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Motivation: Clustering & Biclustering

Clustering

Find groups of objects which
are similar to each other.

Biclustering

Simultaneously find groups of
features & observations.

Cluster rows & columns of
data matrix.
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Clustering Approaches

The Good:

Simple & Fast.

Appealing Visualizations.

Easy Interpretation.

The Bad:

Local solutions.

Instability.

Tuning parameters.

The Ugly:

How many clusters?

Inference.

Hierarchical
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Convex Clustering & Biclustering

Why Convex?

Global solution!

Superior mathematical and statistical properties:
I Consistency.
I Stability.
I Improved clustering performance.

Data-driven selection of # of clusters.

Inference?

Fast Computation & Visualization?

Pelckmans et al. 2005; Lindsten et al. 2011; Hocking et al. 2011; Chi & Lange

2013; Tan & Witten 2015; Chi, Allen & Baraniuk, 2017; Radchenko &

Mukherjee, 2017
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Clustering Accuracy

Author Data
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Clustering Accuracy

TCGA Breast Cancer Data
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Convex Clustering

minimize
u

1

2

n∑
i=1

‖xi−ui‖2
2 + λ

∑
i<j

wij‖ui−uj‖2

xi - each observation (p-vector).

ui - cluster centroid for each observation.

Convex fusion penalty shrinks centroids together!

Pelckmans et al. 2005; Lindsten et al. 2011; Hocking et al. 2011; Chi & Lange

2013; Tan & Witten 2015.
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Convex Clustering

minimize
u

1

2

n∑
i=1

‖xi−ui‖2
2 + λ

∑
i<j

wij‖ui−uj‖2

λ controls BOTH cluster assignments & number of clusters.
I λ = 0 - each observation is its own cluster.
I λ larger - column means begin to coalesce together into clusters.
I λ very large - all observations fused into one cluster.

Algorithm: Alternating Minimization Algorithm.

In R: cvxclustr.
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Convex Clustering Solution Path
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Convex Biclustering
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Convex Biclustering

minimize
U

1

2
‖X−U‖2

F + λ
(∑

i<j

wij‖Ui·−Uj·‖2

+
∑
l<k

w̃lk‖U·l−U·k‖2

)

Checkerboard-like pattern: every data point Xij has its own bicluster
centroid Uij.

Simultaneously fuses row centroids AND column centroids to yield
biclusters!

Chi, Allen, and Baraniuk, 2017
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Convex Biclustering

minimize
U

1

2
‖X−U‖2

F + λ
(∑

i<j

wij‖Ui·−Uj·‖2

+
∑
l<k

w̃lk‖U·l−U·k‖2

)
λ controls BOTH bicluster assignments and # of biclusters.

Weights similar to convex clustering.
I Must sum to 1/

√
p and 1/

√
n to ensure the same fusion rate.

Algorithm: Dystra-like Proximal Algorithm + AMA.

In R: cvxbiclustr.
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Convex Biclustering Solution Path

λ = 0
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Convex Biclustering Solution Path

λ
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Convex Biclustering Solution Path

λ
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Advantages

The Good:

Global solution!
I Stable, reproducible results.

One tuning parameter.
I λ controls BOTH # of clusters & cluster assignments.
I Can select in data-driven manner - Cross Validation!

Statistical Consistency.

The Bad:

Inference.

Nested family of clustering solutions?

Slower iterative algorithms to find solution.

Chi, Allen, and Baraniuk, 2017; Tan & Witten 2015; Radchenko & Mukherjee, 2017
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Inference for Clustering

Are there true clusters in
my data?

How many clusters?

Our Approach: Inference for
cluster means.

5.0

2.5

0.0

-2.5

-4.0 0.0 4.0 8.0

X1

X2

Heller and Ghahramani (2005); Liu et al. (2008); Kimes et al. (2017); Huang et

al. (2015); Hyun et al. (2016)
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Background & Objective

Classical Inference for Multivariate Means:

One sample:
I X ∼ N(µ,Σ)

I H0 : µ = µ0 vs. HA : µ 6= µ0

I Hotelling’s T2: T2 = (X−µ̂)TŜ
−1

(X−µ̂) ∼ p(n−1)
n−p Fp,n−p.

Two sample:
I X1 ∼ N(µ1,Σ) & X2 ∼ N(µ2,Σ)

I H0 : µ1 = µ2 vs. HA : µ1 6= µ2

I Hotelling’s 2-Sample T2:

T2 = n1n2

n1+n2
(x̄1 − x̄2)TŜ

−1

pooled(x̄1 − x̄2) ∼ p(n1+n2−2)
n1+n2−p−1Fp,n1+n2−p−1.
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Background & Objective

Inference on multivariate means in adaptive data analysis?

Selective Inference:

Inference on Means after Clustering (our focus).

Inference on Means after Dimension Reduction, Outlier Removal,
Feature Selection, etc.

Major Challenge!: Need to decompose randomness in X due to
Hotelling’s T2 and all residual randomness independent of Hotelling’s T2

(Multivariate!).

Selective Inference Literature: Lee et al. (2016); Fithian et al. (2015); Tian and

Taylor (2015); Tibshirani et al. (2016); Hyun et al. (2016)
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New Data Decomposition for Hotelling’s T2

Step 1: New representations of T2 that are univariate (principal angles!).

