Chapter X
Compactifications

1. Basic Definitions and Examples

Definition 1.1 Suppose h : X — Y is a homeomorphism of X into Y, where Y is a compact 75
space. If h[X] is dense inY’, then the pair (Y, h) is called a compactification of X.

By definition, only Hausdorff spaces X can (possibly) have a compactification.

If we are just working with a single compactification Y of X, then we can usually just assume
that X C Y and that A is the identity map — so that the compactification is just a compact
Hausdorff space that contains X as a dense subspace. In fact, if X D Y, we will always assume
that A is the identity map unless something else is stated. We made similar assumptions in
discussing of the completion of a metric space (X, d) in Chapter 1V.

However, we will sometimes want to compare different compactifications of X (in a sense to be
discussed later) and then we may need to know how X is embedded in Y. We will see that
different dense embeddings i of X into the same space Y can produce “nonequivalent”
compactifications. Therefore, strictly speaking, a “compactification of X is the pair (Y, h).

If, in Definition 1.1, X is already a compact Hausdorff space, then 4[X] is closed and dense in Y
and therefore h[X] = Y. Therefore, topologically, the only possible compactification of X is X
itself.

The next theorem restates exactly which spaces have compactifications.

Theorem 1.2 A space X has a compactification iff it is a Tychonoff space.

Proof See the remarks following Corollary 1X.6.3. e

Example 1.3 The circle S! can be viewed as a compactification of the real line, R. Let & be the
“inverse projection” pictured below: here h[R] = S' — {North Pole}. We can think of h[R] as a

“bent” topological copy of R, and the compactification is created by “tying together” the two
ends of R by adding one new “point at infinity” (the North Pole).
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h{x) /

Since |S' — h[R]| =1, (S',h) is called a one-point compactification of R. (We will see in
Example 4.2 that we can call S* the one-point compactification of R.)

Example 1.4

1) [—1,1] is a compact Hausdorff space containing ( — 1,1) are a dense subspace, so
[—1,1] is a“two-point” compactification of ( — 1,1) (with embedding h = 7).

2) If h:R— (—1,1) is a homeomorphism, then ioh:R — [—1,1] gives a “two-
point” compactification of R. It is true (but not so easy to prove) that there is no n-point
compactification of R for 2 < n < wy.

Example 1.5 Suppose Y = X U {p} is a one-point compactification of X. If O is an open set
containing pin Y, then K =Y — O C X and K is compact. Therefore the open sets containing
p are the complements of compact subsets of X. (Look at open neighborhoods of the North
Pole p in the one-point compactification S!of R; a base for the open neighborhoods of p
consists of complements of the closed (compact!) arcs that do not contain the North Pole.)
Suppose = € U, where U is open in X. Because Y is Hausdorff, we can find
disjoint open sets V and W in Y with z € V and p € W. Since p ¢ V, we have that
V C X and therefore VN X = V is also open in X. Since x € U NV, we can use the
regularity of X to choose an open set GG in X forwhichz e G CclyGCUNV CU.
But GCVCY—-W (a closed set in Y),s0 clyGCY — W C X. Therefore
clxG =XnclyG =clyG, so clxG is also closed in Y. So clxG is a compact
neighborhood of = inside U. This shows that each point z € X has a neighborhood base in
X consisting of compact neighborhoods.

The property in the last sentence is important enough to deserve a name: such spaces are called
locally compact.
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2. Local Compactness

Definition 2.1 A Hausdorff space X is called locally compact if each point z € X has a
neighborhood base consisting of compact neighborhoods .

Example 2.2
1) A discrete space is locally compact.

2) R™ is locally compact: at each pointx, the collection of closed balls centered at z is a
base of compact neighborhoods. On the other hand, neither @Q nor PP is locally compact. (Why? )

3) If Xis a compact Hausdorff space, then X is regular so there is a base of closed
neighborhoods at each point —and each of these neighborhoods is compact. Therefore X is
locally compact.

4) Each ordinal space [0,«) is locally compact. The space [0,«] is a (one-point)
compactification of [0, ) iff « is a limit ordinal.

5) Example 1.5 shows that if a space X has a one-point compactification, it must be
locally compact (and, of course, noncompact and Hausdorff). Therefore neither Q nor P has a
one-point compactification. The following theorem characterizes the spaces with one-point
compactifications.

Theorem 2.3 A space X has a one-point compactification iff X is a noncompact, locally
compact Hausdorff space. (The one-point compactification of X for which the embedding A is
the identity is denoted X™*.)

