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Chapter VI
Products and Quotients 

1. Introduction

In Chapter III we defined the product of two topological spaces and considered some of the\ ‚ ]
simple properties of products. ( )  The properties weSee Examples III.5.10-5.12 and Exercise IIIE20.

explored hold equally well for products of any  number of spaces   For example,finite \ ‚ ÞÞÞ ‚ \ Þ" 8

the product of two compact spaces is compact, so a simple induction argument shows that the product

of any finite number of compact spaces is compact.  Now we turn our attention to productsinfinite 

which will lead us to some very nice theorems.  For example, infinite products will eventually help us

decide which topological spaces are metrizable.

2. Infinite Products and the Product Topology

The set  was defined as .  How can we define an “infinite product”\ ‚ ] ÖÐBß CÑ À B − \ ß C − ] ×
set ?   Informally, we want to say something like\ œ Ö\ À − E×#

α α

  \ œ Ö\ À − E× œ ÖÐB Ñ À B − \ ×#
α α α αα

so that a point  in the product consists of “coordinates”  chosen from the 's.  But what exactlyB B \α α

does a symbol like  mean if there are  “uncountably many coordinates?”B œ ÐB Ñα

We can get an idea by first thinking about a countable product.  For sets ,...  we can\ ß\ ß ÞÞÞß \" # 8

informally define the product set as a certain set of sequences:  .\ œ \ œ ÖÐB Ñ À B − \ ×#
8œ"
∞

8 8 8 8

But if we want to be careful about set theory, then a legal definition of  should have the form\
\ œ ÖÐB Ñ − Y À B − \ × Y \8 8 8 . From what “pre-existing set”  will the sequences in  be chosen?

The answer is easy: given the sets , the ZF axioms guarantee that the set  exists.  Then\ Ð \ Ñ8 88œ"
∞- �

  \ œ \ œ ÖB − Ð \ Ñ À BÐ8Ñ œ B − \ ×Þ# -
8œ" 8œ"
∞ ∞

8 8 8 8
�

Thus the elements of  are certain  (sequences) defined on the index set .  This idea#
8œ"
∞

8\ functions �

generalizes naturally to any productÞ

Definition 2.1   Let  be a collection of sets.  We define the Ö\ À − E×α α product set 

\ œ Ö\ À − E× œ ÖB − \ À BÐ Ñ − \ × \ \# -� �α α α αα α .  The 's are called the  of . For
E

factors

each , the function  defined by  is called the -α 1 α 1α α α α αÀ Ö\ À − E× Ä \ ÐBÑ œ B# αth projection

map.  For , we write more informally  -  of  and writeB − \ B œ BÐ Ñ œ Bα α the coordinateαth

B œ ÐBα).

Caution: the index set  might not be ordered.  So even though we use the informal notationE
B œ B B BÐB Ñα , such phrases as “the first coordinate of ,” “the next coordinate in  after ,” and “theα

coordinate in  preceding ” may not make sense.  The notation is handy but can lead you intoB B ÐB Ñα α

errors if you're not careful.
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By definition, a point  in  is a function that “chooses” a coordinate  from each setB Ö\ À − E× B#
α αα

in the collection .  To say that such a “choice function”  must exist if all the 's areÖ\ À − E× B \α αα
nonempty is precisely the Axiom of Choice.  ( .)See the discussion following Theorem I.6.8

Theorem 2.2   The Axiom of Choice (AC) is equivalent to the statement that every product of

nonempty sets is nonempty.

Note: In ZF set theory, certain special products can be shown to be nonempty without using AC.

For example, if then .  Without using AC, we can\ œ ß \ œ ÖB − À BÐ8Ñ − × œ8 88œ"
∞� � � �# � �

precisely describe a point ( function) in the product for example, the identity functionœ �
  so .  Can you give other similar examples?3 œ ÖÐ7ß 8Ñ − ‚ À 7 œ 8× � œ \ Á g� � �� #

8œ"
∞

8

We will often write  as .  If the indexing set  is clearly understood,  we# #Ö\ À − E× \ Eα ααα −E

may simply write .#\α

Example 2.3

 1) If , then E œ g Ö\ À − E× œ ÖÐ \ Ñ À BÐ Ñ − \ × œ Ög×Þ# -
α α ααα α−E

E

 2) Suppose  for some . Then \ œ g − E \ œ ÖÐ \ Ñ À BÐ Ñ − \ ×Þα α α αα α!
α α! −E −E

E# -
But  is impossible so .BÐ Ñ − \ \ œ gα! −Eα ααα!

#
 3) Strictly speaking, we now have two different definitions for a finite product :\ ‚\" #

  i)        (a set of ordered pairs)\ ‚\ œ ÖÐB ß B Ñ À B − \ ß B − \ ×" # " # " " # #

  ii)   (a set of functions)\ ‚\ œ ÖB − Ð\ ∪\ Ñ À BÐ3Ñ − \ ×" # " # 3
Ö"ß#×

But there is an obvious way to regard these two sets as “the same”: the ordered pair ÐB ß B Ñ" #

corresponds to the function B œ ÖÐ"ß B Ñß Ð#ß B Ñ× − Ð\ ∪\ Ñ Þ" # " #
Ö"ß#×

 4) If , then E œ Ö\ À 8 − × œ \ œ ÖB − Ð \ Ñ À B − \ ×� �# # -8 8 8 8 88œ" 8œ"
∞ ∞ �

œ ÖÐB ß B ß ÞÞÞß B ß ÞÞÞß Ñ À B − \ × œ ÐB Ñ B − \ Þ" # 8 8 8 8 8 8the set of all sequences where 

 5) Suppose the 's are identical, say  for all .  Then \ \ œ ] − E Ö\ À − E×α α αα α#
œ ÖB − Ð \ Ñ À BÐ Ñ − \ × œ ÖB − ] À B − ] × œ ] lEl œ 7-

α α α α−E
E E Eα .  If , we will sometimes

write this product simply as “the product of  copies of ” because the  of factors  is] œ 7 ] 77 number

often more important than the specific index set .E

 6) Discuss:  is the equation  always true? sometimes# # #
3−M 4−N Ð3ß4Ñ−M‚N3 4 3 4E ∩ F œ ÐE ∩ F Ñ

true? never true?

Now that we have a definition of the  , we can think about a product .  Weset topology#Ö\ À − E×α α
begin by recalling the definition and a few basic facts about the “weak topology.” (See Example

III.8.6.)
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Definition 2.4  Let  be a set.  For each , suppose  is a topological space and that\ − E Ð\ ß Ñα gα α

0 À \ Ä \ œ Ö0 À − E×α α α.  The    is theweak topology on generated by the\ collection Y α
smallest topology on  that makes all the 's continuous.\ 0α

Certainly, there is at least one topology on  that makes all the 's continuous: the discrete topology.\ 0α
Since the intersection of a collection of topologies on  is a topology ( ), the weak topology\ why?

exists we can describe it “from the top down” as { :  is a topology on  that makes all the 's� \ 0+ g g α

continuous×Þ

However, this efficient description of the weak topology doesn't give us a useful idea about what sets

are open.  Usually it is more useful to describe the weak topology on  “from the bottom up.”  To\
make all the 's  continuous it is necessary and sufficient that0α

 for each  and for each open set , the set  must be open.α − E Y © \ 0 ÒY Óα α αα
�"

Therefore the weak topology is the  topology that contains all such sets , and that isg smallest 0 ÒY Óα α
�"

the topology for which open in  is a . ( )Æ αœ Ö0 ÒY Ó À − Eß Y \ ×α α α α
�" subbase See Example III.8.6.

Therefore a  for the weak topology consists of all finite intersections of sets from .  A typicalbase Æ
basic open set has form ] ...  where each  and each is0 ÒY ∩ 0 ÒY Ó ∩ ∩ 0 ÒY Ó − E Yα α αα α α α" # 8" # 8 3

�" �" �"
3α  

open in .  To cut down on symbols, we will use a  for these subbasic and basic\α3
special notation

open sets:  we will write

  a typical subbasic open set, and then' Y ( œ 0 ÒY Ó œα αα
�"

  for a typical basic open set.' Y ( ∩ ' Y ( ∩ ÞÞÞ ∩ ' Y ( œ Yα α α" # 8

 We then abbreviate further as .Y œ ' Y ßY ß ÞÞÞß Y (α α α" # 8

 So  iff  for each B − Y œ ' Y ßY ß ÞÞÞY ( 0 ÐBÑ − Y 3 œ "ß ÞÞÞß 8Þα α α α α" # 8 3 3

This notation is not standard—but it should be because it's very handy. You should verify that to

get a base for the weak topology  on , it is sufficient to use only the sets g \ ' Y ßY ß ÞÞÞß Y (α α α" # 8

where each is a  (or even ) open set in .Y \α α
3 3

basic subbasic

Example 2.5  Suppose  and let  be the inclusion map  Then theE © Ð\ß Ñ 3 À E Ä \ 3Ð+Ñ œ +Þg
subspace topology on  is the same as the weak topology generated by To see this, justE œ Ö3×ÞY
notice that a base for the weak topology is  open in , and the sets  areÖ3 ÒY Ó À Y \× 3 ÒY Ó œ Y ∩ E�" �"

exactly the open sets in the subspace topology.

The following theorem tells us that a map   a space  with the weak topology is continuous iff0 \into

each composition is continuous.0 ‰ 0α

Theorem 2.6  Suppose , where  is a topological space and  has the weak topology0 À ^ Ä \ ^ \
generated by maps  ( ).  Then  is continuous if and only if 0 À \ Ä Ð\ ß Ñ − E 0 0 ‰ 0 À ^ Ä \α α α α αg α
is continuous for every .α

Proof   If  is continuous, then each composition is continuous.  Conversely, suppose each0 0 ‰ 0α

0 ‰ 0 0 0 ÒZ Ó ^α  is continuous. To show that  is continuous, it is sufficient to show that is open in �"

whenever  is a  open set in  ( ).  So let with  open in . ThenZ \ Z œ ' Y ( Y \subbasic why? α α α

0 ÒZ Ó œ 0 Ò0 ÒY ÓÓ œ Ð0 ‰ 0Ñ ÒY Ó 0 ‰ 0 ñ�" �" �" �"
α α α α α, which is open because  is continuous.  
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Definition 2.7  For each let  be a topological space.  The   on theα g g− Eß Ð\ ß Ñα α product topology

set  is the weak topology generated by the collection of projection maps #\ œ Ö À − E×Þα αY 1 α

The product topology is sometimes called the “Tychonoff topology.” We always assume that a

product of topological spaces has the product topology unless some other topology is#\α 

explicitly stated.

Because the product topology is a weak topology, a  consists of all sets of formsubbase

' Y ( œ ÒY Ó Y \ Þα α α αα1
�" , where  is open in  A , then, consists of all possible finitebase

intersections of these sets À

 ] ...    ' Y ( ∩ ÞÞÞ ∩ ' Y ( œ ÒY ∩ ∩ ÒY Ó Ð8 − Ñα α α αα α" 8 " 8" 8
1 1 ��" �"

  for each œ ÖB − \ À B − Y 3 œ "ß ÞÞÞß 8×#
α α α3 3

    for   (*)œ Y Y œ \ Á ß ß ÞÞÞß#
α α α α−E " # 8where α α α α

      It is sufficient to use only ' s which are basic (or even subbasic) open sets in Why?Y \α αÞ 

A basic open set in  “depends on only finitely many coordinates” in the following sense:#\α

B − ' Y ßY ß ÞÞÞß Y ( B B − Y iff  satisfies the  restrictions . The (basic)α α α α α" # 8 3 3
finitely many

open sets containing  are what we use to describe “closeness” to , so we can say informallyB B
that in the product topology  “closeness depends on only finitely many coordinates.”

If the index set  is , then the condition in (*) is satisfied automatically, and a base for theE finite

product topology is the set of  “open boxes” :all #
α α−EY

  # #
α α α α α−E 3œ"

8
3 " # 8Y œ Y œ ' Y ßY ß ÞÞÞß Y ( œ Y ‚ Y ‚ ÞÞÞ ‚ Y

" # 8

Thus, when  is finite, Definition 2.7 agrees with the earlier definition for product topologies inE
Chapter III (Example 5.11).

You might not have expected Definition 2.7. A “first guess” to define a topology on products might

have been to use  boxes  (  open in  rather than the more restricted collection in (*).all #
α α α α−EY Y \ Ñ

As just noted, that would be equivalent to Definition 2.7 for  products, but not for infinitefinite

products.  One can define a topology on the set  using  boxes of the form as a# #
α αα α−E −E\ Yall

base an alternate topology called the  that contains, in general,  many more open sets� box topology

than the product topology because of the omission of the restriction on the 's in (*).   We will try toYα

indicate, below, why our definition of the product topology is the “right” one to use.

Theorem 2.8   Each projection  is continuous and open, and  is onto if .1 1α α α α αÀ \ Ä \ \ Á g# #
A function  is continuous if and only if   is continuous for every .0 À ^ Ä \ ‰ 0 À ^ Ä \#

α α α1 α

Proof  Each  is onto if the product is nonempty ( ).  By definition, the product topology makes1α why?

all the 's continuous. To show that  is open, it is sufficient to show that the image of a  open1 1α α basic

set  is open.Y œ ' Y ßY ß ÞÞÞß Y (α α α" # 8
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 This is clear if , andY œ g

 for , we get ..
if

if 
Y Á g ÒY Ó œ Ò ' Y ßY ß ÞÞÞß Y ( Ó œ

Y œ
\ Á ß ÞÞÞß

1 1
α α

α α αα α α α α
α

α
" # 8

3œ 3

" 8

Finally,  is continuous iff each composition  is continuous because the product has the weak0 ‰ 01α

topology generated by the projections (Theorem 2.6).  ñ

Generally, projection maps are   closed.  For example,  isnot J œ ÖÐBß CÑ − À C œ ß B ( !×‘# "
B

closed in , but its projection is not closed in ‘ ‘ 1 ‘‚ ÒJÓ Þ" Ñ

Example 2.9

 1) A subbasic open set in  has form  or , where ‘ ‘ 1 ‘ 1 ‘‚ ÒY Ó œ Y ‚ ÒZ Ó œ ‚ Z Y" #
�" �"

and  are open in   ( )  Then basicZ Þ‘ We still get a subbase if we only use open   in .intervals Y ß Z Þ‘
open sets have form . Therefore the product topology on  is theÐY ‚ Ñ ∩ Ð ‚ Z Ñ œ Y ‚ Z ‚‘ ‘ ‘ ‘
usual topology on .‘#

  The function  given by sin  is continuous because the0 À Ä ‚ 0Ð>Ñ œ Ð> ß > Ñ‘ ‘ ‘ # #

compositions  and sin are both continuous functions from  to .Ð ‰ 0ÑÐ>Ñ œ > Ð ‰ 0ÑÐ>Ñ œ >1 1 ‘ ‘" #
# #

 2) Let “the product of countably many copies of .”  The singleton sets  are a\ œ œ Ö8×� �i!

basis for .  A base for the product topology consists of all sets  where finitely many 's� Y œ Y Y# 8 8

are singletons and all the others are equal to   Each basic open set  is infinite (�Þ Y in fact

lY l œ - � \ ¶ ÑÞwhy? In fact, ), so  has no isolated points and therefore  is not discrete. ( By\ \ �
similar reasoning, an infinite product of discrete spaces, each with more than  point, is ." not discrete

    For each , ... ,  the set  is open B œ Ð5 ß 5 ß ÞÞÞß 5 Ñ − \ ÖB× œ Ö5 ×" # 8 88œ"
∞# in the box topology

so, in contrast, the box topology on   the discrete topology.  (\ is For a finite product, the box and

product topologies care the same: a  product of discrete spaces  discrete.finite is )

 3) Consider where each  By definition of product, each point in\ œ Ö\ À < − × \ œ Þ# < <‘ ‘
\ 0 À Ä \ œ <ß Ð0Ñ œ 0Ð<ÑÞ is a function .  In other words,  and for each   As basic open‘ ‘ ‘ 1‘

<

sets in , we can use sets where the 's are open intervals in .  Then\ Y œ ' Y ßY ß ÞÞÞß Y ( ß Y< < < <" # 8 3
‘

0 − Y 0Ð< Ñ − Y 3 œ "ß ÞÞÞß 8Þ 1 Y 0 1 if and only if  for each   If  is  in , then  and  are “close” at the3 <3 also

finitely many points in the sense that  and  are both in the interval  If, for example,< � 0Ð< Ñ 1Ð< Ñ Y Þ3 3 3 <3

the 's each have diameter less than , then  for each  Y l0Ð< Ñ � 1Ð< Ñl ' 3 œ "ß ÞÞÞß 8Þ< 3 33
% % Of course, this

is much weaker than saying  and  are “uniformly” close.0 1
 

Why is the product topology the “correct” topology for set ?  Of course there is no “right”#\α

answer, but a few observations should make it seem a good choice.