Theorem

Let X−µ0 = U D VT be the SVD of the data centered by the null mean,
X̄ the sample mean, Ŝ the sample covariance matrix, and define

θ = arccos
(√

1T
n V VT 1n

)
.

Then, Hotelling’s T2 test-statistic can be written as:

T2 = (n− 1)cot2(θ)

Hotelling’s two-sample T2 can also be written in terms of a principal
angle.
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New Data Decomposition for Hotelling’s T2

Step 2: Data decomposition in terms of T2.

Main Theorem (Paraphrased)

Let X = U D VT be the SVD and θ = arccos
(√

1T
n V VT 1n

)
as before.

Then,

(a)

X = U D (Γ cos(θ) + Λ sin(θ) + Ω)

where Γ,Λ, and Ω are random matrices;

(b) θ is independent of Γ,Λ,Ω,U,D.

Similar decomposition for Hotelling’s two-sample T2 statistic.
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New Data Decomposition for Hotelling’s T2

Step 3: Use these new decompositions to conduct selective inference by
deriving exact null distributions for the following tests:

H0 : µk = µ0 vs. HA : µk 6= µ0

∣∣∣∣ Convex Clustering Solution

(Confidence regions for cluster means)

H0 : µk = µj vs. HA : µk 6= µj

∣∣∣∣ Convex Clustering Solution

(Test whether two clusters are truly separate)

Skipping the details . . .

Theorem (Very Paraphrased)

Null distribution is proportional to a truncated F-distribution.
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Inference for Convex Clustering: Toy Example

Confidence ellipsoids for
cluster means.

I Naive: dashed lines.

Two sample test for equality
of cluster green and blue
means.

I Naive:
p-value = 1.683517e-07

5.0

2.5

0.0

-2.5

-4.0 0.0 4.0 8.0

X1

X2 Naive
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Inference for Convex Clustering: Toy Example

Confidence ellipsoids for
cluster means.

I Naive: dashed lines.
I Ours: solid lines.

Two sample test for equality
of cluster green and blue
means.

I Naive:
p-value = 1.683517e-07

I Ours:
p-value = 0.1598832

4.0

0.0

-4.0

-4.0 0.0 4.0 8.0

X1

X2

Naive

Adjusted
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Inference for Convex Clustering: Breast Cancer Example

PC 2

PC 1

20

10

0

-10

-20

-30
-170 -160 -150

Cluster

Subtype

1
2
3
4

Basal-like

HER2

Luminal A
Luminal B

TCGA Breast Cancer Gene Expression Data (log-transformed RNASeq).

n = 445 patients with known subtypes & p = 353 genes with known BRCA
mutations.
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Inference for Convex Clustering: Breast Cancer Example
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Our Objective

Watch your data form clusters & biclusters!

Goal

Dendograms & Clusterheatmaps.

Convex clustering & biclustering solution paths.

Problems:
Potential fissions.

I Hocking et al. 2011; Tan & Witten 2015

Need exact λ where all fusions occur.
I Existing algorithms solve for one λ at a time.
I LAR / Path algorithm for Generalized Lasso doesn’t work for convex

clustering problem.

Computationally way too slow!
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Our Objective

Watch your data form clusters & biclusters!

Goal

Dendograms & Clusterheatmaps.

Convex clustering & biclustering solution paths.

Our Approach: Algorithmic Regularization Paths

Quickly approximate clustering solution path at a very fine resolution.
I Hu, Allen, & Chi, 2017

G. I. Allen (Rice & BCM) Inference & Viz for Clustering September 9, 2018 19 / 26



Algorithmic Regularization Paths for Clustering

Classical Regularization Paths

Start: Each observation is its own cluster & no regularization.

Do: Increase the regularization level (λ) by a tiny amount.

Do: Solve the optimization problem at λ.

Iterate the AMA updates until convergence.

Stop: All observations fused to one cluster.

Output: Solution at each λ as the Clustering Path.
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Algorithmic Regularization Paths for Clustering

Idea

Start: Each observation is its own cluster & no regularization.

Do: Perform one iterate of the AMA.

Do: Increase the regularization level by a tiny amount.

Stop: All observations fused to one cluster.

Output: Iterates as the Algorithmic Clustering Path.
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Clustering Path Equivalence

Clustering Path Equivalence for small t:

Very Fast!
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Clustering Path Equivalence

Theorem

The algorithmic convex clustering path, Ũt(k), is equivalent to the convex
clustering path, Û(λ), as the step size t→ 1:

dH(Û(λ), Ũt(k))→ 0.

where dH(Û(λ), Ũt(k)) is the Hausdorff distance:

dH(Û(λ), Ũt(k)) = max
{

max
k

min
λ
||U(λ)− Ũt(k)||2F,

max
λ

min
k
||U(λ)− Ũt(k)||2F

}
.
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Timing Comparisons

Author Data (n = 841, p = 69)
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Visualization Results
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Visualization Results
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Summary

Summary

1 Convex Clustering & Biclustering have many advantages.

2 Developed valid inference procedures for convex clustering.

I Novel data decomposition for Hotelling’s T2.
I Applicable to a variety of adaptive data analysis techniques.

3 Developed a fast algorithm to compute cluster solution path.

I Novel approach: Algorithmic Regularization Paths.

4 Developed interactive & dynamic visualizations for clustering and
biclustering.

Coming soon!
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Thank You!
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