Proof Because of Example 1.5, we only need to show that a noncompact, locally compact
Hausdorff space X has a one-point compactification. Choose a point p ¢ Xand let
X*=XU{p}. Put a topology on X* by letting each point =z € X have its original
neighborhood base of compact neighborhoods, and by defining basic neighborhoods of p be the
complements of compact subsets of X :

B,={N CX*: pe Nand X*— N is compact}.
(Verify that the conditions of the Neighborhood Base Theorem 111.5.2 are satisfied.)
If U is an open cover of X* and p € U € U, then there exists an N € B, with pe N C U.
Since X*— N is compact, we can choose Ui,...,U, €4 covering X*— N. Then
{U, Uy, ...,U,} is afinite subcover of X* from U{. Therefore X* is compact.
X* is Hausdorff. If a # b € X, then aand b can be separated by disjoint open sets in X and
these sets are still open in X*. Furthermore, if K is a compact neighborhood of ain X, then K
and (X* — K) are disjoint neighborhoods of e and p in X*.
Finally, notice that {p} is not open in X* — or else {p} € B, and then X* — {p} = X would be

compact. Therefore every open set containing p intersects X, so X is dense in X*.
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Therefore X™ is a one-point compactification of X. e
What happens if the construction for X* in the preceding proof is carried out starting with a
space X which is already compact? What happens if X is not locally compact? What happens
if X is not Hausdorff ?
Corollary 2.4 A locally compact Hausdorff space X is Tychonoff.
Proof X is either compact or X has a one-point compactification X*. Either way, X is a
subspace of a compact 15 space which (by Theorem VI1.5.9) is Tychonoff. Therefore X is
Tychonoff. e
The following theorem about locally compact spaces is often useful.
Theorem 2.5 Suppose A C X, where X is Hausdorff.

a) If X islocally compactand A = F' N G where F'is closed and A is open in X, then A
is locally compact. In particular, an open (or, a closed) subset of a locally compact space X is
locally compact.

b) If Aisa locally compact and X is Hausdorff, then A is open in clx A.

c) If A is a locally compact subspace of a Hausdorff space X, then A = F' N G where F
is closed and A is openin X.

Proof a) It is easy to check that if F"is closed and G is open in a locally compact space X, then
Fand G are locally compact. It then follows easily that 7' N G is also locally compact. (Note:
Part a) does not require that X be Hausdorff.)

b) Let a € A and let K be a compact neighborhood of a in A. Then a € inty K = U.
Since A is Hausdorff, K is closed and therefore U C cl,U C K, so cl,U is compact.

Because U is open in A, there is an open set V in X with ANV = U and we have:
clx(ANV)NA=(clxU)nA=clyU CA

so (clx(ANV))n Ais compact and therefore closed in X (since X is Hausdorff).

SinceANV C (clx(ANV))NA, wehaveclx(ANV)C(clxU)NA=clyU C A.

Moreover, since V' is open, then V Nclx A C clx(V N A) (this is true in any space X: why?).

SoW =VnclxyACclxy(ANV)C (clxU)nA=clyU C A.

Thena e W C Aand W isopeninclyAsoa € intclxyA. Therefore A isopeninclyA.
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c) Since A is locally compact, part b) gives that A is openinclyA,so A =clxA NG for
someopensetGin X. Let F=clxA. e

Corollary 2.6 A dense locally compact subspace of a Hausdorff space X is open in X.

Proof This follows immediately from part b) of the theorem e

Corollary 2.7 If X is a locally compact, noncompact Hausdorff space, then X is open in any
compactification Y that contains X.

Proof This follows immediately from Corollary 2.6. e

Corollary 2.8 A locally compact metric space (X, d) is completely metrizable.

Proof Let (?( Jd ) be the completion of (X, d). X is locally compact and dense in X so

X is open in X . Therefore X is a Gs-set in X so it follows from Theorem IV.7.5 that X is
completely metrizable. o

Theorem 2.9 Suppose X = [],.,X. # 0 is Hausdorff. Then X is locally compact iff

i) each X, is locally compact
ii) X, is compact for all but at most finitely many o € A.

Proof Assume X is locally compact. Suppose U, is open in X, and z, € U,. Pick a point
z € 7, [U,]with z, =z, Then z has a compact neighborhood K in X for which
z € K Cmt[U,]. Since 7, isan open continuous map, m,[K] is a compact neighborhood of z,,
with z, € 7,[K] C U,. Therefore X, is locally compact, so i) is true.

To prove ii), pick a point z € X and let K be a compact neighborhood of z. Then
rxelU= <U,,..,U, > CK for some basic open set U. If «a# ai,.., o, We have
o|K] 2 mo[U] = X,. Therefore X, is compact if a # ag,..., a,.

Conversely, assume i) and ii) hold. If x € U C X, where U is open, then we can choose
a basicopensetV = <V,,...,V,, > sothat z € V C U. Without loss of generality, we can
assume that X, is compact for o # ay,..., a, (Why?). For each ¢ we can choose a compact
neighborhood K,, of z,, so that z,, € K,, C V,, C X,,, Then < K, ,...,K,, >
=K, X ... x Ko, X [[Xaza,,..a,Xa IS @ compact neighborhood of = and
re <Ku,...wKy > C <V,,...,Vo, > CU. So X islocally compact. e
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3. The Size of Compactifications

Suppose X is a Tychonoff space, that X C Y, and that Y is a compactification of X. How large
can |Y — X| be? In all the specific example so far, we have had |Y — X| =1or |Y — X| = 2.

Example 3.1 This example illustrates a compactification of a discrete space created by adding ¢
points.