Example 2.10

  1) For finite products, the box and product topologies are exactly the same When it comes toÞ
  products, there's no obvious reason to favor the box topology or the product topology.infinite

 Moreover, if one of them seems more natural, then at least we should be cautious: our

 intuition, after all, is only comfortable with finite sets, and we always run risks when we apply  

 naive intuition to infinite collections.
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2) Consider : for two points and  it will be true thatÐ!ß "Ñ B œ !ÞB ÞÞÞ B ÞÞÞ + œ !Þ+ ÞÞÞ + ÞÞÞ ß" 8 " 8

“  is close to ” when  and  agree in the first  decimal places (for a sufficiently large ).B + B + 8 8
Roughly speaking, “closeness” depends on only finitely many decimal places (“coordinates”).

    Now consider the  ,Hilbert cube L œ Ò!ß Ó œ Ò!ß "Ó ‚ Ò!ß Ó ‚ ÞÞÞ ‚ Ò!ß Ó ‚ ÞÞÞ © j#
8œ"
∞ " " "

8 # 8 #

where   has its usual metric,  ( ). Supposej .# see Example II.2.6.6 and Exercise II.E10

Bß + − L ( ! B .ÐBß +Ñ ' and let .  What condition on  will guarantee that  ?% %

   Pick  so that    If  for each , then we haveR ' Þ ÐB � + Ñ ' 3 œ "ß ÞÞÞß R�
3œR:"

∞
"
3 # #R3 3

#
#

# #% %
 

.ÐBß +Ñ œ Ð ÐB � + Ñ : ÐB � + Ñ Ñ ' ÐR † : Ñ œ Þ� �
3œ"

R ∞

3 3 3 3
# # "Î# "Î#

3œR:"
#R #

   Here, in the natural% %# #

%

metric topology on the product , we see that we can achieve “  close to ” by requiringL B +
“closeness” in just finitely many coordinates This is just what the product topology"ß ÞÞÞß RÞ
does.  In fact, the product topology on  turns out to be the topology L Þg.
   A handy “rule of thumb” that has proved true every time I've used it is that if a topology on a

product set is such that “closeness depends on only finitely many coordinates,” then that

topology  the product topology.is

3) From a very pragmatic point of view, the product topology appears much more manageable.

To “get your mind around” a basic open set in the productY œ ' Y ßY ß ÞÞÞß Y (α α α" # 8

topology, you only need to think about finitely many sets ;  but in the boxY ßY ß ÞÞÞß Yα α α" # 8

topology, thinking about  requires taking into account all the 's in andY Y Y œ Y �α αα
#

−−

there may be uncountably many  's.different Yα

4) The bottom line, however, is this: a mathematical definition justifies itself by the fruit it

bears. The definition of the product topology will lead to some beautiful theorems.  Using the

product topology, for example, we will see that compact Hausdorff spaces are topologically

nothing other than the closed subspaces of cubes  (where  might be infinite).  For theÒ!ß "Ó 77

time being, you will need to accept that things work out nicely down the road, and that by

contrast, the box topology turns out to be rather ill-behaved. ( .)See Exercise E11

As a simple example of such nice behavior, the following theorem is exactly what one would hope

for and the proof depends on having the “correct” topology on the product.  The theorem says that�
convergence of sequences in a product is “coordinatewise convergence” :  that is, in a product,

ÐB Ñ Ä B B \ Ñ B8 8
>2 >2 iff for all  , the  coordinate of converges (in  to the  coordinate of .  For thatα α αα

reason, the product topology is sometimes called the “topology of coordinatewise convergence.”

Theorem 2.11  Suppose  is a sequence in . Then  iffÐB Ñ \ œ Ö\ À − E× ÐB Ñ Ä B − \8 8#
α α

( )  in   for all .1 1 αα α αÐB Ñ Ä ÐBÑ \ − E8

Proof   If , then ( )  because each  is continuous.ÐB Ñ Ä B ÐB Ñ Ä ÐBÑ8 81 1 1α α α

       Conversely, suppose  ( )  in for each  and consider any basic open set1 1 αα α αÐB Ñ Ä ÐBÑ \8

Y œ ' Y ßY ß ÞÞÞß Y ( B œ ÐB Ñ 3 œ "ß ÞÞÞß 5 B − Yα α α α α α" # 5 3
that contains .  For each , we have .  Since

3

( ) , we have  for some .  Let max . Then for1 1 1α α α α3 3 3
ÐB Ñ Ä ÐBÑ ÐB Ñ − Y 8   R R œ ÖR ß ÞÞÞß R ×8 8 3 " 53

8   R ÐB Ñ − Y 3 œ "ß ÞÞÞß 5 B − Y 8   R we have  for every .  This means that for , so1α α3 38 8

ÐB Ñ Ä B ñ8 .  

In the proof,  is the max of a  set.  If  has the box topology, the basic open set R \ Y œ Yfinite #
α

might involve infinitely many open sets . For each such , we could pick an , just asY Á \ R −α α αα �
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in the proof.  But the set of all 's might not have a max  and the proof would collapse.  Can youR ß Rßα

create a specific example with the box topology where this happens?

Example 2.12  Consider , where . Each point  in the product is a‘ ‘ ‘‘ œ Ö\ À < − × \ œ 0# < <

function    Suppose that  is a sequence of points in .  By Theorem 2.11,  0 À Ä Þ Ð0 Ñ Ð0 Ñ Ä 0‘ ‘ ‘8 8
‘

iff  for each . With the product topology, convergence of a sequence of functionsÐ0 Ð<ÑÑ Ä 0Ð<Ñ < −8 ‘
in  is called (in analysis) .  ‘‘ pointwise convergence Question: if is given the box topology, is‘‘

convergence of a sequence  simply uniform convergence (as defined in analysis)?Ð0 Ñ8

The following “theorem” is stated loosely.  You can easily create variations.  Any reasonable version

of the statement is probably true.

Theorem 2.13  Topological products are associative in any “reasonable” sense:  for example, if the

index set  is written as  where  and  are disjoint, thenE E œ F ∪ G F G

         # # #Ö\ À − E× ¶ Ö\ À − F× Ö\ À − G×α " #α " #‚

        ll ll ll
   \ ] ‚ ^

Proof   A point  is a function .  DefineB − Ö\ À − E× B À E Ä \# -
α ααα −E

0 À \ Ä ] ^ 0ÐBÑ œ ÐBlFß BlGÑ 0  by . Clearly  is one-to-one and onto.‚

0 \ ] ‚ ^ 0 ‰ 0 ‰ 0 is a mapping of  into a product , so  is continuous iff  and  are both1 1" #

continuous.  But is also a map into a product:    So  is1 1 1" " "‰ 0 ‰ 0 À \ Ä ] œ Ö\ À − F×Þ ‰ 0#
"

continuous if and only if   is continuous for all   This is1 1 α "" α "‰ ‰ 0 À Ö\ À − E× Ä \ − FÞ" #
true because .  The proof that  is continuous is1 1 1 α 1" " α "‰ ‰ 0 œ À Ö\ À − E× Ä \ ‰ 0" ##
completely similar.

 

0 À ] ‚ ^ Ä \ œ Ö\ À − E× B œ 0 ÐCß DÑ œ C ∪ D œ�" �"#
α α  is given by  ( the union of two

functions), and is continuous iff  is continuous for each 0 ‰ 0 À ] ‚ ^ Ä \ − E œ F ∪ GÞ�" �"1 αα α

To check this, first suppose : then , where   Since α 1 1 α− F ‰ 0 ÐCß DÑ œ ÐBÑ B œ C ∪ DÞ − Fßα α
�"

B œ Ð ‰ ÑÐCß DÑß ‰ 0 œ ‰ − Gα α α α  so , which is continuous.  The case where  is1 1 1 1 1 α" "
�"

completely similar.

Therefore  is a homeomorphism.   0 ñ

The question of topological  for products only makes sense when the index set  iscommutativity E
ordered in some way.  But even then:  if we view a product as a collection of functions, the question of

commutativity is trivial the question reduces to the fact that set theoretic unions are commutative.�
For example,   for \ ‚\ œ ÖB − Ð\ ∪\ Ñ À BÐ3Ñ − \ 3 œ "ß #×" # " # 3

Ö"ß#×

   for œ ÖB − Ð\ ∪\ Ñ À BÐ3Ñ − \ 3 œ "ß #× œ \ ‚\ Þ# " 3 # "
Ö"ß#×

So viewed as sets of functions,   and  are exactly the same set!  The same\ ‚\ \ ‚\" # # "

observation applies to any product viewed as a collection of functions.

But we might look at an ordered product in another way: for example, thinking of  and\ ‚\" #

\ ‚\ \ ‚\ Á \ ‚\# " " # # " as sets of ordered pairs.  Then generally .  From that point of view, the

topological spaces  and  are not literally identical, but there is a homeomorphism\ ‚\ \ ‚\1 2 2 1
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between them:   So the products are topologically identical.  We can make a0ÐB ß B Ñ œ ÐB ß B ÑÞ" # # "

similar argument whenever the order of factors is “commuted” by permuting the index set.

The general rule of thumb is that “whenever it makes sense, topological products are commutative.”

Exercise 2.14   \ 7 \ Ð\ Ñ7 7 8 denotes the product of  copies of the space .  Prove that  is

homeomorphic to . ( )\78 Hint: The bijection  in the proof of Theorem I.14.7 is a homeomorphism.9

Notice that “cancellation properties” may not be true.  For example,  and are� �‚ Ö!× ‚ Ö!ß "×
homeomorphic (both are countable discrete spaces) but topologically you can't “cancel the ”  is� À Ö!×
not homeomorphic to 0,1  !Ö ×

Here are a few results which are quite simple but very handy to remember The first states that.  

singleton factors are topologically irrelevant in a product.

Lemma 2.15    # # #
α " αα " α−E −F −E\ ‚ Ö: × ¶ \

Proof #
" "−FÖ: × Ö: is itself a one-point space }, so we only need to prove that# #

α αα α−E −E\ ‚ Ö:× ¶ \ 0ÐBß :Ñ œ B Þ ñ.  The map  is clearly a homeomorphism    

Lemma 2.16   Suppose .  For any ,   is homeomorphic to a subspace # #
α αα α−E −F\ Á g F © E \ ^

of that is, can be embedded in   In fact, if all the 's are -spaces,# # #
α α αα α α α−E −F −E Þ "\ � \ \ \ X

then  is homeomorphic to a  subspace  of .# #
α αα α−F −E\ ^ \closed

Proof   Pick a point .  Then by Lemma 2.15,: œ Ð: Ñ − \α αα
#

−E

  # # # #
α α α αα α α α−F −F −E�F −E\ ¶ \ ‚ Ö: × œ ^ © \

Now suppose all the 's are .  If , then for some  Since\ X C − Ð \ Ñ � ^ − E�Fß C Á :α α # #α" Þ−E
# #

\ X Y \ C : C − ' Y (# # # # # # is a  space, there is an open set  in  that contains  but not .  Then  and"

  .' Y ( ∩ Ð \ ‚ Ö: ×Ñ œ g# α αα α
# #

−F −E�F

Therefore  is closed in .   ^ \ ñ#
α α−E

Note: 1) Assume each . Go through the preceding proof step-by-step when \ œ E œ Ö"ß ÞÞÞß 5×α ‘
and when  andE œ �
 2) In the case , Lemma 2.16 says that each factor  is homeomorphic to subspaceF œ Ö × \α! α!

of  (a closed subspace if all the 's are ). #α α α−E "\ \ X
 3) Caution:  Lemma 2.16 does  say that if all the 's are , then  copy of not every\ X \α α" !

embedded in  is closed: only that there  a closed homeomorphic copy.  It is very easy#
α α−E\ exists (

to show a copy of  embedded in  that is not closed in , for example ... ?)‘ ‘ ‘# #

   

Lemma 2.17   Suppose .  Then   is a Hausdorff space (or, -space) if\ œ Ö\ À − E× Á g \ X#
α α "

and only if every factor  is a Hausdorff space  (or, -space).\ Xα "
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Proof, for X#  Suppose all the 's are Hausdorff   If  , then   for some . Pick\ Þ B Á C − \ B Á Cα α α! !
α!

disjoint open sets  and  in  containing  and .  Then and areY Z \ B C ' Y ( ' Z (α α α α α α α! ! ! ! ! ! !

disjoint (basic) open sets in  that contain  and , so  is Hausdorff.#\ B C \α

Conversely, suppose .  By Lemma 2.16, each factor  is homeomorphic to a subspace of .\ Á g \ \α

Since a subspace of a Hausdorff space is Hausdorff  ( , each  is a Hausdorff space.   why? Ñ \ ñα

Exercise 2.18  Prove Lemma 2.17  if “Hausdorff” is replaced  by “ .”  (X" The proof is similar but

easier.)

