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a b s t r a c t

Two routes most commonly proposed for accurate inference on a scalar interest parameter
in the presence of a (possibly high-dimensional) nuisance parameter are parametric sim-
ulation (‘bootstrap’) methods, and analytic procedures based on normal approximation to
adjusted forms of the signed root likelihood ratio statistic. Under some null hypothesis
of interest, both methods yield p-values which are uniformly distributed to error of
third-order in the available sample size. But, given a specific dataset, what is the formal
relationship between p-values calculated by the two approaches? We show that the two
methodologies give the same inference to second order in general: the analytic p-value
calculated from a dataset will agreewith the bootstrap p-value constructed from that same
dataset to O(n−1), where n is the sample size. In practice, the agreement is often startling.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Weare concernedwith inference, primarily using the signed root likelihood ratio statistic R, on a scalar interest parameter
ψ , in the presence of a (possibly high-dimensional) nuisance parameter φ, based on a random sample of size n from an
assumed parametric distribution depending on θ = (ψ, φ). Two routes most commonly proposed for accurate inference on
ψ are parametric simulation (‘bootstrap’) methods, (see DiCiccio et al., 2001; Lee and Young, 2005) and analytic procedures
based on normal approximation to adjusted forms of R, obtained via small-sample asymptotics. Prominent among analytic
procedures is use of a normal approximation to the R∗ statistic introduced by Barndorff-Nielsen (1986, 1991). Our purpose
here is to elucidate the formal relationship between the bootstrap approach to inference, specifically as applied to the signed
root statistic R, and the analytic approach based on R∗. In this paper, we examine the specific relationships between the
bootstrap and analytic methods for estimation of p-values for inference onψ: particular focus in our numerical illustrations
will be with estimation of p-values under the null hypothesis. We use results from DiCiccio et al. (2015a, b) to show that
from a theoretical perspective, quite generally, analytic and bootstrap p-values are equivalent to O(n−1): the two p-values
constructed from the same dataset agree to that order. Several examples showing close empirical agreement of p-values,
even for very small sample sizes n, are provided.

2. Problem setting

Suppose Y = (Y1, . . . , Yn) is a continuous random vector whose distribution depends on a parameter θ = (θ1, . . . , θd) =

(ψ, φ), where ψ is a scalar parameter of interest and φ is a vector of nuisance parameters, of dimension d − 1. Further
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suppose that it is required to test the null hypothesis H0 : ψ = ψ0 against a one-sided alternative. We wish to compare, for
a given dataset, the p-values derived from analytic approximation to the distribution of R∗ with the p-values derived from
the bootstrap distribution of R.

For testing the null hypothesis against one-sided alternatives, we may use the signed root of the usual likelihood ratio
statistic

R(ψ) = sgn(ψ̂ − ψ)[2{L(θ̂ ) − L(θ̂ψ )}]1/2 = sgn(ψ̂ − ψ)[2{M(ψ̂) − M(ψ)}]1/2,

where L(θ ) is the log-likelihood function, θ̂ = (ψ̂, φ̂) is the global maximum likelihood estimator, θ̂ψ = (ψ, φ̂ψ ) is the
constrained maximum likelihood estimator given ψ , and M(ψ) = L(θ̂ψ ) is the log profile likelihood function for ψ . Under
the null hypothesis, the repeated sampling distribution of R is standard normal to error of order Op(n−1/2). The analytic route
to achieve higher-order accuracy in such an inferential setting is based on a standard normal approximation to an adjusted
version of R(ψ), denoted by R∗(ψ).

The development of R∗(ψ) is as follows. Suppose that the log-likelihood function is written as L(θ; θ̂ , a), with (θ̂ , a)
minimal sufficient, where a is ancillary, having a distribution which, at least approximately, does not depend on θ . Such
a decomposition holds, trivially, in full exponential families, where θ̂ is minimal sufficient and no ancillary a is required, and
in transformation models, where the maximal invariant serves as the ancillary a. As noted by Severini (2000, §6.5), beyond
the exponential family and transformation model contexts, it may be difficult to establish that such a decomposition holds,
but general approximations, in particular constructions of approximate ancillaries, are possible which still allow validity of
the properties discussed here for analytic methods of inference. A drawback of such constructions is that explicit expression
of the log-likelihood in terms of (θ̂ , a) may then be intractable. This does not affect the calculation of a bootstrap p-value,
but would require approximation to the R∗ statistic, which we now describe.