Let Ip = {(z,0) : z € [0,1]} and [; = {(z, 1) : = € [0, 1]}, two disjoint “copies” of [0, 1]. Let
Define a topology on Y = I U I; by using the following neighborhood bases:

i) pointsin I are isolated: for p € I, a neighborhood base at p is B, = {{p}}

i) if p = (z,0) € Iy: abasic neighborhood of p is any set of form
VU{(z,1):(2,0) € V,z # z}, where V is an open neighborhood
of pin [0, 1]

(Check that the conditions in the Neighborhood Base Theorem 111.5.2 are
satisfied.)

Y is called the “double” of the space [0, 1] = I,.

Clearly, Y is Hausdorff, and we claim that Y is compact. It is sufficient to check that any
covering U of Y by basic open neighborhoods has a finite subcover.

Let W={WelU: WnlI,#0}. W covers [, and each W €)W has form
VU{(z,1):(2,0) € V,z # z}, where V is open in I,. Clearly, the open “V-parts” of the sets
in W cover the compact space I, so we finitely many Wy, ..., W,, € W cover I;. These sets also
cover I, except for possibly finitely many points p1, ..., pr € I;. For each such point p; choose a
set U; € U containing p; . Then {W7, ..., W,,, Uy, ..., Uy } is a finite subcover from /..

Every neighborhood of a point in 1, intersects Iy, so clly =Y. Therefore Y is a
compactification of the discrete space I; and |Y — I1| = c.

Since I is locally compact, 7; also has another quite different compactification I for which
|I7 — I;| = 1. Infact, it is true (depending on X)) that can be many different compactifications
Y, each with a different size for |Y — X]|.

But, for a given space X and a compactification Y, there is an upper bound for how large
|Y"— X| can be. We can find it using the following two lemmas.

Recall that the weight w(Y") of a space (Y, 7) is defined by w(Y) = X, + min{|B| : B is a base
for 7}. (Example VI1.4.6)
Lemma3.2 If Y isa Ty space, then |Y| < 2v(¥),

Proof Let B be any base for Y, and foreach pointy € Y, let B, ={U e B:y € U}. SinceY
is Ty, we have B, # B, if y' #y. Therefore the map y — B, C B is one-to-one, so
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Y| < [P(B)| = 28, In particular, if we pick B to be a base with the least possible cardinality,
minimal cardinality, then |Y| < 2/81 < 2v(Y) o

Lemma 3.3 Suppose Y is an infinite 73 space and that X is a dense subspace of Y.
Then w(Y) < 21 < 21,

Proof A Tj space with a finite base must be finite, so every base for Y must be infinite. Let
B ={U,:«a¢c A} beabase for Y. Each U, is open so we have i) U, C intclU, C clU,, and
ii) because X isdenseinY,clU, =cl (U, N X) (see Lemma IV.6.4).

For each «, define V,, = intcl (U, N X), so that U,, C intcl U, = intcl (U, N X) =V,,.

Then B’ = {V,, : a« € A} is also a base for Y: to see this, suppose y € O C Y where O is open.
By regularity, there isa U, such that y € U, CintclU, =V, CclU, C O.

Since each U, N X C X, there are no more distinct V,,'s than there are subsets of X, that is
|B'| < |P(X)|. Since B’ must be infinite, we have w(Y) < |B'| < |[P(X)| =2X1 < 2I¥] o

Theorem 3.4 If Y is a compactification of X and D is dense in X, then |Y| < 22"

Proof Y is Tychonoff. If Y is finite, then D = X = Y so |Y| < 22" = 22", Therefore we can
assume Y is infinite. Since D is dense inY, w(Y) < 271 (by Lemma 3.3), and therefore
so [Y] < 2¢(Y) < 92" (by Lemma3.2) e

Example 3.5 An upper bound on the size of a compactification of N is 22% = 9¢ . More
generally, a compactification of any separable Tychonoff space — such as N,Q,P or R — can
have no more than 2¢ points.

We will see in Section 6 that Theorem 3.4 is “best possible” upper bound. For example, there

actually exists a compactification of N, called SN, with cardinality 22" — 9c| (It is difficult to
imagine how the “tiny” discrete set N can be dense in a such a large compactification SN.

Assume such a compactification SN exists. Since N is dense, each point o in 5N — N is
the limit of a net in N, and this net has a universal subnet which converges to o.

Since AN is Hausdorff, a universal net in N has at most one limit in SN — N, so there are
at least as many universal nets in N as there are points in SN — N, namely 2°. None of
these universal nets can be trivial (that is, eventually constant). Therefore each of these
universal nets is associated with a free ( = nontrivial) ultrafilter in N. So there must be
2¢ free ultrafilters in N.
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4. Comparing Compactifications

We want to compare compactifications of a Tychonoff space X. We begin by defining an
equivalence relation ~ between compactifications of X. Then we define a relation > . It will
turn out that > can also be used to compare equivalence classes of compactifications of X.
When applied in a set equivalence classes of compactifications of X, > will turn out to be a
partial ordering.

The definition of ~ requires that we use the formal definition of a compactification as a pair.