Theorem 2.19   The product of countably many two-point discrete spaces is homeomorphic to the

Cantor set GÞ

Proof   We will show that , where each .#
8œ"
∞

8 8\ ¶ G \ œ Ö!ß #×
 To construct  we defined, for each sequence , a descendingG B œ ÐB ß B ß ÞÞÞß B ß ÞÞÞÑ − Ö!ß #×" # 8

�

sequence of closed sets  in  whose intersection gave a uniqueJ ª J ª ÞÞÞ ª J ª ÞÞÞ Ò!ß "ÓB B B B B ÞÞÞB" " # " # 8

point   (s ).   For each , we can write  as a union of: − G À Ö:× œ J 8 G+
8œ"
∞

B B ÞÞÞB" # 8
ee Section IV.10

# G œ ÐG ∩ J Ñ8
ÐB ßÞÞÞßB Ñ−Ö!ß#× B B ÞÞÞB disjoint clopen sets:  .-

" 8
8 " # 8

  Define   by   Clearly  is one-to-one and0 À G Ä \ 0Ð:Ñ œ B œ ÐB ß B ß ÞÞÞß B ß ÞÞÞÑÞ 0#
8œ"
∞

8 " # 8

onto. To show that  is continuous at , it is sufficient to show that for each , the function0 : − G 8
1 �8 ‰ 0 À G Ä Ö!ß #× :Þ 8 − Þ 8 is continuous at   Pick any  For this , there is a clopen set

Y œ G ∩ J : Ð ‰ 0ÑlY œ B ‰ 0B B ÞÞÞB 8 8 8" # 8
 that contains , and .  Thus,  is  on a neighborhood1 1 constant

of  in , so  is continuous at .: G ‰ 0 :18
  By Lemma 2.17,  is Hausdorff.  Since  is a continuous bijection of a compact space#

8œ"
∞

8\ 0
onto a Hausdorff space,  is a homeomorphism ( ).   0 ñwhy?

Corollary 2.20  Ö!ß #×i! is compact.

This corollary is a very special case of the Tychonoff Product Theorem which states that any product

of compact spaces is compact.  The Tychonoff Product Theorem is much harder and will be proved in

Chapter IX.

Corollary 2.21   The Cantor set is homeomorphic to a product of countably many copies of itself.

Proof   By Exercise 2.14 above,  The case ofG ¶ ÐÖ!ß #× Ñ ¶ Ö!ß #× ¶ Ö!ß #× ¶ GÞi i i i †i i! ! ! ! ! !

G ¶ G 8 − ñ8  for  is similar. �

Example 2.22   Convince yourself that each assertion is true:

  1) If  is the Sorgenfrey line, then  is the Sorgenfrey plane (\ \ ‚\ see Examples

  III.5.3 and III.5.4).

 

  2) Let  be the unit circle in .  Then  is homeomorphic to theW W ‚ Ò!ß "Ó" # "‘
  cylinder ÖÐBß Cß DÑ − À B : C œ "ß D − Ò!ß "Ó×Þ‘$ # #

  3)  is homeomorphic to a torus ( “the surface of a doughnut”).W ‚ W œ" "
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Exercises

E1. Does it ever happen that  open in ?  If so, what is a necessary and sufficient\ ‚ Ö!× \ ‚ ‘
condition on  for this to happen?\

E2.  a) Suppose  and  are topological spaces and that Prove that\ ] E © \ß F © ] Þ
int ( int int :  that is, “the interior of the product is the product of the interiors.”\‚] \ ]E‚FÑ œ E‚ F
( .)   Give an example to show that theBy induction, the same result holds for any  productfinite

statement may be false for  products.infinite

 b) Suppose  for all .  Prove that in the product ,E © \ − E \ œ \α α αα #
      cl ( cl .# #E Ñ œ Eα α

Note:  When the 's are closed, this shows that is closed: so “any product of closed sets isEα
#Eα  

closed.”  Can you see any plausible reason why products of closures are better behaved than products

of interiors?

       c) Suppose  and that .  Prove that  is dense in  iff  is dense in\ œ \ Á g E © \ E \ E# #
α α α α α

\α for each .    α Note: Part c) implies that a finite product of separable spaces is separable but itß
doesn't tell us whether or not an infinite product of separable spaces is separable: why not?

      d) For each , let .  Prove that  for all but at most finitelyα ; − \ F œ ÖB − \ À B œ ;α α α α α
#

many  is dense in .  α× \#
α Note:  Suppose  where each  Suppose each\ œ œ \ \ œ Þ‘ ‘�

�
#

8− 8 8

; � ; œ !8 8 is chosen to be a rational say .   Then what does d) imply about ?‘�

 

 e)  Let .  Prove that   for all  is homeomorphicα α α! !− E ] œ ÖB − \ À B œ : Á ×α α α α!
#

to .\α!
Note: So any factor of a product has a “copy” of itself inside the product in a “natural” way.

For example, in , the set of points where all coordinates except the first are  is homeomorphic to‘8 !
the first factor, .‘ Þ

 f) Give an example of infinite spaces  such that  is homeomorphic to  but\ß] ß ^ \ ‚ ] \ ‚ ^
] ^ is not homeomorphic to .

E3. Let  be a topological space and consider the “diagonal” of \ \ ‚\ À?

   ? œ ÖÐBß BÑ À B − \× © \ ‚\Þ

 a)  Prove that  is closed in  if and only if  is Hausdorff.? \ \‚\
 b)  Prove that  is open in  if and only if  is discrete.? \ \‚\

E4.  Suppose  is a Hausdorff space and that  for each . Show that\ \ © \ − Eα α
] œ Ö\ À − E× Ö\ À −+ #

α αα α is homeomorphic to a closed subspace of the product  E×.
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E5.  For each , suppose  is a countable dense set in 8 − H Ð\ ß ÑÞ� g8 8 8

 a) Prove that  is dense in .H œ H \# #8 8

 b)  Prove that  is separable.    #\8 Hint: Note that  might  be countable ! But closenessH not  

in a product depends on only finitely many coordinates.

E6.   a) Suppose  for all .  Prove that there exists a sequence  in  such that,a3ß4 5− Ö!ß #× 3ß 4 − Ð4 Ñ� �

for each ,   lim  exists.    3
5 Ä ∞

a Hint: “picture” the  in an infinite matrix.  For each fixed , the3 4, 5
+ 43ß4

“j-th column" of the matrix is a point in the Cantor set G œ Ö!ß #× Þi!

 b) In ,  is called a  of  if for every  
  or

‘ � � œ
8œ" 8œ"

∞ ∞

8
w

8
8 8

8

+ + 8
+ œ +

+ œ !
subseries

w

w

Prove that if   is absolutely convergent, then  is the sum of a subseries of  � �
8œ" 8œ"

∞ ∞

8 8+ W œ Ö= − À = + ×‘

is closed in .      ‘ Hint: “Absolute convergence” guarantees that every subseries converges.  Each

subseries can be associated in a natural way with a point   Consider the mapping  �
8œ"

∞

8
w+ B − Ö!ß "× Þi!

0 À Ö!ß "× Ä 0ÐBÑ œ 0i! ‘ given by Must  be a homeomorphism?    �
8œ"

∞

8
w+ − Þ‘

 c) Suppose  is an open dense subset of the Cantor set .  Must Fr  be countable?     K G K Hint:

Consider ÖÐ+ß ,Ñ − G ‚ G À , Á !×Þ

E7.  Let  have the cofinite topology.�

 a)  Does the product have the cofinite topology?    Does the answer depend on ?�7 7

 b)  Prove  is separable     �7 Hint:  When  is infinite, consider the simplest possible points in7
the product.  Note:  part b) implies that an arbitrarily large product of  spaces with more than oneX"
point can be separable.  However, that is false for Hausdorff spaces see Theorem 3.8 later in this�
chapter.
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E8.  We can define a topology on any set  by choosing a nonempty family of subsets  and defining\ Y
closed sets to be all sets which can be written as an intersection of finite unions of sets from .   isY Y
called a  of .  (subbase for the closed sets \ This construction is “complementary” to generating a

topology on  by using a collection of sets as a subbase for the open sets.\ )

 a) Verify that this procedure does define a topology on .\

 b) Suppose  is a topological space.  Give  the topology for which collection of\ \α α
#

“closed boxes” closed in  is a subbase for the closed sets.  Is this topology theY œ Ö J À J \ ×#
α α α

product topology?

E9. Prove or disprove:

 There exists a bijection such that for all  and for all ,0 À \ œ Ö!ß "× Ä œ ] B − \ 8i i! !�
 the first  coordinates of  are determined by the first  coordinates of . 8 C œ 0ÐBÑ 7 B

Here,  depends on  and .  More formally, we are asking whether there exists a bijection7 8 B
0 such  that:

       such that changing  for any  does not change aB − \ a8 − b7 − B 4 ( 7 C� � 4 5

  for 5 Ÿ 8

Hint: Think about continuity and the definition of the product topology.
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3. Productive Properties

We want to consider how some familiar topological properties behave with respect to products.

Definition 3.1  Suppose that, for each , the space has a certain property .  We say thatα − E \ Tα

the property  is  

if  must have property 

if  must have property  when is countable T
\ T
\ T E

Ú
ÛÜ

#
#productive

countably productive

fi

α

α

nitely productive if  must have property  when is finite#\ T Eα

   

For example,  Lemma 2.17 shows that the  and  properties are productive.X X" #

Some topological properties behave very badly with respect to products. For example, the Lindelöf

property is a “countability property” of spaces, and we might expect the Lindelöf property to be

countably productive.  Unfortunately, this is not the case.

Example 3.2  The Lindelöf property is not finitely productive; in fact if  is a Lindelöf space, then\
\ ‚\ \may not be Lindelöf. Let  be the set of real numbers with the topology for which a

neighborhood base at  is  , .  (+ œ ÖÒ+ß ,Ñ À +ß , − W , ( +×U+ Recall that  is called the Sorgenfrey\
Line: see Example III.5.3.)  We begin by showing that  is Lindelöf.f
 

It is sufficient to show that a collection  of  open sets covering  has a countableh basic \
subcover.  Given such a cover , Let and define .  For ah i h iœ ÖÐ+ß ,Ñ À Ò+ß ,Ñ − × E œ -
moment, think of  as a subspace of  with its  topology.  Then  is Lindelöf ( ),E E‘ usual why?

and  is a covering of  by usual open sets, so there is a countable subfamily  with i i iE w w-
œ E.

Now replace the left endpoints of the intervals in  to get  .i h i hw w wœ ÖÒ+ß ,Ñ À Ð+ß ,Ñ − × ©
If covers  we are done, so suppose .  For each , pick a seth h hw w w\ \ � Á g B − \ �- -
Ò+ß ,Ñ B B Ò+ß ,Ñ � in  that contains . In fact,   be the left endpoint of because ifh must

B − Ò+ß ,Ñ − B Á + B − œ © Þ B Âh i i h h and ,  then   So, for each  we can pick- - - -w w w

a set [ ) .B −, ,B h

If  and  are distinct points not in  then ) and ) must be disjoint ( ) andB C ÒB ÒC-h w
B C, , , why?, ,

there can be at most countably many disjoint intervals  So ) } isÒBß , ÑÞ ∪ ÖÒB À B ÂB
w wh h, ,B -

a countable subcollection of  that covers .h W

However the Sorgenfrey plane is  Lindelöf.  If it were, then its closed subspaceW ‚ W not

H œ ÖÐBß CÑ À B : C œ "× H would also be Lindelöf (Theorem III.7.10). But that is impossible since 

is uncountable and discrete in the subspace topology.  ( )See the figure on the following page.
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Fortunately, many other topological properties do play more nicely with products. Here are several

topological properties  to which the “same” theorem applies. We combine these into one largeT
theorem for efficiency.

Theorem 3.3 Suppose .  Let  be one of the properties “first countable,”\ œ Ö\ À − E× Á g T#
α α

“second countable,” “metrizable,” or “completely metrizable.”  Then  has property  iff\ T

 1) all the 's have property ,  and\ Tα

  2)  at most countably many 's are trivial  (i.e., do not have the trivial topology)\α non

For all practical purposes, this theorem is a statement about countable products because:

1) The nontrivial 's are the “interesting” factors, and 2) says there are only countably\α

many of them.  In practice, one hardly ever works with trivial spaces, and if we totally

exclude trivial spaces from the discussion, then the theorem just states that  has property \ T
iff  is a countable product of spaces with property .\ T

2) A nonempty -space has the trivial topology iff    So, if we are concernedX \ l\ l œ "Þ" α α

only with -spaces (as is most often the case) the theorem says that  has property  iff allX \ T"

the 's have property  and all but countably many of the 's are “topologically\ T \α α

irrelevant” singletons. Of course, in the cases that involve metrizability, the  condition isX"
automatically satisfied.

Proof   Throughout the proof, let the set of “interesting indices”  is a nontrivialF œ œ Ö − E À \α α

space .  We begin with the case “first countable.”× T œ

Suppose 1) and 2) hold and We need to produce a countable neighborhood base at .  ForB − B\.  

each , let  be a countable open neighborhood base at   Letα �− F ÖY À 8 − × B − \ Þ8
α α α

  is a finite intersection of sets of the form U α �B
8œ ÖY À Y ' Y ( ß − Fß 8 − ×α

Since  is countable,  is a countable collection of open sets containing  and we claim that  is aF BU UB B

neighborhood base at To see this, suppose  is a basic open setB − Z œ ' Z ß ÞÞÞß Z (\.  α α" 5

containing . ( )  For each  pick so thatB 3 œ "ß ÞÞÞß 5ß YWe may assume that all 's are in why?α3 F À α3

38

B − Y © Z Þ Y œ ' Y ßY ß ÞÞÞß Y ( − B − Y © Z Þα αα α α α3 33

3 " #
" #

58 8 8 8
B  Then  and  

k
U
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Conversely, suppose  is first countable\ .  We need to prove that 1) and 2) hold.

\ Á g \ \ \, so by Lemma 2.16 each  is homeomorphic to a subspace of .  Therefore each  is firstα α

countable,  so 1) holds.

For 2) we prove the contrapositive: assuming  is uncountable, we find a point  at which thereF B − \
cannot be a countable neighborhood base.  Pick any point : œ Ð: Ñ − \α

For each pick an open set  for which .  Choose  and" − Fß S © \ g Á S Á \ B − S" " " " " "

C Â S Þ B œ ÐB Ñ − \" " αDefine  using the coordinates

            
if 

if 
B œ

B œ − F
: − \ Â Fα
"

α α
œ α "

α

    

Suppose  is a  collection of neighborhoods of  and for each   a basic open setU UB Bcountable pickB R −
Y B − Y œ ' Y ß ÞÞÞß Y ( © R with .  There are only finitely many 's involved in theα α" 5

α3

expression for each chosen , and there are only countably many 's in .  So, since  isY R FUB

uncountable, we can pick a  that is  one of the 's involved in the expression for any of the" α− F not 3

sets  that were picked. ThenY

i)   is an open set that contains  because ' S ( B B − S" " "

ii) for all  , so  cannot be a neighborhood base at .  To seeR − ß B − R ©Î ' S ( BU UB B"

this, define a point  byA œ ÐA Ñα

   
if 

if 
A œ

B Á
C œα
α

"
œ α "

α "

Thus,  and  have the same coordinates  the  coordinate.  For each , weA B R − Fexcept " B

picked .  Since and  has the same ,...,  coordinatesY œ ' Y ß ÞÞÞß Y ( © R B − Y Aα α" 5
α α" 8

as , we also have . But because  ThereforeB A − Y A Â ' S ( A œ C Â S Þ" " " "

Y ©Î ' S ( R ©Î ' S ( Þ" ",  so 

It's now easy to see that if the product  has any of the other properties , then conditions 1)\ œ \ T#
α

and 2) must hold.

