
Math 132: Discussion Session: Week 12

Directions: In groups of 3-4 students, work the problems on the following page. Below, list the members of
your group and your answers to the speci�ed questions. Turn this paper in at the end of class. You do not
need to turn in the question page or your work.

Additional Instructions: It is okay if you do not completely �nish all of the problems. Also, each group
member should work through each problem, as similar problems may appear on the exam.

Scoring:

Correct answers Grade
0�3 0%
4�6 80%
7�13 100%

Group Members:

11.7 Series Strategy.

(1)
∞∑
n=1

2 + n

1− 2n
converges absolutely/converges conditionally/diverges. How do you know?

(2)
∞∑
n=2

(−1)n

lnn
converges absolutely/converges conditionally/diverges. How do you know?

(3)
∞∑
n=1

(ln(n+ 1)− lnn) converges absolutely/converges conditionally/diverges. How do you know?

(4)
∞∑
n=1

sin2
(π
n

)
converges absolutely/converges conditionally/diverges. How do you know?

(5)
∞∑
n=1

n

3n − 2n
converges absolutely/converges conditionally/diverges. How do you know?

(6)
∞∑
n=1

cosn

n
3
2

converges absolutely/converges conditionally/diverges. How do you know?

(7)
∞∑
n=1

(−1)n (ln(n+ 1)− lnn) converges absolutely/converges conditionally/diverges. How do you know?

(8)
∞∑
n=1

(−1)n

n1.01 ln(n+ 1)
converges absolutely/converges conditionally/diverges. How do you know?

(9)
∞∑
n=1

(−1)n(2n)!
(n!)2

converges absolutely/converges conditionally/diverges. How do you know?

(10)
∞∑
n=1

(−1)n sin
(
1

n

)
converges absolutely/converges conditionally/diverges. How do you know?

11.8: Power Series.

(1)
∞∑
n=1

nxn converges when < x < .

(2)
∞∑
n=1

(2n)!

(n!)3
xn converges when < x < .

(3)
∞∑
n=2

xn

lnn
converges when < x < .



Math 132 Discussion Session: Week 12

11.7 Series Strategy. Determine whether the following series converge absolutely, converge conditionally, or
diverge, using any of the methods discussed so far in class. State the method you used, and how you used it.
For example

• �
∑∞

n=1
1
n2 converges by the p-series test. The terms are already positive, so the series converges abso-

lutely.�

• �
∑∞

n=1
(−1)n
n2+2

converges absolutely by the comparison test because
∣∣∣ (−1)nn2+2

∣∣∣ = 1
n2+2

≤ 1
n2 and

∑∞
n=1

1
n2

converges.�

(1)
∞∑
n=1

2 + n

1− 2n

Solution: Looking at the dominant terms of each sum, we see that

lim
n→∞

2 + n

1− 2n
= lim

n→∞

n

−2n
= −1

2
.

Since the limit of the terms of the series is not zero, this series cannot converge. We're adding a lot of
numbers that are close to −1

2 , so the series must diverge to −∞.

(2)
∞∑
n=2

(−1)n

lnn

Solution: This series is an alternating series. As n→∞, lnn gets bigger and bigger so limn→∞
1

lnn = 0.
Thus, the series converges by the alternating series test.

Does it converge absolutely? To �nd out, we need to test if

∞∑
n=2

∣∣∣∣(−1)nlnn

∣∣∣∣ = ∞∑
n=2

1

lnn

converges.

Intuitively, lnn grows very slowly, so 1
lnn goes to zero very slowly, and so the series might diverge. In

fact, we know that lnn ≤ n, so
1

lnn
≥ 1

n
,

and we know that 1
n goes to zero slowly enough that

∑∞
n=2

1
n diverges. Thus, by the comparison test,

the larger series
∑∞

n=2
1

lnn must also diverge. That means that the series does not converge absolutely.

We conclude that the series
∑∞

n=2
(−1)n
lnn converges conditionally.