Definition 4.1 Two compactifications (Y1, hi)and (Y2, hy) of X are called equivalent, written
(Y1, h1) ~ (Y3, hy), if there is a homeomorphism f of Y; onto Y; such that f o hy = hs.

Y1 ol

In the special case where X CY;, X C Y5, and hy = hy = the identity map on X, then the
condition f = f o hy = hy simply states that f(z) = zfor x € X — thatis, points in X are fixed
under the homeomorphism f.

It is obvious that (Y7, hy) ~ (Y1, hy) and that ~ is a transitive relation among compactifications
of X. Also, if (Yi,h;)~(Ya,hs), then f~1:Y, —Y; is a homeomorphism and
ftohy=f"Y(foh))=hysothat (Y, hy) ~ (Y1, hy). Therefore ~ is a symmetric relation,
S0 ~ is an equivalence relation on any set of compactifications of X.

Example 4.2 Suppose X is a locally compact, noncompact Hausdorff space. We claim that all
one-point compactifications of X are equivalent. Because ~ is transitive, it is sufficient to show
that each one-point compactification (Y3, h;) is equivalent to the one-point compactification
(Y*,4) constructed in Theorem 2.3.

LetY* =X U{ptand Y1 — hi[X] = {p:}. Define f : Y* — Y; by

ﬂw—{gw>ﬂgif
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f is clearly a bijection and f o4 = hy. We claim f is continuous.

If y € X : LetV beanopensetinY; with f(y) =hi(y) e V. ThenV’' =V —{p}

is also open in h;[X]. Since hy : X — hy[X]is a homeomorphism, U = h;![V;] is open
in X and XisopeninY*. Theny e U,UisopeninY*and f[U] = h[U]=V'C V.
Therefore f is continuous at y.

Ify=p: LetV beanopensetinY;with f(p)=p1 € V. ThenY; -V =Kjisa
compact in hy[X], so h{}[K;] = K is a compact (therefore closed) set in Y*. Then
U =Y* — K isaneighborhood of pand f[U] C V. Therefore f is continuous at p.

Since f is a continuous bijection from a compact space to a 75 space, f is closed and therefore f
is a homeomorphism.

Therefore (up to equivalence) we can talk about the one-point compactification of a noncompact,
locally compact Hausdorff space X. Topologically, it makes no difference whether we think of
the one-point compactification of R geometrically as S*, with the North Pole p as the “point at
infinity,” or whether we think of it more abstractly as the result of the construction in Theorem
2.3.

Question: Are all two point compactifications of ( — 1, 1) equivalentto [ — 1,1]?

Example 4.3 Suppose (Y1,hy) is a compactification of X. Then (Y1, k) is equivalent to a
compactification (Y,:7) where X CY and ¢ is the identity map. We simply define
Y = (Y1 — i[X]) U X, topologized in the obvious way — in effect, we are simply giving each
point hy(x) in Y7 a new “name” x. We can then define f : Y7 — Y by
INE: if 2z €Y] — h[X]
z) = {io hil(z) = hil(z) if = € hi[X]

Clearly, fohy =1,50 (Y1,h1) ~ (Y,1).

Example 4.3 shows means that whenever we work with only one compactification of X, or are
discussing properties that are shared by all equivalent compactifications of X, we might as well
(for simplicity) replace (Y7, h1) with an equivalent compactification Y where Y contains X as a
dense subspace.

Example 4.4 Homeomorphic compactifications are not necessarily equivalent. In this example
we see two dense embeddings hq, ko Of N into the same compact Hausdorff space Y that produce
nonequivalent compactifications.

LetY = {(1,i): i=1,2andn € N} U{(0,1), (0,2)} C R%.

hi(2n) = (

1
n . (Y, hy) is a 2-point compactification of N.
h1(2n—1) _ (%’2) ( ) 1) p p

Let hy :N—Y by{
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ho(n) = (1,1) ifnisthe ;M element of {1,2,4,5,7,8,10,11,...}
Let ho : N—Y by 1 e th
h 7,2) if n is the ;" element of {3,6,9,12, ...}

For example, 75(7) = (3,1) and h2(9) = (5,2). (Y, he) is also a two-point compactification
of N.

Topologically, each compactification is the same space Y, but (Y,hy) and (Y, hy) are not
equivalent compactifications of N:

Suppose f : Y — Y is any (onto) homeomorphism.

(h1(2n)) — (0,1), 80 f(h1(2n)) — f((0,1)), and f((0,1)) = either (0,1) or
(0,2) (why?).

But the sequence (ha(2n)) = ((
does not converge to either (0, 1

(1/17 hl) ﬁ7‘é (Yéa h2)

L), (5,1, (5,2),(5,1), (4,1), (4,2), ).
)or (0,2). Therefore f o hy # hs, SO

By adjusting the definitions of h; and h,, we can create infinitely many nonequivalent
2-point compactifications of N all using different embeddings of N into the same space Y.

427



We now define a relation > between compactifications of a space X.

