m,).]

Suppose we have a relation ' ; bie* = 0, with b; € Q*. We
may assume that all b; € Z \ {0} by multiplying the relation by an
integer. We need, once more, to reach a contradiction.

Denote the Galois conjugates of each «; (=: ;1) by {zx,]} i1, and

let 4 (d = )_d;) act on the 2-tuples ij. Note that the polynomial

P(xn, . xndn : H <be 11)

€6, \i=1
vanishes on (e"11,...,¢e%dn) since the T = 1 factor is 0 by assump-
tion. Moreover, since the product is symmetric, the coefficients of
(say) I'T;; x; ].’ and [];; X, (]l.].) (for any given 11 € &) are the same. So
expanding
(LN.21)
. hg;

0= P(e*,..., e%dn) = [Tres, (L8 be"ri)) = thhezw i
the coefficient of e "% is the same as that of each e "i*1i) for n
in &, a fortiori G := Gy, X -+ - X Gy, .

This means that, taking a system of representatives {-y, }¥_; of the

G-orbits in the Xij hija;i’s appearing on RHS(I.N.21), the latter takes
the form

(LN.22) 0=Y;Cr(Z,erye”)
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where now the R} denote roots of m.,, . Here we collect terms with
equal exponents as in (I.N.20). Again, some C; is nonzero because
in each factor of the product in (I.N.21) we can pick the term with
“highest” ;) in the “order” on C described before. The linear de-
pendency (L.N.22) thus contradicts the statement in Step 3.

Step 4: Verify the statement in Step 3.

Let a linear dependency
(LN.23) 0=Y;,pBie"
be given, with g; € Z\ {0}. Pick N € IN such that Nv;; € Z, and a
prime p greater than N and the ;. Define polynomials
fij(z) == N (z — ')’ij)ilni’,j’ (z = 7irp)?,

and note that the flgm) (7xk¢) € Z are divisible by p! for m > p, and
otherwise vanish unless m = p — 1 and (i,j) = (k, ¢), in which case
they are divisible by (p — 1)!.

Next recall from (I.N.17) that

Ii(s) = Iy, (s) = /0 e fii(2)dz
dp—1 dp—1

= L A0 - B A6

The integral definition gives that |[;; (k)| < |Yie| el 7! | fiil (lrke]) <
C Z'kf for some constants independent of p. Defining

Jij =Y Bilij(vke) and ] :=T1TJij,
Kt
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this means that |J| < C” for some constant C € IN independent of p.
On the other hand, the sum formula yields

dp—1 dp—1
Jij = kze:ﬁk (em Z—:o fi(jm)(o) - Z_;O fiﬁ’“)(vke)>

0

dp—1 dp—1
= (Z fig-m)m)) e ) =Y Y Bef ()
m=0 0 k¢ m=0
dp—1
==Y ¥ B () € Z,
k¢ m=0

where we used (I.N.23). Since p! divides all but one term of this
sum, which is divisible only by (p —1)!, we get that (p — 1)! | J;; and
Jij # 0.

Finally, we notice that [ ]y s (Nz — N7y )P is a polynomial with Z-
coefficients, since it belongs a priori to Z[z| and is Galois-invariant.
Since f is obtained by dividing this by (z — 7;;), it is an easy exercise
(left to you) to show that we may write fl.(jm) (z) = Xr &rm(7ij)Z" for
some polynomials g, € Z[z] independent of 7, j. But then
dy d d
Yo £ ) = L Y 8m (v ke = X (Z %Zz) &rm (Vi)
=1 (=171 r\¢=1

= ) Mugrm(7ij)
r

with M,x € Q; and so

Ji=-Y, i BiMx&rm (7ij) =: G(vij)

m k=1
takes the form of some fixed G € Q|z] (independent of , j) evaluated
at y;;. So the product | = [I; G(’yi]-) is Galois-invariant and must
belong to Q. But it also belongs to Z (because the J;; do), and so in
fact ] € Z. Moreover, since (p —1)! | J;;, we have (p — 1)"? | J; hence
17| > ((p — 1)!)%. We reach a contradiction now since ((p — 1)!) <
CP cannot hold for all p > 0. O
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Another transcendence result is the Gel'fand-Schneider Theorem,
which states thatif « € Q\ {0,1} and B € Q \ Q, then af ¢ Q. This
is generalized by Baker’s theorem, which states that if e*1,...,e%" € Q
and a4, ..., &, are linearly independent over Q, then 1, a5, ..., a; are
linearly independent over Q. An extremely important conjecture in
algebraic and arithmetic geometry is Grothendieck’s transcendence
conjecture, which is about transcendence of periods (integrals of al-
gebraic differential forms on real semialgebraic sets) and is largely
open; for instance, it is expected that {(3) = Y~ % is transcen-
dental, but it is only known that it is irrational. For (say) (5), we
don’t even know irrationality.