The R∗ statistic is defined (Barndorff-Nielsen, 1986, 1991) as

R∗(ψ) = R(ψ) + R(ψ)−1 log(U(ψ)/R(ψ)),

with

U(ψ) =

⏐⏐⏐⏐⏐L;θ̂ (θ̂ ) − L
;θ̂ (θ̂ψ )

Lφ;θ̂ (θ̂ψ )

⏐⏐⏐⏐⏐ /{|jφφ(θ̂ψ )|1/2|j(θ̂ )|1/2}.
Here j(θ ) = (−Lrs(θ )) denotes the observed information matrix, with Lrs(θ ) = ∂2L(θ )/∂θ r∂θ s, where the indices r, s range
from 1, . . . , d, and jφφ denotes the (d − 1) × (d − 1) sub-matrix corresponding to components of the nuisance parameter φ.
Also,

L
;θ̂ (θ ) ≡ L

;θ̂ (θ; θ̂ , a) =
∂

∂θ̂
L(θ; θ̂ , a), Lφ;θ̂ (θ ) ≡ Lφ;θ̂ (θ; θ̂ , a) =

∂2

∂φ∂θ̂
L(θ; θ̂ , a).

The conditional distribution of the test statistic R∗(ψ) = R+ R−1 log(U/R) given a, and hence the unconditional distribution
under repeated sampling, is standard normal to error of order Op(n−3/2). An alternative to the standard normal distribution
for approximating tail probabilities of R∗(ψ) is the generalized Lugannani–Rice formula (Barndorff-Nielsen, 1991); to error
of order O(n−3/2),

pr(R∗
≤ r∗

⏐⏐a; θ ) = Φ(r∗) = Φ(r) + ϕ(r)(1/r − 1/u), (1)

where r∗
= r + r−1 log(u/r). The simulation route to inference in this setting is based on the parametric bootstrap

approximation to the marginal distribution of R(ψ). This is defined as the sampling distribution of R(ψ) under the model
specified by parameter value θ̂ψ , the constrained maximum likelihood estimator for the observed data sample: see DiCiccio
et al. (2001) and Lee and Young (2005). This parametric bootstrap yields p-values which are, under repeated sampling and
supposing ψ is the true value of the interest parameter, uniformly distributed to error of order O(n−3/2).

We consider first a motivating example.

Example 1 (Extreme Value Location-Scale). Let {X1, . . . , Xn} be a random sample from the Weibull density

f (x;β, γ ) = γ β(γ x)β−1 exp{−(γ x)β}, x > 0,

with interest parameter β . Defining Yi = log Xi, the Yi are random samples from an extreme value distribution EV (µ,ψ), a
location-scale family,with scale and location parametersψ = β−1, µ = − log γ . Interest is in inference on the scale param-
eter of the extreme value distribution. This distribution constitutes an ancillary statistic model: inference for ψ conditions
on the observed data value of the ancillary a = (a1, . . . , an), with ai = (yi − µ̂)/ψ̂ . Exact conditional inference is analytically
straightforward, but requires numerical integration for its calculation: see, for instance, Pace and Salvan (1997, §7.6).
Here, it is easily verified that the conditional distribution of R(ψ) given a does not depend on the nuisance parameter µ, so
the exact conditional inference is equivalent to a ‘conditional bootstrap’, whichwould be based on simulating the conditional
distribution of R(ψ) given a, modulo the error introduced by the finite simulation required in practice. It is of interest to see
how well this exact conditional inference is approximated by a marginal bootstrap, which ignores the conditioning and is
based on simulation of the marginal distribution of R(ψ).
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Fig. 1. Significance functions, pressure vessel data.

Consider the following specific data sample of size n = 5, representing the failure times of a set of pressure vessels, as
given by Keating et al. (1990): 274, 1661, 1787, 28. 5, 236. We model the data by the Weibull distribution and consider
inference on the associated scale parameter ψ in the derived extreme value location-scale model. For a range of values of
ψ0, consider testing H0 : ψ = ψ0 versus H1 : ψ < ψ0. We calculate p-values obtained by: (i) normal approximation to the
distribution of R(ψ0); (ii) normal approximation to the distribution of R∗(ψ0); (iii) (marginal) bootstrap approximation to
the distribution of R(ψ0), computed using B = 500, 000 simulated samples for each ψ0; (iv) exact conditional inference. In
each case, the p-value considered as a function ofψ0 is calculated: these ‘significance functions’ are shown in Fig. 1. It is clear
that p-values calculated by normal approximation to the sampling distribution of R∗(ψ) are, for each value ofψ0 tested, very
close to those calculated by a marginal bootstrap, and both are rather indistinguishable from exact conditional inference.