If  is second countable, metrizable or completely metrizable, then  is first countable so, by\ \
the first part of the proof, condition 2) must hold.

If  is second countable or metrizable then every subspace has these same properties so\ �
each  is second countable or metrizable respectively.  If  is completely metrizable, then\ \α

\ \ X Þ \ and all the subspaces  are . By Lemma 2 16, is homeomorphic to aα α"

closed � � \ \therefore complete subspace of  .  Therefore  is completely metrizable.α

It remains to show that if “second countable,” “metrizable,” or “completely metrizable” andT œ
conditions 1) and 2) hold, then  also has property .\ œ \ T#

α
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Suppose “ .”T œ second countable

For each  in the countable set , let } be a countable base for α UF œ ÖS ßS ß ÞÞÞß S ß ÞÞÞ \α αα α α
" # 8

and let

        is a finite intersection of sets of form , where  and }U α �œ ÖS À S ' S ( − F 8 −α
8

U U is countable and we claim  is a base for the product topology on .\

Suppose , a basic open set in .  For each B − Z œ ' Z ß ÞÞÞß Z ( \ 3 œ "ß ÞÞÞß 5ßα α" 5

B − Z \ B − S © Zα α α α αα3 3 3 3 33
3 so we can choose a basic open set in  such that .  Then8

B − S œ ' S ßS ß ÞÞÞß S ( © Z S − Zα α α" # 5
" # 58 8 8  and .  Therefore  can be written as a union ofU

sets from , so  is a base for .U U \

Suppose “ ”T œ metrizableÞ

Since all the 's are , condition 2) implies that all but countably many 's are singletons\ X \ ßα α"

which we can omit without changing topologically.  Therefore it is sufficient to prove that\
if each space  is metrizable, then is metrizable.\ ß\ ß ÞÞÞß \ ß ÞÞÞ \ œ \" # 8 88œ"

∞#
Let  be a metric for where without loss of generality, we can assume each . \ ß . Ÿ "8 8 8

( ).  For points ,  , definewhy? B œ ÐB Ñ C œ ÐC Ñ − \8 8

    .ÐBß CÑ œ �
8œ"

∞
. ÐB ßC Ñ

#
8 8 8

8

Then  is a metric on  ( !) and  that  is the product topology .  Because . \ \check we claim g g.

is a countable product of first countable spaces,  is first countable, so can be described\ g
using sequences:  that in  iff  in  Butit is sufficient to show ÐD Ñ Ä D Ð\ß Ñ ÐD Ñ Ä D Ð\ß ÑÞ5 5 .g g
ÐD Ñ Ä D Ð\ß Ñ ÐD Ñ5 5in  iff the  converges “coordinatewise.”  Therefore g it is sufficient to

show that:

 ( in    iff    in  or equivalently,D Ñ Ä D Ð\ß Ñ a8 ÐD Ð8ÑÑ Ä DÐ8Ñ Ð\ ß . Ñ5 . 5 8 8g
       a8 . ÐD Ð8Ñß DÐ8ÑÑ Ä !8 5

       i) Suppose .  Let and consider any particular .  We can.ÐD ß DÑ Ä ! ( ! 85 !%

choose  so that  implies .  ThenO 5   O .ÐD ß DÑ œ '5
8œ"

∞

#
� . ÐD Ð8Ñß DÐ8ÑÑ

#
8 5

8
%
8!

for ,   , so .5   O ' . ÐD Ð8 Ñß DÐ8 ÑÑ '
. ÐD Ð8 Ñß DÐ8 ÑÑ

#
8 5 ! !!

8!
%
# 8 5 ! !8! !

%

Therefore .. ÐD Ð8 Ñß DÐ8 ÑÑ Ä !8 5 ! !!

     ii) On the other hand, suppose  for every and let  .. ÐD Ð8Ñß DÐ8ÑÑ Ä ! 8 ( !8 5 %

Choose  so that  and then choose  so that if R ' O 5   O�
8œR:"

∞
"
# #8

%

   . ÐD Ð"Ñß DÐ"ÑÑÎ# '" 5
"

#R
%

   . ÐD Ð#Ñß DÐ#ÑÑÎ# '# 5
#

#R
%

    ã
    .. ÐD ÐRÑß DÐRÑÑÎ# 'R 5

R
#R
%
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Then for  we have 5   O .ÐD ß DÑ œ5
8œ"

∞� . ÐD Ð8Ñß DÐ8ÑÑ
#

8 5
8

œ : ' R † : œ Þ� �
8œ"

R ∞

8œR:"
#

. ÐD Ð8Ñß DÐ8ÑÑ . ÐD Ð8Ñß DÐ8ÑÑ
# # #R

8 5 8 5
8 8

% % %

Therefore ..ÐD ß DÑ Ä !5

Suppose “ ”T œ completely metrizableÞ

Just as for “metrizable,” we can assume  and that  is a complete metricT œ \ œ \ .#
8œ"
∞

8 8

on  with .  Using these 's, we define  in the same way.  Then  is the  product\ . Ÿ " . .8 8 8 .g
topology on .  We only need to show that  is complete.\ Ð\ß .Ñ

Suppose  is a Cauchy sequence in .  From the definition of  it is easy to see thatÐD Ñ Ð\ß .Ñ .5

ÐD Ð8ÑÑ Ð\ ß . Ñ 8 ÐD Ð8ÑÑ Ä + − \ Þ5 8 8 5 8 8 is Cauchy in for each , so that some point 

Let .  Since  for each , we have  in the product topology+ œ Ð+ Ñ − \ ÐD Ð8ÑÑ Ä + 8 ÐD Ñ Ä +8 5 8 5

œ Ð\ß .Ñ ñg..  Therefore  is complete.   

What is the correct formulation and proof of the theorem for “pseudometrizable” ?T œ

We might wonder why “separable” is not included in Theorem 3.3. Since “separable” is aT œ
“countability property,” we might hope that separability is preserved in countable products

� although our experience Lindelöf spaces could make us hesitate. The explanation for the omission

is that separability is actually  behaved for products than the other properties. Surprisingly, thebetter

product of as many as  separable spaces is separable, and the product of more than  nontrivial- -
separable spaces  sometimes be separable.  (can You should try to prove directly that a countable

product of separable spaces is separable remembering that in the product topology, “closeness�
depends on finitely many coordinates.”  If necessary, first look at finite products.)

We begin the treatment of separability and products with a simple lemma which is merely set theory.

Lemma 3.4  Suppose There exists a  collection  of subsets of  with thelEl Ÿ -Þ Ecountable e
following property:  given distinct , , ... , , there are  sets  suchα α α e" # 8 " # 8− E E ßE ß ÞÞÞß E −disjoint

that  for each .α3 3− E 3

Proof   (Think about how you would prove the theorem if   If you do that, then you'll see thatE œ Þ‘
the general case is just a “carry over” of that proof.)

Since , there is a one-to-one map .  Let For distinctlEl Ÿ - À E Ä œ Ö Ò Ð+ß ,Ñ Ó À +ß , − ×Þ9 ‘ e 9 ��"

α α α 9 α 9 α 9 α" # 8 " # 8, ,..., , we know that , , ...,  are distinct real numbers. Then we can− E Ð Ñ Ð Ñ Ð Ñ
choose ,  so that  and so that the intervals  are pairwise disjoint.  Then+ , − Ð Ñ − Ð+ ß , Ñ Ð+ ß , Ñ3 3 3 3 3 3 3� 9 α
the sets  are the ones we need.  E œ ÒÐ+ ß , ÑÓ − ñ3 3 3

�"9 e

Theorem 3.5

 1) Suppose .  If  is separable, then each is separable.\ œ \ Á g \ \#
α α α−E  

 2) If each  is separable and , then  is separable.\ lEl Ÿ - \ œ \α αα
#

−E
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Part 2) of Theorem 3.5 is attributed (independently) to several people.  In a slightly more general

version, it is sometimes called the “Hewitt-Marczewski-Pondiczery Theorem.”  Here is an amusing

sidelight, written by topologist Melvin Henriksen online in the . A few words haveTopology Atlas

been modified to conform with our notation:

Most topologists are familiar with the Hewitt-Marczewski-Pondiczery theorem. It states that if

7 # is an infinite cardinal, then a product of  topological spaces, each of which has a dense7

set of cardinality  also has a dense set with  points.  In particular, the product ofŸ 7ß Ÿ 7
- - separable spaces is separable (where  is the cardinal number of the continuum). Hewitt's

proof appeared in [Bull. Amer. Math. Soc. 52 (1946), 641-643], Marczewski's proof in [Fund.

Math. 34 (1947), 127-143], and Pondiczery's in [Duke Math. 11 (1944), 835-837]. A proof

and a few historical remarks appear in Chapter 2 of Engelking's . TheGeneral Topology

spread in the publication dates is due to dislocations caused by the Second World War; there

is no doubt that these discoveries were made independently.

Hewitt and Marczewski are well-known as contributors to general topology, but who was (or

is) Pondiczery? The answer may be found in Lion Hunting & Other Mathematical Pursuitsß
edited by G. Alexanderson and D. Mugler, Mathematical Association of America, 1995. It is a

collection of memorabilia about Ralph P. Boas Jr. (1912-1992), whose accomplishments

included writing many papers in mathematical analysis as well as several books, making a lot

of expository contributions to the American Mathematical Monthly, being an accomplished

administrator (e.g., he was the first editor of Mathematical Reviews (MR) who set the tone for

this vitally important publication, and was the chairman for the Mathematics Department at

Northwestern University for many years and helped to improve its already high quality), and

helping us all to see that there is a lot of humor in what we do. He wrote many humorous

articles under pseudonyms, sometimes jointly with others. The most famous is “A Contribution

to the Mathematical Theory of Big Game Hunting” by H. Petard that appeared in the Monthly

in 1938. This book is a delight to read.

In this book, Ralph Boas confesses that he concocted the name from Pondicheree (a place in

India fought over by the Dutch, English and French), changed the spelling to make it sound

Slavic, and added the initials E.S. because he contemplated writing spoofs on extra-sensory

perception under the name E.S. Pondiczery. Instead, Pondiczery wrote notes in the Monthly,

reviews for MR, and the paper that is the subject of this article. It is the only one reviewed in

MR credited to this pseudonymous author.

One mystery remains. Did Ralph Boas have a collaborator in writing this paper? He certainly

had the talent to write it himself, but facts cannot be established by deduction alone. His son

Harold (also a mathematician) does not know the answer to this question ...

Proof 1) Let  be a countable dense set in .  For each  is countable and dense in H \ ß ÒHÓ \α 1α α

(because cl cl  ).  Therefore each  is separable.\ œ Ò\Ó œ Ò HÓ © ÒHÓ \α α α α α1 1 1

 2) Choose a family  as in Lemma 3.4 and for each , let , be ae α H œ ÖB B ß ÞÞÞß B ß ÞÞÞ ×α α α α
1 2 8

countable dense set in .  Define a countable set  by\α f
 

  ,  with the 's pairwise disjointf � � eœ ÖÐE ß ÞÞÞß E ß 6 ß ÞÞÞß 6 Ñ À 8 − ß 6 − E − E ×Þ" 8 " 8 3 3 3
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For each  pick a point , and for each -tuple , define a pointα f: − \ #8 = œ ÐE ß ÞÞÞß E ß 6 ß ÞÞÞß 6 Ñ −α α " 8 " 8

B − \=  with coordinates

  
if 

if 
B Ð Ñ œ

B − E
: Â E=

6
3

3
α

α

αœ -α

α

3

Let .   is countable and we claim that  is dense in .  To see this, consider anyH œ ÖB À = − × H H \= f
nonempty basic open set  we will show that Y œ ' Y ß ÞÞÞß Y ( À Y ∩H Á gÞα α" 5

For ,Y œ ' Y ß ÞÞÞß Y ( Á gα α" 5

 i) Choose disjoint sets  in  so that .E ß ÞÞÞß E − E ß ÞÞÞß − E
" 5

e α α" " 5 5

ii) For each   is dense in  and we can pick a point in 3 œ "ß ÞÞÞß 5ß H \ B H ∩ Yα α α αα3 3 3 33
38

œ ÖB B ß ÞÞÞß B ß ÞÞÞ × ∩ Y Þα α α α3 3 3 3
" # 8,

Then, let  Because , we have = œ ÐE ß ÞÞÞß E ß ÞÞÞß E ß 8 ß ÞÞÞ8 ß ÞÞÞß 8 Ñ − Þ − E B Ð Ñ œ B" 3 5 " 3 5 3 3 3=
8f α α α3
3

− Y B − Y ∩H ñα3
. Therefore .  =

Example 3.6  The rather abstract construction of a dense set in the proof of Theorem 3.5 can beH
nicely illustrated with a concrete example.  Consider , where each Choose‘ ‘‘

‘Ð œ \ \ œ ÑÞ#
<− < <

e to be the collection of all open intervals  with rational endpoints, and make a list theseÐ+ß ,Ñ
intervals as . In each choose   (E ß ÞÞÞß E ß ÞÞÞ \ ß H œ œ Ö; ß ; ß ÞÞÞ; ß ÞÞÞ×Þ" 8 < <

" # 8� Since all the 's areH<

identical, we can omit the subscript “ ” on the points; but just to stay consistent with the notation i< 8
the proof, we still use superscripts to index the 's.; )   For each , (arbitrarily) pick < : œ ! − \ Þ< <

One example of a 6-tuple in the collection  is , where are disjointf = œ ÐE ßE ßE ß #ß (ß %Ñ E ß E ßE' # & " # $

open intervals with rational endpoints.  The corresponding point is the functionB − B À Ä= =‘ ‘ ‘‘

with

    

 

for 

for 

for 

   for 

B Ð<Ñ œ

; < − E

; < − E

; < − E
! < Â E ∪ E ∪E

=

#
'

(
#

%
&

' & #

ÚÝÝ
ÛÝÝÜ

The dense set  consists of all step functions (such as ) that are   a finite unionH B != outside

E ∪E ∪ ÞÞÞ ∪ E8 8 8" # 5
of disjoint open intervals with rational endpoints and which have a constant

rational value on each .E3

Caution: In Example 2.12 we saw that the product topology on  is the topology of pointwise‘‘

convergence that is, in  iff  for each .  But  is not first� Ð0 Ñ Ä 0 Ð0 Ð<ÑÑ Ä 0Ð<Ñ < −8 8‘ ‘ ‘‘ ‘

countable ( ) so we cannot say that sequences are sufficient to describe the topology.  Inwhy?

particular, if  then cl but we  say that there must be sequence of step functions0 − ß 0 − H‘‘ cannot

from  that converges pointwise to H 0Þ

Since  is not first countable,  is an example of a separable space that is neither second countable‘ ‘‘ ‘

nor metrizable.
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In contrast to the properties discussed in Theorem 3.3, an arbitrarily large product of nontrivial

separable spaces  sometimes turn out to be separable, as the next example shows.  However,can

Theorem 3.8 shows that for Hausdorff spaces, a nonempty product with more than  factors cannot be-
separable.