Definition 4.5  Suppose (Y,,h2) and (Yi,hy) are compactifications of X. We say that
(Ya, ho) > (Y7, hy) if there exists a continuous function f : Y, — Y] such that f o hy = hy.

Y3 —n—"ﬁ

N/

Notice that:

i) Such a mapping f is necessarily onto Y;: f[Y>] is compact and therefore closed in Y7;
so f[Ya] = cl f[Ya] D cl flhe[X]] = cl hi[X] = Y.

i) If X CY,;, X CY; and hy = hy = the identity map ¢, then the condition f o hy = h
simply states that f| X = i.

i) f[Ya — ho|X]] C Y1 — h[X] : that is, the “points added” to create Y> are mapped
onto the “points added” to create Y;. To see this, let z € Y5 — hy[X]. We want to show
f(z) € Y1 — hy[X]. So suppose that f(z) = hi(z) € hy[X].

Since ho[X] is dense in Y>, there isanetin hy[X] converging to z :

(ha(2)) — 2 (%)

f is continuous, so hi(zy) = f(ha(zy)) — f(2) = hi(x).
But h; : X — hy[X] is a homeomorphism so

(x)) = (h{thi(z))) — hithi(z) = 2 € X,
and therefore (ha(x))) — ha(x) € ho[X] (%)

A net in Y has at most one limit, so (x) and (xx) give that z = ho(x). This is impossible since

iv) From iii) we conclude that if (Y2, ho) > (Y1, k1), then |Ya2 — ho[X]| > |V — Iy [X]|
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Suppose (Y2, hy) > (Y1, hy). The next theorem tells us that the relation “ > " is unaffected if we
replace these compactifications of X with equivalent compactifications — so we can actually
compare equivalence classes of compactifications of X by comparing representatives of the
equivalence classes. The proof is very easy and is omitted.

Theorem 4.6  Suppose (Y2,hy) and (Yi,hy) are compactifications of X and that
(Y2, hg) = (Y1, ha). I (Yo, he) >~ (Y5, hy) and (Y1, ha) ~ (Y)', hf), then (Y5, hsy) = (Y1, hy).

The ordering “ > " is well behaved on the equivalence classes of compactifications of X.

Theorem 4.7 Let C be a set of equivalence classes of compactifications of X. Then (C, > )isa
poset.

Proof It is clear from the definition that > is both reflexive and transitive. We need to show
that > is also antisymmetric. Suppose [(Y1,7)] and [(Y2,7)] are equivalence classes of
compactifications of X (By Theorem 4.6, we are free to choose from each equivalence class

representative compactifications with X C Y; and embeddings » = i = the identity map).

If both (Y71,47) > (Ya,4)and (Yz, i) > (Y1,1) hold, then we have the following maps:

r

Y1, " Y2

with foi=i=goi. For z € X, g(f(z)) =g(f(i(zx)) = g(i(x)) = i(x) = x, so the maps
go f and the identity ¢ : Y7 — Y; agree on the dense subspace X. Since Y; is Hausdorff, it
follows that g o f = ¢ everywhere in Y;. (See Theorem 5.12 in Chapter Il, and its generalization
in Exercise E9 of Chapter I11.) Similarly f o g and i: Y, — Y5 agree on the dense subspace X
SO fog=1ionYs,.
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Since fog=1i and go f =1, fand ¢ are inverse functions and f is a homeomorphism.
Therefore (Y1,4) ~ (Y2,4). So we have shown that if [(Y1,7)] > [(Ys,4)] and [(Y1, )] < [(Ya, 1],
then [(Y,1)] = [(Ya, 1]

An equivalence class of compactifications of a space X is “too big” to be a set in ZFC set theory.
(It is customary to refer informally to such collections “too big” to be sets in ZFC as “classes.”)

However, suppose (Y, ¢) represents one of these equivalence classes. If X has weight m, then X
contains a dense set D with |D| < m. It follows from Lemma 3.3 that w(Y) < 2™ so, by
Theorem V11.3.17, Y can be embedded in the cube [0, 1]*". Therefore every compactification of
X can be represented by a subspace of the one fixed cube [0, 1]%".

Therefore we can form a set consisting of one representative from each equivalence class of
compactifications of X : this set is just a certain set of subspaces of [0,1]?". This set is partially
ordered by > .

In fact, we can even given a bound on the number of different equivalence classes of
compactifications of X: since every compactification of X can be represented as a subspace of
[0,1]>", the number of equivalence classes of compactifications of X is no more than
[P([0,1)2")| =2¢") = 22" In other words, there are no more than 22" different
compactifications of X.

Example 4.8 Let (Y7, hy) be a 1-point compactification of X. For every compactification (Y, h)
of X, (Y,h)>(Y1,h1). (So, among equivalence classes of compactifications of X, the
equivalence class [(Y1, h1)] is smallest.)

By Theorem 4.6, we may assume X C Y;, X C Y and that h, h; are the identity maps; in fact,
we may as well assume Y; = X* (the one-point compactification constructed in Theorem 2.3).

Since X has a one-point compactification, X is locally compact (see Example 1.5). By Corollary
2.7, X isopeninboth Y and X*.