(3)
∞∑
n=1

(ln(n+ 1)− lnn)

Solution: This series is a telescoping series. Writing out the �rst few terms, we have that

∞∑
n=1

(ln(n+ 1)− lnn) = (ln 2− ln 1) + (ln 3− ln 2) + (ln 4− ln 3) + (ln 5− ln 4) + · · · .

Noting that ln 1 = 0, the partial sums are

s1 = ln 2,

s2 = ln 3,

s3 = ln 4,

s4 = ln 5.

Following the pattern, we see that sn = ln(n+ 1). This sequence diverges to ∞. Since the sequence of
partial sums diverges, the series diverges.



(4)
∞∑
n=1

sin2
(π
n

)
Solution: It's worth a shot to see if the terms of the series might fail to converge to zero. As n→∞, we
know that π

n → 0, and sin 0 = 0, so sin2 πn → 0. No luck, we'll have to try harder.

We want to do some sort of comparison test, and we know that sin2 πn ≤ 1, but that's not good
enough. If we were to try to use that inequality, we'd note that

∑∞
n=1 1 diverges. So we know that our

series is smaller than a divergent series, which tells us nothing.

We need a better approximation for sin π
n . As n becomes large, πn becomes very small, and we have

the approximation sinx ≈ x for small x. In fact since sinx curves downwards, we know that sinx ≤ x
for all x ≥ 0. Applying that fact, we see that

sin2
(π
n

)
≤
(π
n

)2
.

We know that
∑∞

n=1

(
π
n

)2
= π2

∑∞
n=1

1
n2 , which converges. Thus, the smaller series

∑∞
n=1 sin

2
(
π
n

)
converges also. Since the terms are already positive, we know that this series converges absolutely.

(5)
∞∑
n=1

n

3n − 2n

Solution: The dominant term in the denominator is 3n, so we should try comparing this series to
∑∞

n=1
n
3n .

To see if it's a valid comparison, the limit comparison test tells us to compute

lim
n→∞

n
3n
n

3n−2n
= lim

n→∞

3n − 2n

3n
= lim

n→∞

(
3n

3n
− 2n

3n

)
= lim

n→∞

(
1−

(
2

3

)n)
= 1− 0 = 1.

The limit exists and is above 0, so we've made a valid comparison, and to solve the problem what we
need to do is see if the simpler series

∑∞
n=1

n
3n converges.

There are several ways to do so. For example, the ratio test tells us to compute

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

n+1
3n+1

n
3n

= lim
n→∞

n+ 1

n
· 3n

3n+1

= 1 · 1
3
=

1

3
.

Since 1
3 < 1, the series

∑∞
n=1

n
3n converges.

Alternatively, we can use the comparison test, noting that n ≤ 2n. The series
∑∞

n=1
2n

3n is a geometric

series with common ratio 2
3 , so it converges. Thus the smaller series

∑∞
n=1

n
3n also converges.

In any case, by the limit comparison test, since
∑∞

n=1
n
3n converges, we conclude that

∑∞
n=1

n
3n−2n

converges. Since the terms are positive, we conclude that
∑∞

n=1
n

3n−2n converges absolutely.

Note that the ordinary comparison test would not work because n
3n−2n >

n
3n . The ordinary comparison

test would tell us that
∑∞

n=1
n

3n−2n is larger than a convergent series, which tells us nothing.

(6)
∞∑
n=1

cosn

n
3
2

Solution: The expression cosn is sometimes positive and sometimes negative, but it doesn't swap back
and forth in a regular pattern, so the series is not alternating, and we cannot use the alternating series
test.

But we can test for absolute convergence using the comparison test. We see that∣∣∣cosn
n3/2

∣∣∣ ≤ 1

n3/2
.

The series
∑∞

n=1
1

n3/2 converges by the p-series test, so the smaller series
∑∞

n=1

∣∣∣ cosn
n3/2

∣∣∣ converges, and so

the series
∑∞

n=1
cosn
n3/2 converges absolutely.