Example 3.7 For each , let  be a set with   Choose  and letα − E \ l\ l ( "Þ : − \α α α α

g gα α α α α α αœ ÖS © \ À : − S× ∪ Ög×Þ Ö: × Ð\ ß Ñ \  The singleton set  is dense in , so  is separable.

If , then singleton set  is dense  (: œ Ð: Ñ − \ œ \ Ö:×α αα
#

−E why? look at a nonempty basic

open set .Y )   So  is separable, and this does not depend on .\ lElÞ
   In this example, the 's are not .  But Exercise E7 shows that an arbitrarily large\ Xα "

product of separable -spaces can turn out to be separable.X"

Theorem 3.8   Suppose  where each  is a -space with more than one point.\ œ \ Á g \ X#
α α α−E #

If  is separable, then \ lEl Ÿ -Þ

Proof   For each , we can pick a pair of disjoint, nonempty open sets and  in Let  be aα Y Z \ Þ Hα α α

countable dense set in  and let  for each .  If there is a point\ H œ ' Y ( ∩H Á − Eßα α α α "
: − ' Y ß Z ( ∩H H : − H : Â H œ ' Y ( ∩Hα " α " " because  is dense.  Then  but  since

B Â Y À H Á H À E Ä ÐHÑ Ð Ñ œ H" " α " α  therefore .  Therefore the map  given by  is one-to-9 c 9 α

one, so lEl Ÿ l ÐHÑl œ # œ -Þ ñc i!

We saw in Corollary V.2.19 that a  product of connected spaces is connected.  The followingfinite

theorem shows that connectedness actually behaves very nicely with respect to all products.  The proof

of the theorem is interesting because, unlike previous proofs about products,  this proof  theuses

theorem about finite products to prove the general case.

Theorem 3.9   Suppose .   is connected if and only if each is connected.\ œ \ Á g \ \#
α α α−E

Proof Suppose  is connected.  Since we have for each .  A continuous\ \ Á gß Ò\Ó œ \1 αα α

image of a connected space is connected (Example V.2.6), so each  is connected.\α

 Conversely, suppose each  is connected   For each , pick a point .  For each \ Þ : − \α α αα finite

set , let .   is homeomorphic to the finite productJ © E \ œ \ ‚ Ö: × \J J−J −E�J
# #

α αα α# -
α α−J J J J\ \ H œ Ö\ À J E× \, so each  is connected.  Let  is a finite subset of .  Each  contains

the point , so Corollary V.2.10 tells us that  is connected.  Unfortunately,  (: œ Ð: Ñ H H Á \α except in

trivial cases; why?).

But we claim that  is dense in .  We need to show that  for every nonempty basic openH \ H∩ Y Á g
set in .   If , choose a point  for each , and define a\ Y œ ' Y ß ÞÞÞß Y ( B − Y 3 œ "ß ÞÞÞß 8α α α α" 8 3 3

point  with coordinatesB − \

   
if

if , ,...,
BÐ Ñ œ

B œ
: Á

α
α α

α α α αœ α

α

3 3

" # 8

Let . Then , so J œ Ö+ ß ß ÞÞÞß × B − \ ∩ Y © H ∩ Y H ∩ Y Á gÞ" # 8 Jα α

Therefore cl  is connected (Corollary V.2.20).  \ œ H ñ

Question:  is the analogue of Theorem 3.9 true for path connected spaces?
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Just for reference, we state one more theorem here.  We will not prove the theorem until Chapter IX,

but we may use it in examples. (Of course, the proof in Chapter IX will not depend on any of these

examples! )

Theorem 3.10 (Tychonoff Product Theorem)  Suppose .  Then  is compact if\ œ \ Á g \#
α α−E

and only if each  is compact.\α

One half ( ) of the proof of Tychonoff's Theorem is very easy ( , and the easy proof that aÊ why?)

finite product of compact spaces is compact was in Exercise IV.E.26.
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Exercises

E10.  Let  have the product topology.\ œ Ò!ß "ÓÒ!ß"Ó

 a) Prove that the set of all functions in  with finite range is dense in . (\ \ Here, we will call

such functions .  In other settings, the definition of “step function” is more restrictive. step functions )

 b) By Theorem 3.5,  is separable.  Describe a countable set of step functions which is dense\
in .\

 c) Let  is the characteristic function of a singleton set   Prove that ,E œ ÖB − \ À B Ö<××Þ E
with the subspace topology, is discrete and not separable.  Is  closed?E

 d) Prove that  has exactly one limit point, , in  and that if  is a neighborhood of ,E D \ R D
then  is finite.E�R

E11.  “Boxes” of the form , where  is open in , are a base for the box topology#ÖY À − E× Y \α α αα
on #α α−E\ Þ Throughout this problem, we assume that products have the box topology rather than the

usual product topology.

  a) Show that the “diagonal map”  given by  is not continuous,0 À Ä 0ÐBÑ œ ÐBß Bß Bß ÞÞÞÑ‘ ‘i!

but that its composition with each projection map is continuous.

  b) Show that  is not compact.     Ò !ß "Ói! Hint: let  and .  Consider theE œ Ò !ß "Ñ E œ Ð!ß "Ó! "

collection  of all sets of the form ...  ,  where h % % %E ‚E ‚ ‚E ‚ ÞÞÞ Ð ß ß ÞÞÞß ß ÞÞÞÑ − Ö!ß "×% % %" # 8
!

" # 8
i  .

By contrast, the Tychonoff Product Theorem (3.10)  implies that with the t topology)Ò !ß "Ó7 (  produc is

compact for any cardinal .7
 

 c) Show that  is not connected by showing that the set  is an unbounded‘ ‘i i! !E œ ÖB − À B
sequence in  is clopen.‘×

 d) Suppose  and    are metric spaces.  Prove that a functionÐ\ß .Ñ Ð\ ß . Ñ Ð − EÑα α α
0 À \ Ä \ 0 œ ‰ 0#

α α α (with the  topology) is continuous iff each coordinate function  isbox 1
continuous  each  has a neighborhood on which all but a finite number of the 's areand B − \ 0α
constant.

E12.  State and prove a theorem that gives a necessary and sufficient condition for a product of spaces

to be path connected.

E13.  Prove the following more general version of Theorem 3.8:

 Suppose , and that, for each , there exist disjoint nonempty open sets\ œ \ Á g − E#
α α−E α

  and  in .  If  is separable, then Y Z \ \ lEl Ÿ -Þα α α
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4. Embedding Spaces in Products  

If there is a homeomorphism    , then   We say then that is  in
into

2 À \ Ä ] \ ¶ 2Ò\Ó © ] Þ \ embedded

and call  an .  Phrased differently,  shows that  is homeomorphic to a subspace of 2 2 \ ]embedding

and, speaking topologically, we might say  “is” a subspace of .   It is often possible to embed a\ ]
space  in a product Such embeddings will give us some nice theorems for example,\ ] œ \ Þ �#

α

we will see that there is a separable metric space that contains (topologically) all other separable]
metric spaces  is a “universal” separable metric space.� ]

To illustrate the embedding technique that we use, consider two functions  and0 À Ò!ß "Ó Ä" ‘
0 À Ò!ß "Ó Ä 0 ÐBÑ œ B 0 ÐBÑ œ / Þ 0 0 ß# " # " #

# B‘ given by  and  Using and  we can define

/ À Ò!ß "Ó Ä ‚ œ 0 0 /ÐBÑ œ Ð0 ÐBÑß 0 ÐBÑÑ‘ ‘ ‘#
" # " # by using  and  as “coordinate functions”: 

œ ÐB ß / ÑÞ / Ö0 0 ×# B
" # This map  is called  , .  In thisthe evaluation map defined by the set of functions

example,   is an embedding that is,  is a homeomorphism of  into , so that/ � / Ò!ß "Ó ‘#

Ò!ß "Ó ¶ Ð/Ñ ©ran   ( ).‘# see the figure

                          

An evaluation map does not always give an embedding:  for example, the evaluation map

/ À Ò!ß "Ó Ä Ö # Bß # B× Ò!ß "Ó‘ 1 1# defined by the family cos sin is  a homeomorphism between  andnot

ran   ( )Ð/Ñ © ‘# why? what is ran ?Ð/Ñ

We want to generalize the idea of an evaluation map  into a product and to find conditions under/
which  will be an embedding./

Definition 4.1  Suppose  and (  are topological spaces and that  for each  \ \ − EÑ 0 À \ Ä \ Þα α αα α
The  defined by the family is the function  given byevaluation map Ö0 À − E× / À \ Ä \α ααα #

−E

     /ÐBÑÐ Ñ œ 0 ÐBÑα α

Thus,  is the point in the product whose  coordinate is :. In more informal/ÐBÑ \ 0 ÐBÑ#
α ααth

coordinate notation, /ÐBÑ œ Ð0 ÐBÑÑÞα
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Exercise 4.2   Suppose For each , there is a projection map .  What is\ œ \ Þ À \ Ä \#
α α α−E α

α 1

the evaluation map defined by the family  ?Ö À − E×1 αα

Definition 4.3  Suppose  and (  are topological spaces and that We say\ \ − EÑ 0 À \ Ä \ Þα α αα
that    if, for each pair of points , there exists anthe family separates pointsÖ0 À − E× B Á C − \α α
α − E 0 ÐBÑ Á 0 ÐCÑ for which .α α

Clearly, the evaluation map  is one-to-one  for all / À \ Ä \ Í B Á C − \ß /ÐBÑ Á /ÐCÑ#
α α−E

Í B Á C − \ − E /ÐBÑÐ Ñ œ 0 ÐBÑ Á 0 ÐCÑ œ /ÐCÑÐ Ñfor all   there is an  for which α α αα α

Í Ö0 À − E×the family  separates points.α α

Theorem 4.4  Suppose  has the weak topology generated by the maps  and that\ 0 À \ Ä Ð\ ß Ñα α αg
the family  separates points.  Then  is an that is,  is Ö0 À − E× / � /α α embedding a homeomorphism

between  and \ /Ò\Ó © \#
α.

Proof   Since separates points,   is one-to-one and  is continuous because each compositionÖ0 × / /α

1α α‰ / œ 0 is continuous.

  preserves unions and also (since  is one-to-one) intersections.  Therefore. to check that  is/ / /
an open map from  to , it is sufficient to show that  maps  open sets in  to open sets\ /Ò\Ó / \subbasic

in .  Because  has the weak topology, a subbasic open set has the form , where  is/Ò\Ó \ Y œ 0 ÒZ Ó Zα
�"

open in .  But then  is an open set     \ /ÒY Ó œ /Ò0 ÒZ ÓÓ œ ÒZ Ó ∩ /Ò\Ó Þ ñα α α
�" �"1 in /Ò\Ó

 Note: might not be open in , but that is irrelevant. See the earlier example where/ÒY Ó #\α

/ÐBÑ œ ÐB ß /# B)Þ

The converse of Theorem 4.4 is also true: if e is an embedding, then the 's separate points and 0 \α

has the weak topology generated by the 's.  However, we do not need this fact and will omit the0α
proof (which is not very hard).

Example 4.5

Let be a separable metric space.  We can assume, without loss of generality, that     isÐ\ß .Ñ . Ÿ "Þ \
second countable so there is a countable base   for the open sets. For each , letU œ ÖY ß ÞÞÞß Y ß ÞÞÞ× 8" 8

0 ÐBÑ œ .ÐBß\ � Y ÑÞ 0 À \ Ä Ò!ß "Ó \ � Y8 8 8 8  Then  is continuous and, since  is closed, we have

0 ÐBÑ ( ! B − Y Þ B Á C − \ 8 B − Y C Â Y Þ8 8 8 8 iff   If , there is an  such that and Then

0 ÐCÑ œ ! Á 0 ÐBÑ 08 8 8, so 's separate points.

We claim that the topology  on  is the same as the weak topology generated by the 's.g g. A 8\ 0
Because the functions  continuous if  has the topology , we know that  To show0 \ ª Þ8 . . Aare g g g
g g g. A . 8 8© B − Y − Þ 8 B − Y © Y 0 ÐBÑ œ - ( !Þ, suppose   For some , we have  and therefore   But

Z œ 0 ÒÐ ß "ÓÓ B − Z © Y © YÞ8 8 88
�" -

#  is a (subbasic) open set in the weak topology and Therefore

Y − gA.

By Theorem 4.4,   is an embedding, so   We sometimes write/ À \ Ä Ò!ß "Ó \ ¶ /Ò\ Ó © Ò!ß "Ó Þi i! !

this as .  From Theorems 3.3 and 3.5,  we know that  is itself a separable\ © Ò!ß "Ó Ò!ß "Ó
top

i i! !

metrizable space and therefore  its subspaces are separable and metrizable. Putting all this� all

together, we get that topologically, separable metrizable spaces are nothing more and nothing less than

the subspaces of Ò!ß "Ó œ Li! (“the Hilbert cube”).



263

We can view this fact with a “half-full” or “half-empty” attitude:

 i)  separable metric spaces must not be very complicated since topologically they are nothing

 more than the subspaces of a single very nice space: the “cube” Ò!ß "Ói!

 ii) separable metric spaces can get quite complicated, so the subspaces of a cube Ò!ß "Ói!

 are more complicated than we imagined.

Since  (the “Hilbert cube”)  we can also say that topologicallyÒ!ß "Ó ¶ Ò!ß Ó œ L © ji
8œ"
∞ "

8 #
! #  ,

the separable metrizable spaces are  the subspaces of  .\ jprecisely # This is particularly amusing

because of the metric  on  is very much like the usual metric on . j À#
8‘

    .ÐBß CÑ œ Ð ÐB � C Ñ Ñ�
8œ"

∞

8 8
# "

#

In some sense, this elegant “Euclidean-like” metric is adequate to describe the topology of any

separable metric space.  (Note:   is topologically a subspace of  with the product topology.  If we\ L
identify  with a subspace of , as above, how to we know that the metric topology induced on L j L#

from is the same as the product topology on ?j L# )

We can summarize by saying that each of  and  is a “universal separable metric space ”  Notice,L j Þ#

though, that these two “universal” spaces are not homeomorphic: one is compact and the other is not. )

 

Example 4.6

Suppose is a metric space (not necessarily separable) and that  is a base for theÐ\ß .Ñ ÖY À − E×α α
topology , where Then an argument exactly like the one in Example 4.5 (just replace “ ”g. lEl œ 7Þ 8

everywhere with “ ”) shows that .  Therefore α \ © Ò!ß "Ó
top

7 every metric space, topologically,  is a

subspace of some sufficiently large “cube.”  Of course when , the cube  is  itself7 ( i Ò!ß "Ó!
7 not

metrizable ( ); in general this cube will have many subspaces that are nonmetrizable. So the resultwhy?

is not quite as dramatic as in the separable case.

The   of a topological space  is defined as min  is a base for weight AÐ\Ñ Ð\ß Ñ Öl l À × : i Þg U U g !

We are assuming here that the “min” in the definition exists: see Example 5.22 in Chapter

VIII.  or some very simple spaces, the “min” could be finite in which case the “ ”J � : i!
guarantees that   convenient for purely technical reasons that don't matter inAÐ\Ñ   i Ð!

these notes).