Let X* — X = {p} and define

) . _Jy ifyeX
fiY—=X byf(y)_{p ifzeY - X

To show that (Y",4) > (X*,7), we only need to check that f is continuous each point z € Y.

If y € X and V is an open set containing f(y) =y in X*,theny e U =V — {p}
which is open in X and therefore also open in Y. Clearly, f[U]=U C V.

If z € Y — X and V is an open neighborhood of f(z) = pin X*, then X* -V = K

is a compact subset of X. Therefore K isclosedinY soU =Y — K is an open set
inY containing z and f[U] C V.
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5. The Stone-Cech Compactification

Example 4.8 shows that the one-point compactification of a space X, when it exists, is the
smallest compactification of X. Perhaps it is surprising that every Tychonoff space X has a
largest compactification and, by Theorem 4.7, this compactification is unique up to equivalence.
In other words, a poset which consists of one representative of each equivalence class of
compactifications of X has a largest (not merely maximal!) element.  This largest
compactification of X is called the Stone-Cech (pronounced “check™) compactification and is
denoted by 5.X.

Theorem 5.1 1) Every Tychonoff Space X has a largest compactification, and this
compactification is unique up to equivalence. (We may represent the largest compactification by
(8X,i) where 5X D X and ¢ is the identity map. We do this in the remaining parts of theorem.)

2) Suppose X is Tychonoff and that Y is a compact Hausdorff space. Every
continuous f : X — Y has a unique continuous extension f”: X — Y. (The extension f” is
called the Stone extension of f. The property of 53X in2) is called the Stone Extension

Property. )

3) Up to equivalence, X is the only compactification of X with the Stone
Extension Property. (In other words, the Stone Extension Property characterizes X among all
compactifications of X.)

Example 5.2 (assuming Theorem 5.1) [0,1] is a compactification of (0,1]. However the
continuous function f: (0,1] — Y = [—1,1] given by f(z) =sin(1) cannot be continuously

extended to amap 7 : [0,1] — Y. Therefore [0,1] # 3(0,1]. Is it possible that S* = SR ?

Proof of Theorem 5.1

1) Since X is Tychonoff, X has at least one compactification. Let {(Y,,i,) : « € A} be a set of
compactifications of X, where X C Y,, i, : X — Y, is the identity, and Y, is chosen from each
equivalence class of compactifications of X. (As noted in the remarks following Theorem 4.7,
this is a legitimate set since every compactification of X can be represented as subset of one

fixed cube [0, 1]*.)

Define e : X - Y =[[{Y,:a € A} by e(z)(a) =i(z) = 2. This “diagonal” map e sends
each x to the point in the product all of whose coordinates are z, and e is the evaluation map
generated by the collection of maps i, : X — Y,. X is a subspace of Y,, and the subspace
topology is precisely the weak topology induced on X by each i, (see Example VI.2.5). It
follows from Theorem VI.4.4 that e is an embedding of X into the compact space Y. If we
define BX = cly e[ X], then (38X, e) is a compactification of X.

Every compactification of X is equivalent to one of the (Y,,,7,). Therefore, to show 5X is the

largest compactification we need only show that (8X,e) > (Y,,i,) for each « € A. This,
however, is clear: in the diagram below, simply let f, = 7,|8X.

431



B

Then f, o e =i because f,(e(x)) = m,(e(x)) = e(x)(a) = i(x) = .
Therefore (56X, e) > (Y, 1).

Note: now that the construction is complete, we can replace (X, e) with an equivalent largest
compactification actually containing X : (6X,1).

Since > is antisymmetric among the compactifications (Y, i, ), the largest compactification of
X isunique (up to equivalence).

2) Suppose f: X — Y where Y is a compact Hausdorff space. First, we need to produce a
continuous extension f7 : BX — Y.

Define g: X — X x Y by g(z) = (z, f(x)). Clearly, g is 1 — 1 and continuous, and X has

the weak topology generated by the maps 7 : X — Xand f: X — Y, so g is an embedding.
Since X x Y is compact, (clsxxy g[X], g) is a compactification of X.

But (8X,4) > (clg[X], g), so we have a continuous map h : X — clg[X] for which hoi =g
— thatis h(z) = g(z) for z € X (see the following diagram)
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Eh & cl gl¥]

For z € BX, define f°(z) =my oh(z). Then f7 is continuous and for x € X we have

19(2) = my (b)) = 7y (h(i(2)) = 7y (9(2) = 7y (2, f(2)) = f (&), 50 X = .

If k:3X — Y iscontinuous and k| X = £, then k and f“ agree on the dense set X, so k = f*
Therefore the Stone extension f° is unique. (See Theorem 11.5.12, and its generalization in
exercise E9 of Chapter 1l1..)