(7)
∞∑
n=1

(−1)n (ln(n+ 1)− lnn)

Solution: Note that ln(n + 1) − lnn is positive, so this is an alternating series. Using the alternating
series test, we need to compute

lim
n→∞

(ln(n+ 1)− lnn) = lim
n→∞

ln

(
n+ 1

n

)
= ln 1 = 0.

Thus, the series converges by the alternating series test.

Does the series converge absolutely? Since ln(n+ 1)− lnn is positive, we know that
∞∑
n=1

|(−1)n (ln(n+ 1)− lnn)| =
∞∑
n=1

(ln(n+ 1)− lnn) .

We determined in a previous problem that
∑∞

n=1 (ln(n+ 1)− lnn) diverges. As a result, we know that
the series

∑∞
n=1(−1)n(ln(n+ 1)− lnn) does not converge absolutely, so it converges conditionally.

(8)
∞∑
n=1

(−1)n

n1.01 ln(n+ 1)

Solution: This series is alternating. To see if it converges, we need to compute

lim
n→∞

1

n1.01 ln(n+ 1)

As n becomes large, n1.01 becomes large and ln(n+1) becomes large, so the denominator becomes large,
and so the limit is zero. Thus, the series converges by the alternating series test.

To see if the series converges absolutely, we need to check if
∞∑
n=1

1

n1.01 ln(n+ 1)

converges. We know that
∑∞

n=1
1

n1.01 converges by the p-series test, so, ideally, we can set up a comparison

to something like
∑∞

n=1
1

n1.01 by writing an inequality for the ln(n+1) term. Since n ≥ 1, we know that
ln(n+ 1) ≥ ln 2, so

1

n1.01 ln(n+ 1)
≤ 1

n1.01 ln 2

We know that
∑∞

n=1
1

n1.01 ln 2
= 1

ln 2

∑∞
n=1

1
n1.01 converges. Thus, the smaller series

∑∞
n=1

1
n1.01 ln(n+1)

also

converges, and so
∑∞

n=1
(−1)n

n1.01 ln(n+1)
converges absolutely.

(9)
∞∑
n=1

(−1)n(2n)!
(n!)2

Solution: The ratio test works well with factorials. To apply the ratio test, we write down

|an| =
(2n)!

(n!)2
, |an+1| =

(2(n+ 1))!

((n+ 1)!)2
.

Then we compute ∣∣∣∣an+1

an

∣∣∣∣ = (2(n+1))!
((n+1)!)2

(2n)!
(n!)2

=
(2(n+ 1))!

(2n)!
· (n!)2

((n+ 1)!)2

=
(2n+ 2)!

(2n)!
·
(

n!

(n+ 1)!

)2

= (2n+ 2)(2n+ 1) ·
(

1

n+ 1

)2

.



To compute the limit of this expression, we look at the dominant terms.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(2n)(2n)

(
1

n

)2

= 4.

Since this limit is greater than 1, the series diverges.

(10)
∞∑
n=1

(−1)n sin
(
1

n

)
Solution: This is an alternating series, so we can see if it converges by computing

lim
n→∞

sin 1
n .

As n → ∞, we know that 1
n → 0. Since sin 0 = 0, we know that limn→∞ sin 1

n = 0. Thus, the series∑∞
n=1(−1)n sin

1
n converges.

To �nd out whether it converges absolutely or conditionally, we need to see if
∞∑
n=1

sin 1
n

converges. There's no good way of working with sine, so we need to do a comparison test. As n becomes
large, 1

n is very small, and for small numbers we know that sinx ≈ x. So, it's reasonable to compare

sin 1
n to 1

n .

Unfortunately, the regular comparison test won't work here. We know that

sin 1
n ≤

1
n .

The series
∑∞

n=1
1
n diverges, so the series

∑∞
n=1 sin

1
n is smaller than a divergent series, which tells us

nothing.

However, the limit comparison test works just �ne. We need to compute

lim
n→∞

sin 1
n

1
n

.

To do so, we look at the corresponding function, see that we have an indeterminate form, and use
L'Hôpital's rule. We �nd that

lim
x→∞

sin 1
x

1
x

= lim
x→∞

cos 1
x · −

1
x2

− 1
x2

= lim
x→∞

cos 1
x = cos 0 = 1.