The   is defined as min  is dense in For a  space, it isdensity metrizable$ gÐ\Ñ ÖlHl À H Ð\ß Ñ× : i Þ!
not hard to prove that .  The proof is just like our earlier proof (in Theorem III.6.5) thatAÐ\Ñ œ Ð\Ñ$
separability and second countability are equivalent in  metrizable spaces Therefore we have that for.

any metric space Ð\ß .Ñß

     \ © Ò!ß "Ó œ Ò!ß "Ó
top

AÐ\Ñ Ð\Ñ$      (*)

Notice that, for a given space , the exponents in this statement are not necessarily the smallestÐ\ß .Ñ

possible.  For example, (*) says that , but in fact we can do much better than‘ © Ò!ß "Ó œ Ò!ß "Ó
top

AÐ Ñ i‘ !

the exponent   !i À ¶ Ð!ß "Ñ © Ò!ß "Ó œ Ò!ß "Ó!
"‘
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We add one additional comment, without proof:  For a given infinite cardinal , it is possible to7
define a   space  with weight  such that  metric space  with weight  can bemetrizable everyL 7 \ 77

embedded in   In other words,  is a  space which is “universal for all metric spacesL Þ L7 7
i i! ! metrizable

of weight .”  The price of metrizability, here, is that we need to replace  by a more complicated7 Ò!ß "Ó
space .L7

Without going into all the details, you can think of  as a “star” with  different copies ofL 77

Ò!ß "Ó ! Bß C (“rays”) all placed with  at the center of the star. For two points  on the same

“ray” of the star,  ; if  are on different rays, the distance between them.ÐBß CÑ œ lB � Cl Bß C
is measured “via the origin” À .ÐBß CÑ œ lBl : lClÞ

The condition in Theorem 4.4 that “  has the weak topology generated by a collection of maps\
0 À \ Ä \α α” is not always easy to check.  The following definition and theorem can sometimes

help.

Definition 4.7  Suppose  and (  are topological spaces and that We say that\ \ − EÑ 0 À \ Ä \ Þα α αα
the collection  if whenever  is a closed set in Y αœ Ö0 À − E× J \α separates points from closed sets

and , there is an  such that clB Â J 0 ÐBÑ Â 0 ÒJ ÓÞα α α

Example 4.8   Let  and .  Suppose  is a closed set in  and  .  There is an\ œ œ GÐ Ñ J < Â J‘ Y ‘ ‘
open interval  for which .   Define  with a graph like the one shownÐ+ß ,Ñ < − Ð+ß ,Ñ © � J 0 − GÐ Ñ‘ ‘
in the figure:

                            

Then cl   Therefore separates points and closed sets.! œ 0Ð<Ñ Â 0 ÒJ ÓÞ GÐ Ñ‘

The same notation continues in the following lemma.

Lemma 4.9  The family open in  is a  for the topology in  iffU αœ Ö0 ÒZ Ó À − Eß Z \ × \α α
�" base

     
i) the 's are continuous, and

ii)  separates points and closed sets.œ 0
Ö0 À − E×

α

α α
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In particular,  i) ii) imply that  is a base for the topology on so that  has the weak: \ � \U sub

topology generated by the 's.0α

Note:  the more open (closed) sets there are in , the harder it is for a given family to\ Ö0 À − E×α α  

succeed in separating points and closed sets.  In fact  the lemma shows that a family of continuousß
functions succeeds in  separating points and closed sets  if   is the Ö0 À − E×α α  only smallestg
topology that makes the 's continuous.0α

Proof   Suppose  is a base. Then the sets  in  are open, so the 's are continuous andU U0 ÒZ Ó 0α α
�"

i) holds.

            To prove ii), suppose  is closed in and .  For some  and some  open in , weJ \ B Â J Z \α α

have   Then  and   since .B − 0 ÒZ Ó © \ � JÞ 0 ÐBÑ − Z Z ∩ 0 ÒJ Ó œ g Ð 0 ÒZ Ó ∩ J œ gÑα αα α
�" �"

Therefore cl  so ii) also holds.0 ÐBÑ Â 0 ÒJ Óα α

 Conversely, suppose i) and ii) hold.  If  and  is open in , we need to find a setB − S S \
0 ÒZ Ó − B − 0 ÒZ Ó © S Þ B Â J œ \ �Sα α
�" �"U αsuch that   Since , condition ii) gives us an  for

which cl .  Then  cl , so  and we claim0 ÐBÑ Â 0 ÒJ Ó 0 ÐBÑ − Z œ \ � 0 ÒJ Ó B − 0 ÒZ Óα α α α α α
�"

0 ÒZ Ó © Sα
�" :

  If , then , so clA Â S A − J 0 ÐAÑ − 0 ÒJ Ó © 0 ÒJ ÓÞα α α

  Then , so 0 ÐAÑ Â Z A Â 0 ÒZ ÓÞ ñα α
�"

  

Theorem 4.10  Suppose  is continuous for each .  If the collection 0 À \ Ä \ − E Ö0 À − E×α α αα α

   
i) separates points and closed sets, and

ii) separates pointsœ
then the evaluation map  is an embedding./ À \ Ä \#

α

Proof   Since the 's are continuous, Lemma 4.9 gives us that  has the weak topology.  Then0 \α

Theorem 4.4 implies that  is an embedding.   / ñ

If the space  (that we are trying to embed in a product) is a -space ( ), then\ X" as is most often the case

 i) ii) in Theorem 4.10 , so we have the simpler statement given in the following corollary.Ê

Corollary 4.11  Suppose  is continuous for each . If  is a -space and0 À \ Ä \ − E \ Xα α α "

Ö0 À − E× / À \ Ä \α αα  separates points and closed sets, then evaluation map  is an embedding.#
Proof    By Theorem 4.10, it is sufficient to show that the 's separate points, so suppose .0 B Á C − \α

Since  is  in the closed set , there is an  for which cl .  ThereforeB ÖC× 0 ÐBÑ Â 0 ÒÖC×Ónot α α α

0 ÐBÑ Á 0 ÐCÑß Ö0 À − E× ñα α α so  separates points.  α



266

Exercises

E14.  A space  is called a  space if whenever , then   (equivalently,Ð\ß Ñ X B Á C − \ Ág a a ! B C

either there is an open set  containing  but not , or vice-versa).  Notice that the  condition isY B C X!
weaker than  ( Clearly, a subspace of a -space is .X X X" ! !see example III.2.6.4).

 a) Prove that a nonempty product  is  iff each  is .\ œ Ö\ À − E× X \ X#
α αα ! !

 b) Let  be “Sierpinski space” that is,  with the topology 1 .W � W œ Ö!ß "× œ Ögß Ö ×ß Ö!ß "××g
Use the embedding theorems to prove that a space  is  iff  is homeomorphic to a subspace of \ X \ W!

7

for some cardinal .  7 Hint : for each open set  in , let  be the characteristic function of Ê Y \ YÞ;Y

Use an embedding theorem.  Nearly all interesting spaces are , and those spaces, topologically, areX!
all just subspaces  of  for some .W 77

E15.  a)   Let  be a metric space.  Prove that  is continuous separatesa) Ð\ß .Ñ GÐ\Ñ œ Ö0 − À 0 ×‘\

points and closed sets  ( ).Þ Since  is ,  therefore also separates points\ X GÐ\Ñ"

 b) Suppose  is any topological space for which  separates points and closed sets.\ X GÐ\Ñ!

Prove that  can be embedded in a product of copies of .\ ‘

E16. A space  satisfies the  (CCC) if every collection of nonempty\ countable chain condition

pairwise disjoint open sets must be countable.  ( )For example, every separable space satisfies CCC.

        Suppose that  is separable for each .  Prove that :  satisfies  CCC.\α αα α− E \ œ Ö\ − E×#
( | | )There isn't much to prove when A c; why?Ÿ

Hint: Let U  be any such collection.  We can assume all the U 's are basic open sets (why?).Ö À > − X×> >

Prove that if T and c, then and hence  must be countable.)W © X| | | |  W Ÿ W Ÿ i!

E17. There are several ways to define  for topological spaces.  One classical method is thedimension

following inductive definition.

 Define dim .g œ � "
 For , we say that  has dimension 0  if there is a neighborhood base at : − \ \ Ÿ :at :
consisting of sets with 1 dimensional (that is, empty) frontiers.  Since a set has empty frontier�
iff it is clopen,  has dimension 0 at  iff  has a neighborhood base consisting of clopen sets.\ Ÿ : :
    We say  has dimension  at  if there exists a neighborhood base at  in which the\ Ÿ 8 : :
frontier of every basic neighborhood has dimension Ÿ 8� "Þ
   We say has dimension , and write dim , if  has dimension  at p for each\ Ÿ 8 Ð\Ñ Ÿ 8 \ Ÿ 8 

: − \ Ÿ 8 Ð\Ñ ŸÎ 8 � "X and that  if dim( )  but dim .  We say  ifdim dimÐ\Ñ œ 8 Ð\Ñ œ ∞
dim  is false for every  Ð\Ñ Ÿ 8 8 − Þ�
 While this definition of dim  makes sense for any topological space , it turns out thatÐ\Ñ \
“dim” produces a nicely behaved dimension theory only for separable metric spaces.  The

dimension function “dim” is sometimes called  to distinguish it fromsmall inductive dimension

other more general definitions of dimension.  The classic discussion of small inductive dimension

is in Hurewicz and Wallman).Dimension Theory (
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  It is clear that “dim ” is a topological property There is a theorem stating that dim (Ð\Ñ œ 8 Þ
‘ ‘ ‘8 8 7) , from which it follows that  is not homeomorphic to  if .  In proving theœ 8 7 Á 8
theorem, showing dim  is easy; the hard part is showing thatÐ Ñ Ÿ 8‘8

dim   1.Ð Ñ ŸÎ 8 �‘8

 

  a) Prove that dim ( ) .‘ œ "
  b)  Let be the Cantor set.  Prove that dim( )G œ !ÞG
  c) Suppose  is a -dimensional separable metric space. Prove that  is homeomorphicÐ\ß .Ñ ! \
to a subspace of .  (C Hint: Show that  has a countable base of clopen sets. View  as \ G Ö!ß #×i!

and apply the embedding theorems.)

E18. Suppose  and  are -spaces.  Part a) outlines a sufficient condition that Y can be embedded\ ] X!

in a product of 's, i.e., that  for some cardinal Parts b) and c) look at some corollaries.
top

\ ]    .  © \ 77

a) Let  and  be  spaces.  Then  can be topologically embedded in  for Theorem  \ ] X ] \!
7

some cardinal  if for every closed set  and every point , there exists a 7 J C 8 −© ] Â J �
and a continuous function such that cl . 0 À ] Ä \8 0ÐCÑ Â 0 ÒJ Ó

Proof  Let  ,  is closed in  and . For each such pairX œ Ö> À > œ ÐCß JÑ J ] C Â J×
> œ ÐCß JÑ 0 \ œ \, let  be the function given in the hypothesis.  Let  (the space> >

8

containing the range of ).  Then clearly is homeomorphic to  for some0 Ö\ À > − X× \> ># 7

7 ] Ö\ À > − X×, so it suffices to show  can be embedded in .  Let# >

2 À ] Ä Ö\ À > − X× C − ] 2Ð>Ñ ># >  be defined as follows: for ,  has for its -th coordinate

0 ÐCÑß 2ÐCÑÐ>Ñ œ 0 ÐCÑÞ> > i.e.,  

  i) Show  is continuous.2

  ii) Show  is one-to-one.2

  iii) Show that  is a closed mapping onto its range  to complete the proof that  is 2 2Ò] Ó 2
+ ] 2Ò] Ó © Ö\ À > − X×homeomorphism between  and . (# > Note: the converse of the

theorem is also true. Both the theorem and converse are due to S. Mrowka.)

 b) Let  denote Sierpinski space {0,1}, , 0 , 0,1 .  Use the theorem to show that everyF Ö Ög Ö × Ö ××
T Y F m! space  can be embedded in  for some .7

c) Let  denote the discrete space 0,1 .  Use the theorem to show that every -space D Ö × X ]"

satisfying dim   (see Exercise E14) can be embedded in  for some .Ð] Ñ œ ! D m7

Parts b) and c) are due to Alexandroff.

Mrowka also proved that there is no T -space   such that every T -space  can be" "\ ]
embedded in X  for some m.7
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E19  Let  with the discrete topology, and let  be an infinite cardinal.Þ \ œ Ö!ß "× 7

         a) Show that  contains a discrete subspace of cardinality .\ 77

  b)  Show that ).AÐ\ Ñ œ 7 Ð7 see Example 4.6

E20.   is called  if every connected subset  satisfies   Prove that a\ E lEl Ÿ "Þtotally disconnected

totally disconnected compact Hausdorff space is homeomorphic to a closed subspace of  forÖ!ß "×7

some .  ( ).7 Hint: see Lemma V.5.6

E21.  Suppose  is a countable space that does not have a countable neighborhood base at the point\
+ − \Þ  ( )For instance, let in the space , Example III.9.8.+ œ Ð!ß !Ñ P
        Let  for  and .  Prove that  point in theE œ ÖB − \ À B œ + 3 ( 4× E œ E © \4 3 4

i i
4œ!
∞! !- no

(countable) space  has a countable neighborhood base.  (E Note:  it is not necessary that  be\
countable.  That condition simply forces  to be countable and makes the example more dramatic.E )
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5. The Quotient Topology

Suppose that for each  we have a map , where  is a topological space and  is aα − E 1 À \ Ä ] \ ]α α α

set.  Certainly there is a topology for  that will make all the 's continuous:  for example, the trivial] 1α
topology on .  But what is the largest topology on  that will do this?  Let] ]

  for all ,  is open in g αœ ÖS © ] À − E 1 ÒSÓ \ ×α α
�"

It is easy to check that  is a topology on .  For each , by definition, each set  is open in ,g α] 1 ÒSÓ \α α
�"

so  makes all the 's continuous.  Moreover, if  and , then for at least one ,  g g α1 F © ] F Â 1 ÒFÓα α
�"

is not open in so adding  to  would “destroy” the continuity of at least one   Therefore \ � F 1 Þα αg g
is the  possible topology on  making all the 's continuous.largest ] 1α

Definition 5.1  Suppose  for each . The   generated by the1 À \ Ä ] − Eα α α gstrong topology on ]
maps is the largest topology on  making all the maps  continuous  and iff  is1 ] 1 ß S − 1 ÒSÓα α αg �"

open in for every .\α α

The strong topology generated by a collection of maps is “dual” to the weak topology inÖ1 À − E×
α

α

the sense that it involves essentially the same notation but with “all the arrows pointing in the opposite

direction.”  For example, the following theorem states that a map   a space with the 0 out of strong

topology is continuous iff each map is continuous; but a map  a space with the weak0 ‰ 1 0α into 

topology generated by mappings is continuous iff all the compositions are continuous (0 0 ‰ 0α α see

Theorem 2.6)

Theorem 5.2  Suppose  has the strong topology generated by a collection of maps  If] Ö1 À − E×Þα α
^ 0 À ] Ä ^ 0 0 ‰ 1 À \ Ä ^ is a topological space and  , then  is continuous if and only if  isα α

continuous for each .α − E

Proof   For each , we have , and the 's are continuous since  has the strongα − E \ Ä ] Ä ^ 1 ]
1 0

α α
α

topology.