3) Suppose (Y,4) is a compactification of X with the Stone Extension Property. Then the
identity map ¢:X — 8X has an extensioni*:Y — X such that i*oi =14, SO
(Y,i) > (BX,1). Since 5X is the largest compactification of X, (V,i) ~ (6X,i). e

The Tychonoff Product Theorem is equivalent to the Axiom of Choice AC (see Theorem 1X.6.5).
Our construction of 5X used the Tychonoff Product Theorem — but only applied to a collection
of compact Hausdorff spaces. In fact, as we show below, the existence of a largest
compactification 5X is equivalent to “the Tychonoff Product Theorem for compact 75 spaces.”

The “Tychonoff Product Theorem for compact 75 spaces” also cannot be proven in ZF, but it is
strictly weaker than AC. (In fact, the “Tychonoff Product Theorem for compact T spaces” is
equivalent to a statement called the ““Boolean Prime Ideal Theorem.”)

The main point is that the very existence of 5.X involves set-theoretic issues and any method for

constructing X must, in some form, use something beyond ZF set theory — something quite
close to the Axiom of Choice.

Theorem 5.3 If every Tychonoff space X has of a largest compactification 5X, then any product
of compact Hausdorff spaces is compact.

433



Proof  Suppose {X, :a € A}is a collection of compact 75spaces. Since [[,. Xa Iis
Tychonoff, it has a compactification 5[] ],.,X.] and for each « the projection map , can be
extended to 77 : B([1,c4Xal = Xa-

RIOX)

ITx L
o

For each z € B[], X, define a point f(z) € X with coordinates f(z)(«) = 72(z).

I 5[HaeAXa] - HaeAXa

f is continuous because each coordinate function 7 is continuous. If z € [, 4 Xa

C Bll1.caXal, then f(z)(a) = 7 (z) = mo(z) = z(a) = x,, for each a, s0

f(x) =«. Therefore J], .,X, is a continuous image of the compact space (3 [[],c4Xa], SO
[I.caXais compact. e

We want to consider some other ways to recognize SX. Since X can be characterized by the
Stone Extension Property, the following technical theorem about extending continuous functions
will be useful.

Theorem 5.4 (Taimonov) Suppose C is a dense subspace of a Tychonoff space X and let Y be
a compact Hausdorff space. A continuous function f:C — Y has a continuous extension

? X = Y iff

whenever A and B are disjoint closed sets in Y, cly f~[A] nclxf~1[B] = 0.

Proof = : If f exists and A and B are disjoint closed sets in Y, then f _1[A] Ny _1[B] = (.

But these sets are closed in X, so f 71[A] = clyx f*[A] and ¥ 71]B] = clx f~[B]. Therefore
Cle_l[A] N Cle_l[B] = 0.

< : We must define a function ? : X — Y such thatrf |C' = f and then show that ? is
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continuous. For z € X, let N, be its neighborhood filter in X. Define a collection of closed sets
F. inY by
F.=A{clf[CNU]:Ue N}

Then cl f[ICNUNcl f[CNUy] Dl fICNU NUy]# 0 (since Cis dense in X). Therefore
F, is a family of closed sets in Y with the finite intersection property so (F. # () (because Y is
compact) .

We claim that (), contains only one point: (\F, = {y} forsomey € Y.

Suppose y, z € [F.. Ify # z, then (since Y is T3) we can pick open sets U, V' so that
yeUandzeVandclUNclV =0. ThenclyftclU]Nclyf[cIV] =0 so, of
course, cly f U] Nclx f~1[V] = (. Taking complements, we get

(X —clyfU) U (X —clyf1[V]) = X

so x is in one of these open sets: say x € W = X — clx f~[U]. Since W € N,
cl f[CNW]eF, Weclaimcl f[CNW]CY — U, from which will follow the
contradiction that y ¢ (F. .

To check this inclusion, simply note that C N W = C — clx f~*[U]. Therefore,
ifue CNW,wehaveu ¢ clxf'[U], sou ¢ f~1[U],s0 f(u) ¢ U. Thus,
fICNW]CY—U (aclosed set) socl f[CNW]CY—U.

DefineAfJ (x) = y. We claim that ? works.

7 |C = f: Supposexz € C. B={CnNU :U € N,} isthe neighborhood filter of = in
C'so B— zinC. Since f is continuous, the filter base f[B] = {f[CNU]:U € N,}
— f(x)inY. Inparticular, f(z) is a cluster point of f[B], so f(z) € Ncl(f[C NTU))

= NF={J @)} So f(z) =T ().

~ ~

f iscontinuous: Letx € X and let V beopeninY withy = f (x) € V. Since
NF. = {y} C V, there exist Uy,...,U,, € N, such that

cflCnUy n...nclf[CNU,| CV

(If V is an open set in a compact space and F is a family of closed sets with
(F C V, then some finite subfamily of F satisfies F; N...N F,, C V. Why?)