Thus, limn→∞
sin 1

n
1
n

= 1. Since 0 < 1 <∞, we the limit comparison test works, so we can conclude from

the fact that
∑∞

n=1
1
n diverges that

∑∞
n=1 sin

1
n diverges also.

We conclude that the series
∑∞

n=1(−1)n sin
1
n converges conditionally.

11.8: Power Series. Find the range of values of x for which the following series converge. The ratio or root
tests will be helpful, but after that you might need to check the endpoints of the range separately. In your
answer, change the < symbol to a ≤ symbol when needed. If the range of values doesn't have a lower or upper
bound, �ll in the blanks with −∞ and ∞.

(1)
∞∑
n=1

nxn

Solution: Let's use the ratio test. We see that an = nxn and an+1 = (n+ 1)xn+1. Thus

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)xn+1

nxn

∣∣∣∣
= lim

n→∞

n+ 1

n
· |x|

= 1 · |x| = |x| .
The ratio test tells us that the series converges when |x| < 1 and diverges when |x| > 1.



When |x| = 1, we need to check the endpoints separately. When x = 1, the series is
∑∞

n=1 n, which
diverges because the terms go o� to ∞. When x = −1, the series is

∑∞
n=1(−1)nn, which diverges by

the alternating series test.

Thus, the interval of convergence is −1 < x < 1, with the endpoints not included.

(2)
∞∑
n=1

(2n)!

(n!)3
xn

Solution: To use the ratio test, we start by writing down

an =
(2n)!

(n!)3
xn, an+1 =

(2(n+ 1))!

((n+ 1)!)3
xn.

Next, we need to compute∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣∣∣
(2(n+1))!
((n+1)!)3

xn+1

(2n)!
(n!)3

xn

∣∣∣∣∣∣
=

∣∣∣∣(2(n+ 1))!

(2n)!
· (n!)3

((n+ 1)!)3
· x

n+1

xn

∣∣∣∣
=

(2n+ 2)!

(2n)!
·
(

n!

(n+ 1)!

)3

· |x|

= (2n+ 2)(2n+ 1) ·
(

1

n+ 1

)3

· |x| .

To compute the limit, we look at the dominant terms in each sum

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(2n)(2n) ·
(
1

n

)3

· |x| = lim
n→∞

4

n
· |x| = 0.

No matter what x is, the limit is less than 1, so the series converges. Thus, the series converges for any
number x. In the desired format, we write −∞ < x <∞.

(3)
∞∑
n=2

xn

lnn

Solution: To set up the ratio test, we write

an =
xn

lnn
, an+1 =

xn+1

ln(n+ 1)
.

Next, we compute ∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣∣∣

xn+1

ln(n+1)
xn

lnn

∣∣∣∣∣∣
=

∣∣∣∣ lnn

ln(n+ 1)
· x

n+1

xn

∣∣∣∣
=

lnn

ln(n+ 1)
· |x| .

We need to compute the limit of this expression. Intuitively lnn is very close to ln(n + 1), so their
ratio should be close to 1. We can check this intuition by writing the corresponding function and using
L'Hôpital's rule. We have that

lim
x→∞

lnx

ln(x+ 1)
= lim

x→∞

1
x
1

x+1

= lim
x→∞

x+ 1

x
= 1.

Thus,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · |x| = |x| .



Thus, we know that the series converges when |x| < 1 and diverges when |x| > 1. When |x| = 1, we
need to check the endpoints separately.

When x = 1, the series is
∑∞

n=2
1

lnn . When x = −1, the series is
∑∞

n=2
(−1)n
lnn . We've considered both

of these series earlier in the worksheet. The series
∑∞

n=2
1

lnn diverges by comparison to
∑∞

n=2
1
n . The

series
∑∞

n=2
(−1)n
lnn converges by the alternating series test.

Thus, the interval of convergence is −1 ≤ x < 1, where we include one of the endpoints but not the
other.