 If  is continuous, so is each composition 0 0 ‰ 1 Þα

Conversely, suppose each  is continuous and that  is open in .  We want to show that0 ‰ 1 Y ^α

0 ÒY Ó ] ] 0 ÒY Ó ]�" �" is open in . But has the strong topology, so  is open in  iff each

1 Ò0 ÒY ÓÓ \ Þ 1 Ò0 ÒY ÓÓ œ Ð0 ‰ 1 Ñ ÒY Ó 0 ‰ 1α αα α α
�" �" �" �" �" is open in  But  which is open because 

is continuous.   ñ

We introduced the idea of the strong topology as a parallel to the definition of weak topology.

However, we are going to use the strong topology only in a : when there is just one mapspecial case

1 œ 1 1α  and  is onto.
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Definition 5.3  Suppose   is a topological space and is .  The strong topologyÐ\ß Ñ 1 À \ Ä ]g onto

on  generated by  is also called the  on .  If has the quotient topology from ,] 1 ] ] 1quotient topology

we say that  is a  and we say   .  We also say the  is a1 À \ Ä ] ] \ ]quotient mapping is a quotient of

quotient space of  and sometimes as .\ ] œ \Î1

From the discussion of strong topologies, we know that if  is a topological space and ,\ 1 À \ Ä ]
then the quotient topology on  is  is open in .   Thus    ] œ ÖY À 1 ÒY Ó \× Y −g g�" if and only if

1 ÒY Ó \�"  is open in :  notice in this description that

  “only if”  guarantees that  is continuous and1
  “if”   guarantees that  is the  topology on  making  continuous.g largest ] 1

Quotients of  are used to create new spaces  by “pasting together” (“identifying”) several points of\ ]
\ to become a single new point.  Here are two intuitive examples:

 i) Begin with  and identify  with  (that is, “paste”  and  together to become a\ œ Ò!ß "Ó ! " ! "
single point).  The result is a circle,   This identification is exactly what the mapW Þ 1 À Ò!ß "Ó Ä W" "

given by cos sin  accomplishes.   ( ) that the usual topology on1ÐBÑ œ Ð # Bß # BÑ1 1 It turns out see below

W 1 1"  the same as quotient topology generated by the map .  Therefore we can say that  is a quotientis

map and that  is a quotient of W Ò!ß "Ó"

 ii) If we take the space and use a mapping  to “identify” the north and south poles\ œ W 1"

together, the result is a “figure-eight” space .  The usual topology on  (from ) turns out to be the] ] ‘#

same as quotient topology generated by  ( ).  Therefore we can say that  is a quotient1 1see below

mapping and the “figure-eight” is a quotient of .W"

Suppose we are given an onto map .  How can we tell whether  is a quotient1 À Ð\ß Ñ Ä Ð] ß Ñ 1g g w

map that is, how can we tell whether is the quotient topology?  By definition, we must check that� g w

Y − 1 ÒY Ó − Þg gw �" iff   Sometimes it is fairly straightforward to do this.  But the following theorem

will sometimes make things much easier.

Theorem 5.4  Suppose  is continuous and onto.  If  is open (or closed), then1 À Ð\ß Ñ Ä Ð] ß Ñ 1g g w

g w is the quotient topology, so  is a quotient map.  , if  is compact and  is Hausdorff,1 \ ]In particular

1 is a quotient mapping.

Note:  Whether is continuous depends, of course, on the topology , but if  makes 1 À \ Ä ] 1g gw w

continuous, then so would any smaller topology on .  The theorem tells us that if  is both continuous] 1
and largest open (or closed), then  is completely determined by :  it is the  topology that makes g w 1 1
continuous.

Proof  Suppose  W  must show  iff  If ,  then Y © ] Þ / Y − 1 ÒY Ó − Þ Y − 1 ÒY Ó −g g g gw �" w �"

because  is continuous.  On the other hand, suppose . Since  is onto and open,1 1 ÒY Ó − 1�" g
1Ò1 ÒY ÓÓ œ Y − Þ�" wg
 For It follows easily that  is closed in the quotientJ © ] ß 1 Ò] � JÓ œ \ � 1 ÒJ ÓÞ J�" �"

space    is closed in   With that observation, the proof that a continuous, closed,if and only if 1 ÒJ Ó \Þ�"

onto map  is a quotient map is exactly parallel to the case when  is open.1 1
 If  is compact and  is , then  must be closed, so  is a quotient mapping.    \ ] X 1 1 ñ#
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Note:  Theorem 5.4 implies that the map cos sin  from  to  is a quotient1ÐBÑ œ Ð # Bß # BÑ Ò!ß "Ó W1 1 "

map, but  is not open. The same formula  defines a quotient map  which is not closed1 1 1 À Ä W  ‘ "

(why?).  Exercise E25 gives examples of  quotient maps  that are  open  closed.1 neither nor

Suppose  is an equivalence relation on a set .  For each , the  of  isµ \ B − \ Bequivalence class

ÒBÓ œ ÖD − \ À D µ B× \. The equivalence classes partition  into a collection of nonempty pairwise

disjoint sets.  Conversely, it is easy to see that any partition of  is the collection of equivalence\
classes for some equivalence relation namely,  iff and  are in the same set of the partition.� B µ D B D

The set of equivalence classes, , is sometimes written as There is a natural] œ ÖÒBÓ À B − \× \Î µ Þ
onto map  given by .  We can think of the elements of  as “new1 À \ Ä \Î µ œ ] 1ÐBÑ œ ÒBÓ ]
points” which are created by “identifying together as one” all the members of each equivalence class

in . Conversely, whenever  is  onto mapping, we can think of as the set of\ 1 À \ Ä ] ]any

equivalence classes for some equivalence relation on namely    \ � B µ C Í C − 1 ÐBÑ Í�"

1ÐCÑ œ 1ÐBÑ \ ]. If  is a topological space, we can give the set of equivalence classes  the quotient

topology.

Example 5.5  For , , define  iff  is even.  There are two equivalence classes+ , − + µ , , � +™
Ò!Ó œ ÖÞÞÞß � %ß � #ß !ß #ß %ß ÞÞÞ× Ò"Ó œ ÖÞÞÞ � $ß � "ß "ß $ß ÞÞÞ× Î µ œ ÖÒ!Óß Ò"Ó×Þ and  so  ™
             Define by  and give  the quotient topology.  A set   is1 À Ä Î µ 1Ð+Ñ œ Ò+Ó Î µ Y™ ™ ™
open in  iff  is open in But that is true for   because  is discrete.™ ™ ™ ™Î µ 1 ÒY Ó Þ Y © Î µ�" every

Therefore the quotient  is a two point discrete space.™Î µ

Example 5.6   Let  be a pseudometric space.  Define an equivalence relation  in  byÐ\ß .Ñ µ \
B µ D .ÐBß DÑ œ ! ] œ \Î µ 1 À \ Ä ] 1ÐBÑ œ ÒBÓ ] iff .  Let  and define  by . Give  the quotient

topology   Then points at distance  in  have been “identified with each other”  to become one pointÞ ! \
(an equivalence class) in ] Þ
  For , define .  In order to see that  is well-defined,ÒBÓß ÒDÓ − ] . ÐÒBÓß ÒDÓÑ œ .ÐBß DÑ .w w

we need to check that the definition is independent of the representatives chosen from the equivalence

classes:

  If  and , then  and   ThereforeÒB Ó œ ÒBÓ ÒD Ó œ ÒDÓ .ÐBß B Ñ œ ! .ÐDß D Ñ œ !Þw w w w

  , and similarly.ÐBß DÑ Ÿ .ÐBß B Ñ : .ÐB ß D Ñ : .ÐD ß DÑ œ .ÐB ß D Ñw w w w w w

  .  Thus   so .ÐB ß D Ñ Ÿ .ÐBß DÑ .ÐB ß D Ñ œ .ÐBß DÑ . ÐÒB Óß ÒD ÓÑ œ . ÐÒBÓß ÒDÓÑÞw w w w w w w w

It is easy to check that  is a pseudometric on .  In fact,  is a :  if , then. ] . . ÐÒBÓß ÒDÓÑ œ !w w wmetric

.ÐBß DÑ œ ! B µ D ÒBÓ œ ÒDÓÞ, which means that and 

We now have two definitions for topologies on : the quotient topology  and the metric topology] g
g g g. .w w.  We claim that   To see this, first notice thatœ Þ

   iff  iff  iff ÒCÓ − F ÐÒBÓÑ . ÐÒCÓß ÒBÓÑ ' .ÐCß BÑ ' C − F ÐBÑ. w .w

% %% %

Therefore  and .   But then we have1 ÒF ÐÒBÓÑÓ œ F ÐBÑ 1 ÒF ÐBÑÓ œ F ÐÒBÓÑ�" . . . .w w

% % % %

   iff  is a union of -ballsY − Y .g.
w

w

    iff  is a union of -balls1 ÒY Ó .�"

    iff  is open in 1 ÒY Ó \�"

    iff Y − Þg
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The metric space  is called the  of the pseudometric space .  InÐ] ß . Ñ Ð\ß .Ñw metric identification

effect, we turn the pseudometric space into a metric space by agreeing that points in  at distance \ !
are “lumped together” into a single point.

Note:  In this particular example, it is easy to verify that the quotient mapping  is open,1 À \ Ä ]
so  would be a homeomorphism if only  were one-to-one.  If the original pseudometric  is actually1 1 .
a metric, then  one-to-one and a homeomorphism:  the metric identification of a  space1 is metric

Ð\ß .Ñ is itself.

Example 5.7  W  hat does it mean if we say “identify together the endpoints of  and get a circle”?Ò!ß "Ó
Of course, one could simply take this to be the  of a (topological) “circle.”  Or, it could meandefinition

that we already know what a circle is and are claiming that a certain quotient space is homeomorphic

to a circle.  We take the latter point of view.

 Define  by cos sin ) This map is onto would be one-to-one1 À Ò!ß "Ó Ä W 1ÐBÑ œ Ð # Bß # B Þ" 1 1
except that , so  corresponds to the equivalence relation on  for which  (and there1Ð!Ñ œ 1Ð"Ñ 1 \ ! µ "
are no other equivalences except that  for every   We can think of the equivalence classesB µ B BÑÞ
\Î µ W as corresponding in a natural way to the points of ."

   

Here  has its usual topology and  is continuous.  Since  is compact and  is Hausdorff,W 1 \ W" "

Theorem 5.4 gives that the usual topology on   the quotient topology and  is a quotient map.W 1" is

When it “seems apparent” that the result of making certain identifications produces some familiar

space , we need to check that the familiar topology on  is actually the quotient topology.  Example] ]
5.7 is reassuring: if we believed, intuitively, that the result of identifying the endpoints of  shouldÒ!ß "Ó
be  but then found that the quotient topology on the set  differed from the usual topology, weW \Î µ"

would be inclined to think that we had made the “wrong” definition for a quotient.
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Example 5.8  Suppose we take a square  and identify points on the top and bottom edges usingÒ!ß "Ó#

the equivalence relation    We can schematically picture this identification asÐBß !Ñ µ ÐBß "ÑÞ

                                

The arrows indicate that the edges are to be identified as we move along the top and bottom edges in

the same direction. We have an obvious map  from  to a cylinder in  which identifies points1 Ò!ß "Ó# $‘
in just this way, and we can think of the equivalence classes as corresponding in a natural way to the

points of the cylinder.

                                                 

The cylinder has its usual topology from  and the map  is (clearly) continuous and onto.  Again,‘$ 1
Theorem 5.4 gives that the usual topology on the cylinder is, in fact, the quotient topology.
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Example 5.9  Similarly, we can show that a torus (the “surface of a doughnut”) is the result of the

following identifications in :   and Ò!ß "Ó ÐBß !Ñ µ ÐBß "Ñ Ð!ß CÑ µ Ð"ß CÑ#

  

                                 

Thinking in two steps, we see that the identification of the two vertical edges produces a cylinder; the

circular ends of the cylinder are then identified (in the same direction) to produce the torus.

   

The two circles darkly shaded on the surface represent the identified edges.

We can identify the equivalence classes naturally with the points of this torus in  and just as before‘$

we see that the usual topology on the torus is in fact the quotient topology.
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Example 5.10  Define an equivalence relation  in  by setting  Intuitively,µ Ò!ß "Ó ÐBß !Ñ µ Ð" � Bß "ÑÞ#

the idea is to identify the points on the top and bottom edges with each other as we move along  the

edges in opposite directions.  We can picture this schematically as

     

Physically, we can think of a strip of paper and glue the top and bottom edges together after making a

“half-twist.”  The quotient space  is called a Möbius strip.\Î µ

            

We can take the quotient  as the definition of a Möbius strip, or we can consider a “real”\Î µ
Möbius strip in  and define a map  that accomplishes the identification we haveQ 1 À Ò!ß "Ó Ä Q‘$ #

in mind.  In that case there is a natural way to associate the equivalence classes to the points of the

torus in  and again Theorem 5.4 guarantees that the usual topology on the Möbius strip is the‘$

quotient topology.
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Example 5.11  If we identify the vertical edges of  (to get a cylinder) and then identify itsÒ!ß "Ó#

circular ends with a half-twist (reversing orientation):   and .  We getÐ!ß CÑ µ Ð"ß CÑ ÐBß !Ñ µ Ð" � Bß "Ñ
a quotient space which is called a Klein bottle.

              

It turns out that a Klein bottle cannot be embedded in the physical construction would require a‘$ �
“self-intersection” (that is, additional points identified) which is not allowed.  A pseudo-picture looks

like    

 

In these pictures, the thin “neck” of the bottle actually intersects the main body in order to re-emerge

“from the inside”  in a “real” Klein bottle (in , say), the self-intersection would not happen.� ‘%

In fact, you can imagine the Klein bottle as a subset of  using color as a 4  dimension. To each‘% th

point on the “bottle” pictured above, add a 4th coordinate to get  Now color theÐBß Cß DÑ ÐBß Cß Dß <ÑÞ
points on the bottle in varying shades of red and let  be a number measuring the “intensity of red<
coloration at a point.”  Do the coloring in such a way that the surface “blushes” as it intersects itself �
so that the points of “intersection” seen above in  will be different (in their 4 coordinates).‘$ th

Alternately, you can think of the Klein bottle as a parametrized surface traced out by a moving point

T œ ÐBß Cß Dß >Ñ Bß Cß D > > where depend on time  and  is recorded as a 4 -coordinate.  A point on theth



277

surface then has coordinates of form .  At “a point” where we see a self-intersection in ÐBß Cß Dß >Ñ ß‘$

there are really two different points (with different time coordinates ).>
Example 5.12

 1) In , identify antipodal points that is, in vector notation,  for each .W � T µ � T T − W" "

  Convince yourself that the quotient  is .W Î µ W" "

 2) Let  be the unit disk .  Identify antipodal points on the boundary ofH ÖT − À lT l Ÿ "×# #‘
H T µ � T T − W © H Þ HÎ µ# " #: that is,  if   The quotient  is called the , a spaceprojective plane

which, like the Klein bottle, cannot be embedded in .‘$

 3) For any space , we can form the product  and let  for all\ \ ‚ Ò!ß "Ó ÐBß "Ñ µ ÐCß "Ñ
Bß C − \ Ð\ ‚ Ò!ß "ÓÑÎ µ.  The quotient  is called the . ( )cone over \ Why?