Fig. 2 compares p-values calculated by normal approximation to R∗(ψ) and the marginal bootstrap for inference on ψ in
the extreme value location-scale model with parameter values (µ,ψ) = (0, 1), for sample size n = 5. For a series of 200
simulated samples the null p-values, that is p-values for testing the true null hypothesis ψ = 1, from the two approaches
are plotted against each other, demonstrating clearly their closeness, for all 200 replications.

3. Theory

We show in this Section that in general models p-values calculated from a data sample by bootstrap estimation of the
sampling distribution of R(ψ), or a class of asymptotically equivalent pivots, agree with those calculated from the same
data sample by normal approximation to the sampling distribution of R∗(ψ) to second-order, O(n−1). Both procedures yield
p-values which, under repeated sampling, are distributed under the null hypothesis as uniform on (0, 1) to error of third-
order, Op(n−3/2): see Lee and Young (2005). We provide in the next Section examples demonstrating that, in practice,
differences in inferences from the analytic and bootstrap approaches are slight: the analytic p-value calculated from a given
dataset is typically indistinguishable from the bootstrap p-value calculated from that same dataset.

Some further notation is necessary. Arrays and summation are denoted by using the standard conventions, for which
the indices r, s, t, . . . are assumed to range over 1, . . . , d. Summation over the range is implied for any index appearing in
an expression both as a subscript and as a superscript. Differentiation is indicated by subscripts, so Lr (θ ) = ∂L(θ )/∂θ r ,
Lrs(θ ) = ∂2L(θ )/∂θ r∂θ s, etc. Then E{Lr (θ )} = 0; let λrs = E{Lrs(θ )}, λrst = E{Lrst (θ )}, etc., and put lr = Lr (θ ), lrs =

Lrs(θ ) − λrs, lrst = Lrst (θ ) − λrst , etc. The constants λrs, λrst , . . ., are assumed to be of order O(n). The variables lr , lrs, lrst ,
etc., each of which have expectation 0, are assumed to be of order Op(n1/2). The key assumption of our analysis is that joint
cumulants of lr , lrs, etc. are of order O(n). This is a quite standard and weak assumption of regularity in likelihood based
inference and is usually satisfied in situations involving independent observations and holds in most models of practical
interest, including, for example, regression models: see, for example, Severini (2000), Section 3. The analysis of the paper is
not, therefore, restrictive: in particular the formal conclusions do not need strong assumptions such as the underlyingmodel
being a full exponential family.
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Fig. 2. Comparison of null p-values, extreme value scale parameter.

We extend the λ-notation by letting λr,s = E(LrLs) = E(lr ls), λrs,t = E(LrsLt ) = E(lrslt ), etc. Further, let (λrs) be the d × d
matrix inverse of (λrs), and let η = −1/λ11, τ rs = ηλ1rλ1s, and νrs = λrs + τ rs. Thus, λrs, τ rs, and νrs are of order O(n−1),
while η is of order O(n). For clarity, we point out that a subscript or superscript of ‘1’ refers to the scalar interest parameter
ψ , where ψ is the first component of θ .

DiCiccio et al. (2015b) consider hypothesis testing for ψ based on a test statistic, T (ψ), expressible as T (ψ) = η1/2(T1 +

T2)+Op(n−1), where T1 = −λ1r lr and T2 is of the form T2 = ξ rst lrslt −ξ rslr ls, with constants ξ rst and ξ rs assumed to be of order
O(n−2). This construction includes all commonly used likelihood-based test statistics (DiCiccio et al., 2015b); in particular it
includes R(ψ). They show that the first three cumulants of T (ψ) are

κ1 = E{T (ψ)} = η1/2{ξ rstλrs,t + ξ rsλrs} + O(n−1),

κ2 = var{T (ψ)} = 1 + O(n−1),

κ3 = skew{T (ψ)} = η3/2(λ1rλ1sλ1tλrst + 3λ1rλ1sλ1tλrs,t − 6ξ rs1λ1tλrs,t − 6ξ 11) + O(n−1),

while the fourth- and higher-order cumulants are of order O(n−1) or smaller. For R(ψ), we have ξ rst = λ1rλst +
1
2λ