 4) For any space , we can form the product  and define  and\ \ ‚ Ò � "ß "Ó ÐBß "Ñ µ ÐCß "Ñ
ÐBß � "Ñ µ ÐCß � "Ñ Bß C − \ Ð\ ‚ Ò � "ß "ÓÑÎ µ for all .  The quotient  is called the .suspension of \
( )Why?

There is one other very simple construction for combining topological spaces. It is often used in

conjunction with quotients.

Definition 5.13  For each , let  be a topological space, and assume that the sets  areα g− E Ð\ ß Ñ \α α α

pairwise disjoint. The  (or “free sum”) of the 's is the space  wheretopological sum \ Ð \ ß Ñα αα
-

−E g

g αœ ÖS © \ À S ∩\ \ − E-
α α α α−E  is open in  for every }.  We denote the topological sum by

�
α

α
−E

" #\ lEl œ # \ :\ Þ.   In the case , we use the simpler notation 

In , each  is a clopen subspace.  Any set open (or closed) in is open (or closed) in the�
α

α α α
−E

\ \ \  

sum.  The topological sum  can be pictured as a union of the disjoint pieces , all “far apart”�
α

α α
−E

\ \

from each other so that there is no topological “interaction” between the pieces.�

Example 5.14  In , let and be open disks with radius  and centers at   and ‘#
" #E E " Ð!ß !Ñ Ð$ß !ÑÞ 

Then topological sum  is the same as  with subspace topology.   By contrast, let E : E E ∪E F" # " # "

be an  disk with radius  centered at  and let  be a  disk with radius  centered atopen closed" Ð!ß !Ñ F "#

Ð#ß !Ñ F : F F ∪F ÑÞ. Then  is  the same as  with the subspace topology (   Are the" # " #not why?

topologies on and  the same if  and  are separated subsets of ?G : G G ∪ G G G" # " # " #
#‘

Exercise 5.15  Usually it is very easy to see whether properties of the 's do or do not carry over to \α�
α

α
−E

\ .  For example, you should convince yourself that:

    1) If the 's are nonempty and separable, then  is separable iff .\ \ lEl Ÿ iα α
α

�
−E

!

    2) If the 's are nonempty and second countable, then  is second countable iff .\ \ lEl Ÿ iα α
α

�
−E

!
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    3) A function  is continuous iff each  is continuous. 0 À \ Ä ^ 0l\�
α

α α
−E

    4) If 1 is a metric for , then the topology on  is the same as  where. Ÿ \ \α α α
α

�
−E

.g

   
if 

otherwise
.ÐBß CÑ œ

. ÐBß CÑ Bß C − \
"œ α α

so   is metrizable if all the 's are metrizable.  You should be able to find similar statements�
α

α α
−E

\ \

for other topological properties such as first countable, second countable, Lindelöf, compact,

connected, path connected, completely metrizable, ... .

Definition 5.16  Suppose  and  are disjoint topological spaces and , where .  In\ ] 0 À E Ä ] E © \
the sum , define  iff   If we form , we say that we have \ : ] B µ C C œ 0ÐBÑÞ Ð\ : ] ÑÎ µ attached

\ ] 0 to  with  and write this space as .\ : ]0

For each its equivalence class under  is   You may think of the function: − 0ÒEÓß µ Ö:× ∪ 0 ÒÖ:×ÓÞ�"

“attaching” the two spaces by repeatedly selecting a group of points in , identifying them together,\
and “sewing” them all onto a single point in just as you might run a needle and thread through] �
several points in the fabric  and then through a point in  and pull everything tight.\ ]

Example 5.17

 1) Consider disjoint cylinders  and .  Let  be the circle forming one end of  and  the\ ] E \ F
circle forming one end of .  Let  be a homeomorphism.  Then  “sews] 0 À E Ä 0ÒEÓ œ F © ] 0
together”  and  by identifying these two circles. The result is a new cylinder.\ ]

  2) Consider a sphere .  Excise from the surface  two disjoint open disks  and W © W H H# $ #
" #‘

and let  be union of the two circles that bounded those disks.  Let  be a cylinder whoseE ∪E ]" #

ends are bounded by the union of two circles, .  Let  be a homeomorphism carrying theF ∪F 0" #

points of  and  clockwise onto the points of  and  respectively..E E F F" " " #

    Then  is a “sphere with a .”W : ]#
0 handle

 3) Consider a sphere .  Excise from the surface  an open disk and let  be theW © W E# $ #‘
circular boundary of the hole in the surface .   Let  be a Möbius strip and let  be the curve thatW Q F#

bounds it.  Of course, .  Let  be a homeomorphism.  The we can use  to join theF ¶ W 0 À E Ä F 0"

spaces by “sewing” the edge of the Möbius strip to the edge of the hole in .  The result is a “W# sphere

with a crosscap.”

There is a very nice theorem, which we will not prove here, which uses all these ideas.  It is a

“classification” theorem for certain surfaces.

Definition 5.18  A Hausdorff space  is a 2-  if each  has an open neighborhood \ B − \ Ymanifold

that is homeomorphic to .   Thus, a 2-manifold looks “locally” just like the Euclidean plane.  A‘#

surface is a Hausdorff 2-manifold.

Theorem 5.19   Let  be a compact, connected surface.  The  is homeomorphic to a sphere  or to\ \ W#

W# with a finite number of handles and crosscaps attached.

You can read more about this theorem and its proof in  (WilliamAlgebraic Topology: An Introduction

Massey).
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Exercises

E22. a) Let be the equivalence relation on  given by  iff .  Proveµ ÐB ß C Ñ µ ÐB ß C Ñ C œ C‘#
" " # # " #

that  is homeomorphic to .‘ ‘#Î µ

 b)  Find a counterexample to the following assertion:  if  is an equivalence relation on aµ
space  and each equivalence class is homeomorphic to the same space , then  is\ ] Ð\Î µ Ñ ‚ ]
homeomorphic to .\

Why might someone conjecture that this assertion might be true? In part a),  we have ,\ œ ‚‘ ‘
each equivalence class is homeomorphic to  and In this example, you‘ ( .  \Î µ Ñ ‚ ¶ ‚ ¶ \‘ ‘ ‘
“divide out” equivalence classes that all look like , then “multiply” by ,  and you're back where‘ ‘
you started.

 c)  Let  be given by .  Then the quotient space  is1 À Ä 1ÐBß CÑ œ B : C Î1‘ ‘ ‘# # # #

homeomorphic to what familiar space?

 d)   On , define an equivalence relation (  iff  .  Prove‘# # #
" " # # " #" #B ß C Ñ µ ÐB ß C Ñ B : C œ B : C

that /  is homeomorphic to some familiar space.‘# µ

 e)  Define an equivalence relation on  by  if an only if  What is the‘ ™B µ C B � C − Þ
quotient space ?   Explain.‘Î µ

E23. For , define  iff  is rational.  Prove that the corresponding quotientBß C − Ò!ß "Ó B µ C B � C
space  is trivial.Ò!ß "ÓÎ µ

E24.   Prove that a 1-1 quotient map is a homeomorphism.

E25.  a) Let  with its usual topology and  with the  topology.  Define] œ Ò!ß "Ó ] œ Ò#ß $Ó" # discrete

1 À ] : ] Ä ] 1ÐBÑ œ Þ 1
B B − ]
B � # B − ]" # "

"

#
 by letting   Prove that  is a quotient map that is

if 

if œ
neither nor open  closed.

         b) Let  have the topology  for which a  consists of all the usual open sets together‘ g# subbase

with the singleton set .  Let  have the usual topology and let  be the projectionÖÐ!ß !Ñ× 0 À Ä‘ ‘ ‘#

0ÐBß CÑ œ B 0.   Prove that  is a quotient map which is neither open nor closed.

E26.   State and prove a theorem of the form:

 

  “for two disjoint subsets  and of ,   is homeomorphic to  iff ... ”E F E:F E ∪F‘#
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E27.  Let   have the topology  for which a subbasis consists of all the usual open sets together‘ g#

with the singleton set .   Let  have the usual topology and define  by .ÖÐ!ß !Ñ× 0 À Ä 0ÐBß CÑ œ B‘ ‘ ‘#

Prove that  is a quotient map which is neither open nor closed.0

E28.   Let  and let  .   Prove  is not homeomorphic to  but] œ : Ð ‚ Ð!ß "ÑÑ ] œ ] : Ò!ß "Ñ ] ]" # " " #� �
that each is a continuous one-to-one image of the other

E29.  Show that no continuous image of  can be represented as a topological sum , where‘ \ : ]
\ß ] Á g.  How can this be result be strengthened?

E30.  Suppose  (s ) and  ( ) are pairwise disjoint spaces.  Prove that    is\= > = >
=−W >−X

− W ] > − X \ ‚ ]� �
homeomorphic to     �

=−Wß>−X
= >Ð\ ‚ ] ÑÞ

E31. This problem outlines a proof (due to Ira Rosenholtz) that every nonempty compact metric space

\ G \ is a continuous image of the Cantor set .  From Example 4.5, we know that  is homeomorphic to

a subspace of Ò!ß "Ó Þi!

 a) Prove that the Cantor set consists of all reals of the form  whereG © ‘ �
4œ!

∞
+

$
4
4

each  or 2.+ œ !4

 b) Prove that  is a continuous image of .    Ò!ß "Ó G Ñ œ ÞHint: Define 1Ð� �
4œ! 4œ!

∞ ∞
+ +

$ #
4 4
4 4

 c) Prove that the cube  is a continuous image of .Ò!ß "Ó Gi! Hint: By Corollary 2.21,

G ¶ Ö!ß #× ¶ G 1 0 À G Äi i i! ! !.  Use  from part b) to define byÒ!ß "Ói!

0ÐB ß B ß ÞÞÞß ÞÞÞÑ œ Ð1ÐB Ñß 1ÐB Ñß ÞÞÞß ÞÞÞÑ" # " #

 d) Prove that a closed set  is a continuous image of .    O © G G Hint:   is homeomorphic toG

the “middle two-thirds" set  consisting of all reals of the form .   has the property that ifG Gw w

4œ!

∞
,

'
� 4

4

Bß C − G Â G Þ O G G Ä O Bw w w w wB: C
#, then If   is closed in , we can map  by sending each point  to

the point in  nearest to .O Bw )

 e) Prove that every nonempty compact metric space  is a continuous image of .\ G
 

.
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Chapter VI Review

Explain why each statement is true, or provide a counterexample.

1. is open in Ð!ß "Ñ Ò!ß "Ó Þi i! ! 

2. Suppose  is a closed set in .  Then  is a closed set in J Ò!ß "Ó ‚ ÒJ Ó Þ‘ 1 ‘#

3.  is discrete.�i!

4. If  is the Cantor set, then there is a complete metric on  which produces the product topology.G Gi!

5. Let  have the box topology.  A sequence   iff  uniformly.‘ ‘‘ ‘Ð0 Ñ Ä 0 − Ð0 Ñ Ä 08 8

6. Let  be given by .  The sequence  has a limit in  .0 À Ò!ß "Ó Ä Ò!ß "Ó 0 ÐBÑ œ B Ð0 Ñ Ò!ß "Ó8 8 8
8 Ò!ß"Ó

7. Let  be defined by  for all .  Give an example of a sequence  of distinct1 − 1ÐBÑ œ B B − Ð0 Ñ‘ ‘‘ #
8

functions in  that converges to .‘‘ 1

8. Let  be the Cantor set.  Then  is homeomorphic to the topological sum .G G G : G

9. The projection maps  and  from  separate points from closed sets.1 1 ‘ ‘B C
# Ä

10. The letter     is a quotient of the letter  N M  .

11. Suppose  is an equivalence relation on  and that for  represents its equivalenceµ \ B − \ß Ò B Ó
class.  If  is a cut point of , then  is a cut point of the quotient space .B \ Ò B Ó \Î µ

12. If  is a quotient map and  is compact T , then  is compact T .1À\ Ä ] ] ]# #

13. Suppose  is infinite and that in each space  ( ) there is a nonempty proper open subsetE \ − Eα α
S S \ œ \ Sα α α α.  Then  is not a  open set in the product topology on . Moreover,  cannot# # #basic

even be open in the product.

14. If , where the 's are disjoint clopen sets in , then   ( the\ œ E E \ \ z E œ- �
8œ" 8œ"
∞ ∞

8 8 8

topological sum of the 's).E8

15.  Let  and  with their usual topologies.  Then  is homeomorphic to \ œ Ö!ß "× ] œ \ ] Þ8 8 8 8
8œ" 8œ"

∞ ∞

� � �

16.   Let  and  with their usual topologies.  Then  is homeomorphic to\ œ Ö!ß "× ] œ \8 8 88œ"
∞� #

#
8œ"
∞

8] Þ

17. Let  sin , and let  be given byE œ ÖÐBß Cß DÑ − À B � C � #CD � D ( l ÐBCDÑl × 0 À Ä‘ ‘ ‘$ # # $

0ÐBß Cß DÑ œ B : # 0 ÒEÓ.   Then  is open but not closed in .‘
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18. Suppose  is a connected subset of  and that  is dense in Then eachE \ Ð Á gÑ E \ Þ8 8 8 88œ" 8œ"
∞ ∞# #

\8 is connected.

19. In , every neighborhood of the function sin contains a step function (that is, a function with‘‘

finite range).

20. Let  be an uncountable set with the cocountable topology. Then { is a closedX ÐBß BÑ À B − \×
subset of the product .\ ‚\Þ

21. Let , and let  be any cardinal number.   is a closed set in E œ Ö À 8 − × © 7 E Þ"
8

5 5� ‘ ‘

22. If  is the Cantor set, then  is homeomorphic to .G G ‚ G ‚ G ‚ G G ‚ G

33.  is homeomorphic to the “infinity symbol”:   W ‚ W ∞" "

34. 31. Let  be the set of all real polynomials in one variable, with domain restricted to ,  forT Ò!ß "Ó
which ran Then  is dense in ÐT Ñ © Ò!ß "ÓÞ T Ò!ß "Ó ÞÒ!ß"Ó

35.  Every metric space is a quotient of a pseudometric space.

37. A separable metric space with a basis of clopen sets is homeomorphic to a subspace of the Cantor

set.

38. Let be a nonempty product space.  Then each factor  is a quotient of .# #
α αα α α−E −E\ \ \

39.  Suppose  does not have the trivial topology.  Then  cannot be separable.\ \#-

40. Every countable space  is a quotient of .\ �

41.   is homeomorphic to the sum of  disjoint copies of .� � �‚ i!

42.  Suppose int , where .  Then for every ,  int .B œ ÐB Ñ − E E © \ B − ÒEÓα α α α
# α 1

43. The unit circle, , is homeomorphic to a product , where each W \ \ © Ò!ß "Ó"
−E

#
α α α

 (i.e.,  can be “factored” into a product of subspaces of  ).W Ò!ß "Ó"

44.  is homeomorphic to .� ‘i!