1rτ st and
ξ rs =

1
2λ

1tλruνsvλtuv +
1
6λ

1tτ ruτ svλtuv .
Expression (3) of Pierce and Bellio (2006), generalizing Pierce and Peters (1992), introduces quantities NP(ψ) and INF(ψ),

both of order Op(n−1/2), such that R∗(ψ) = R(ψ) + NP(ψ) + INF(ψ). Unconditionally R∗(ψ) has the standard normal
distribution to error of order O(n−3/2). A detailed analysis of this decomposition is given by DiCiccio et al. (2015a). They note
that NP(ψ) and INF(ψ) are of the form NP(ψ) = E{NP(ψ)} +Op(n−1) and INF(ψ) = E{INF(ψ)} +Op(n−1), and establish that

E{NP(ψ)} = −η1/2λ1rνst
(
λrs,t +

1
2
λrst

)
+ O(n−1),

E{INF(ψ)} = η1/2λ1rτ st
(
1
2
λrs,t +

1
6
λrst

)
+ O(n−1).

Consider again a test statistic of the form T (ψ) = η1/2(T1 + T2) + Op(n−1), with T1 and T2 as above. The Cornish–Fisher
expansion shows that T (ψ)− 1

6κ3{T (ψ)}2 − κ1 +
1
6κ3 has a sampling distribution which is standard normal to error of order

O(n−1). We now investigate how NP(ψ) and INF(ψ) arise in the normalized version of R(ψ). From the previous formulae
we obtain, for R(ψ), or any statistic T (ψ) satisfying the conditions derived by DiCiccio et al. (2015b) to produce the same
p-value when calculated for a given dataset as R(ψ) to error of order O(n−1),

− κ1 +
1
6
κ3 = −η1/2

(
λ1rνstλrs,t −

1
2
λ1rτ stλrs,t −

1
6
λ1rτ stλrst +

1
2
λ1rνstλrst

)
+ O(n−1)

= NP(ψ) + INF (ψ) + Op(n−1).
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Table 1
Comparison of p-values, extreme value scale parameter. Average absolute percentage relative differences between approximate and ideal p-values, and
average absolute percentage relative differences 1 between analytic and bootstrap p-values.

n pR∗ pLR Bootstrap (pboot ) 11 12 13

B = 104 B = 105 B = 106

5 3.49 0.87 1.40 0.72 0.58 3.61 3.50 3.51
10 1.08 0.24 1.37 0.68 0.53 1.69 1.26 1.21
15 0.57 0.11 1.36 0.60 0.42 1.45 0.81 0.70
20 0.36 0.07 1.35 0.54 0.35 1.39 0.64 0.49
25 0.25 0.05 1.33 0.49 0.30 1.34 0.51 0.33

The normalized version of T (ψ) is N{T (ψ)} = Φ−1
[F{T (ψ)}], in terms of the distribution function F (·) of T (ψ). This

normalized version of T (ψ) is, to Op(n−1), of the form T ∗(ψ) = T (ψ) −
1
6κ3{T (ψ)}2 + NP(ψ) + INF (ψ). Note that N(·) is

a monotonic function, so exact inference based on the true sampling distribution of T (ψ) is equivalent to that based on
the N(0, 1) distribution of the normalized statistic N{T (ψ)}. A simple delta method calculation then shows that a p-value
calculated from a dataset using the N(0, 1) approximation to the distribution of T ∗(ψ) is equivalent to order O(n−1) to that
based on calculation of a p-value from the same dataset using the exact sampling distribution of T (ψ). This exact distribution
is approximated to error of order O(n−1) by the bootstrap, so consequently we see that the bootstrap p-value is equivalent,
given a particular dataset, to order O(n−1) to that based on the pivot T ∗(ψ).

In the case of particular interest when T (ψ) is taken as R(ψ), the skewness κ3 is of order O(n−1), so, given a data sample,
the statistic values satisfy T ∗(ψ) = R∗(ψ) + O(n−1). Therefore, the p-value based on the bootstrap distribution of R(ψ) is
equivalent to order O(n−1) to that based on the standard normal approximation to the sampling distribution of R∗(ψ): the
bootstrap and analytic p-values calculated from the same dataset agree to O(n−1) quite generally. Illustration is given in
Fig. 2, where the p-value calculated by the bootstrap and the analytic p-value obtained from R∗(ψ) are almost coincident for
all of the simulated datasets.

4. Examples

Example 2 (Extreme Value Location-Scale, Continued). In the extreme value location-scale problem of inference for the scale
parameter ψ , the ‘ideal’ p-value pI is the exact conditional p-value. Though our primary motivation is in evaluation of how
close analytic p-values are to the unconditional bootstrap p-values, it is of some interest to examine which approach yields
better approximations to the ideal p-value pI . In principle, given a dataset, the analytic approach approximates the ideal
inference to third order, O(n−3/2), while an unconditional bootstrap yields an error in estimation of pI of only second order,
O(n−1): see DiCiccio et al. (2015b).

We compare, for different sample sizes n, the average absolute percentage relative error of different approximations to
the exact conditional p-value pI for testingH0 : ψ = 1 over 10,000 replications, from the extreme valuemodelwith (µ,ψ) =

(0, 1). Specifically, we compare: unconditional bootstrap p-values pboot based on simulation sizes B = 104, 105, 106;
p-values pR∗ obtained by normal approximation to R∗(ψ); p-values pLR obtained by the Lugannani–Rice formula (1) for the
conditional tail probability of R∗(ψ). We also calculate the average absolute percentage relative difference between the
analytic and bootstrap p-values, 1 = 100|pR∗ − pboot |/pI . Results are shown in Table 1. Here 11,12,13 refer to the cases
B = 104, 105, 106 respectively.

It is clear from Table 1 that the Lugannani–Rice approximation does approximate the ideal p-value very closely. Howwell
the unconditional bootstrap approximates pI depends noticeably on the simulation size B. For large B, the bootstrap is very
competitive with normal approximation to R∗(ψ). On the central issue, of comparing analytic and bootstrap p-values pR∗ and
pboot , we see that for moderate sample sizes, say n > 10, the average relative difference is less than 1% of the inferentially
correct p-value, pI , provided a large simulation size B is adopted in calculation of the bootstrap p-value.

Example 3 (Multi-Sample Exponential Model). Let Yij, for i = 1, . . . , n and j = 1, . . . , q be independent, exponential random
variables, with Yij having mean 1/φj. The parameter of interest is defined as

ψ = q−1
q∑

j=1

exp(−φjc0),

where c0 > 0 is a fixed constant, so that θ = (ψ, φ), with the nuisance parameter φ = (φ2, . . . , φq). This example is
considered by Sartori et al. (1999), and qψ may be interpreted as the expected number of items failing by c0 in a parallel
system with failure rates φ1, . . . , φq. The interest parameter ψ is a nonlinear function of the canonical parameter in a full
exponential family model: calculation of the statistic R∗(ψ) is tractable.

For parameter settings ψ = ψ0 = 0.6065, φi = 1, i = 2 . . . , q, q = 5, we compare ideal p-values pI for testing
ψ = ψ0 against ψ > ψ0, as obtained by undertaking a massive simulation to construct the sampling distribution of
R(ψ) under the true parameter values, with: p-values pR∗ obtained by normal approximation to distribution of R∗; p-values
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Table 2
Comparison of p-values, multi-sample exponential model. Average absolute percentage relative differences between approximate and ideal p-values, and
average absolute percentage relative differences 1 between analytic and bootstrap p-values.

n pR∗ Bootstrap (pboot ) 11 12 13

B = 104 B = 105 B = 106

10 0.55 1.52 0.95 0.88 1.53 1.04 1.00
15 0.29 1.29 0.62 0.49 1.27 0.63 0.54
20 0.20 1.22 0.49 0.33 1.22 0.49 0.36
25 0.15 1.22 0.44 0.26 1.21 0.43 0.27
30 0.12 1.21 0.42 0.21 1.21 0.42 0.22

Table 3
Comparison of p-values, curved exponential family model. Average absolute percentage relative differences between approximate and ideal p-values, and
average absolute percentage relative differences 1 between analytic and bootstrap p-values.

n pskov Bootstrap (pboot ) 11 12 13

B = 104 B = 105 B = 106

10 1.29 1.63 1.07 0.97 1.47 0.89 0.83
15 0.72 1.40 0.73 0.60 1.31 0.57 0.44
20 0.49 1.28 0.60 0.43 1.23 0.49 0.30
25 0.37 1.31 0.54 0.35 1.28 0.44 0.23
30 0.30 1.26 0.48 0.30 1.24 0.42 0.19

obtained by bootstrapping the marginal distribution of R, for three simulation sizes in evaluation of each bootstrap p-value,
B = 104, 105, 106. We compare the average absolute percentage relative error of the different approximations to the ideal
p-values pI over 5000 replications, for a range of sample sizes n, and calculate the average absolute percentage relative
difference 1 = 100|pR∗ − pboot |/pI . Results are given in Table 2. As before, 11,12,13 refer to the cases B = 104, 105, 106

respectively.

As in Example 1, we see that Monte Carlo simulation size has a substantial effect on how well pboot approximates pI . We
note that normal approximation toR∗(ψ) gives greater accuracy in approximation of pI , in particular for smalln. However, the
bootstrap approximation improves rapidly with increasing n, and, confirming the main point of our analysis, gives p-values
close to those from analytic approximation. For n > 10, the average difference is less than 1% of the inferentially correct
p-value, pI .

Example 4 (Curved Exponential Family Model). Let Yij, for i = 1, . . . , n and j = 1, . . . , q be independent normal random
variables with means µj > 0 and variances ψµ1/2

j . This model constitutes a curved exponential family. The parameter
of interest is ψ , with µ1, . . . , µq treated as nuisance parameters, θ = (ψ,µ1, . . . , µq). This example is also considered
by Sartori et al. (1999). Now calculation of R∗(ψ) is intractable and we utilize an approximation due to Skovgaard (1996).

For parameter settings ψ = 1, µi = i, i = 1, . . . , q, q = 5, we compare ideal p-values pI for testing ψ = 2 against
ψ > 2, as obtained by amassive simulation of the exact sampling distribution of R(ψ) under the true parameter values, with:
p-values pskov obtained by normal approximation to the sampling distribution of the Skovgaard approximation to R∗(ψ);
p-values obtained by bootstrapping the marginal distribution of R(ψ), again for three simulation sizes, B = 104, 105, 106.
As before, we compare the average absolute percentage relative error of the different approximations to the ideal p-values
pI over 5000 replications and examine the average absolute percentage relative difference 1 = 100|pskov − pboot |/pI . The
results are in Table 3. Again,11,12,13 refer to the cases B = 104, 105, 106 respectively.

Again, theMonte Carlo simulation size has substantial effect on howwell pboot approximates pI , though the results suggest
that the bootstrap and Skovgaard’s method give very comparable accuracy in approximation of pI . However, we note that
the bootstrap and Skovgaard approximations are on average closer to one another than to the ideal pI , even for small sample
size n, raising the issue perhaps of whether pI defined in this way is really ‘ideal’.

5. Discussion

Wehave examined in this paper the theoretical higher-order agreement between inferences fromanalytic and simulation
approaches to inference on a scalar interest parameter in the presence of a nuisance parameter, comparing inferences
made by analytic approximation to the distribution of the modified signed root statistic R∗(ψ) with those obtained from
the bootstrap distribution of the unmodified R(ψ). In general, the analytic and bootstrap p-values calculated from a given
dataset agree to O(n−1). We have provided several empirical examples, demonstrating close agreement of the two p-values
even for very small sample size n, provided a large simulation is employed in construction of the bootstrap p-value.

Howcanwe intuitively understand this result? TheR∗(ψ)-based p-value agrees to third-orderwith a conditionalbootstrap
p-value, which we could obtain by simulating the conditional distribution of R(ψ) with the nuisance parameter set at its
constrained MLE value, and we are conditioning on the data value of an ancillary statistic. In general this only agrees to
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second-order with the p-value based on simulating the marginal distribution of R(ψ), since the marginal and conditional
distributions of R(ψ) only agree to that order. DiCiccio et al. (2015b) demonstrate that R(ψ) is stable to order O(n−1), that is
the marginal and conditional distributions of this statistic agree to second order.

We have not sought here to evaluate which of the analytic and bootstrap approaches yields most accurate inference, but
instead to demonstrate formally that the two approaches will, quite generally, give p-values from a given dataset agreeing
to high order. In practice, calculation of a bootstrap p-value must be based on finite simulation size B. Full evaluation of
this approach requires consideration of the effect of using realistic values of B, rather than large values of B used in our
illustrations, but such an analysis is beyond the scope of the present paper. Monte Carlo variability introduced by use of
finite B need not necessarily reduce accuracy: see Lee and Young (1999).
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