LetW =UNn..NU, € N;. Ifz € W, then

F(z)ecflcnw]CcflCnU]n..ncflCNU,] CV

so'f (W] CV. Therefore 7 is continuous at z. e

Corollary 5.5 Suppose Y; and Y; are compactification of X where the embeddings are the
identity map. Then (Y7,4) ~ (Y3, 1) iff : for every pair of disjoint closed sets in X,
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clyyAncly,B=10 <cly,Ancl,B=10) *

Proof If (Y1,7) ~ (Ys,4), it is clear that (*) holds. If (*) holds, then Taimonov's Theorem
guarantees that the identity maps i; : X — Y; and iy : X — Y3 can be extended to maps
fi: Yo=Y and fo : Y1 — Y. Itis clear that f; o f5|X and f» o f1|X are the identity maps on
the dense subspace X. Therefore f; o f, and f, o f; are each the identity everywhere so fi, fo
are homeomorphisms so (Y1,) ~ (Y2,4).

For convenience, we repeat here a definition included in the statement of Theorem V11.5.2

Definition 5.6 Suppose A and B are subspaces of X. A and B are completely separated if
there exists f € C'(X) such that f|A = 0and f|B = 1. (Itis easy to see that 0, 1 can be replaced
in the definition by any two real numbers a, b.)

Urysohn's Lemma states that disjoint closed sets in a normal space are completely separated.

Using Taimonov's theorem, we can characterize X in several different ways. In particular,
condition 4) in the following theorem states that X is actually characterized by the
“extendability” of continuous functions from X into [0, 1] — a statement which looks weaker than
the full Stone Extension Property.

Theorem 5.7 Suppose (Y, ) is a compactification of X, where Y O X and i is the identity. The
following are equivalent:

1) Yis pX (thatis, Y is the largest compactification of X)
2) every continuous f : X — K, where K is a compact Hausdorff space, can be

extended to a continuous map ? Y - K
3) every continuous f : X — [a, b] can be extended to a continuous f :Y — [a,b]

4) every continuous f : X — [0, 1] can be extended to a continuous Ty [0, 1]
5) completely separated sets in X have disjoint closures in Y’

6) disjoint zero sets in X have disjoint closures in Y’

7) if Z; and Z, are zero sets in X, then cly (Z, N Z5) = cly Z; Ncly Zs,

Proof Theorem 5.1 gives that 1) and 2) are equivalent, and the implications 2) = 3) = 4) are
trivial.

4)=5) If A and B are completely separated in X, then there is a continuous
f:X—1[0,1 with fJ[A=0 and f|B=1. By 4), f extends to a continuous map

.y —[0,1. ThenclyACchF (0)=F (0)andclyBCchF (1)=F (1), s0
clyAnclyB = 0.

5) = 6) Disjoint zero sets Z(f) and Z(g) in X are completely separated (for example,
by the function h = fgf—:gg) and therefore, by 5), have disjoint closures in Y.

6 = 7) A zero set neighborhood of X is a zero set Z with z € int Z. It is easy to show
that in a Tychonoff space X, the zero set neighborhoods of x form a neighborhood base at x
(check this!).
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Suppose Z; and Z, are zero sets in X. Certainly, cly(Z; N Z3) C cly Z; Ncly Z,, so suppose
xeclyZynclyZy,, If V is a zero set neighborhood of z, then z ecly(Z;NV) and
zecly(ZonNV) (why?). Zy NV and Z; NV are zero sets in X and
zecl(ZinV)Ncly(Z,NV)so,by6). (Z1NV)N(ZaNV)=2Z1NZyNV #0.

Since every zero set neighborhood V' of x intersects Z; N Z,, and the zero set neighborhoods of x
are a neighborhood base, we have z € cly (Z; N Z5).

7) = 2) Suppose that f: X — K is continuous. K is T, so if A and Bare disjoint
closed sets in K, there is a continuous ¢ : K — [0, 1]such that A C {z : g(z) =0} = Z; and
BC{x:g(z) =1} = Zs.

Then f~1A] C f~'[Z)] and f~1[B] C f1[Z,] and f~![Z;] and f~![Z,] are disjoint zero sets in
X. By7), clyf Al ncl, f7'[B] Cely f[Z] nely f[Zs] = cly f[Z1 0 Zy)]
= (). By Taimonov's Theorem 5.4, f has a continuous extension ? Y - K. e

Example 5.8

1) By Theorem VI11.8.8, every continuous function f : [0,w;) — [0, 1] is “constant on a
tail” so fcan be continuously extended to f :[0,w;] — [0,1]. By Theorem 5.7,
[Oawl] = 6[076‘)1)'

In this case the largest compactification of [0,w;)is the same as the smallest
compactification — the one-point compactification. Therefore, up to equivalence, [0, w;] is the
only compactification of [0, w, ).

A similar example of this phenomenon is T =[0,w;] x [0,wy] = FT, where
T =T"—{(w1,wy)} (seethe “Tychonoff plank” in Example V111.8.10 and Exercise VI11.8.11).

2) The one-point compactification N* of N is not SN because the function

f:N—{0,1}givenby f(n) = { (1) :;Z :z g\ézn cannot be continuously extended to

7N o {0,1}. (Why? It might help think of N (topologically) as {+ : n € N} C R.)

Theorem 5.9 X is metrizable iff X is a compact metrizable space (i.e., iff X is metrizable and
X = pX).

Proof <« : Trivial

) . . X is metrizable = X is Ty
= ¢ fXIs metrizable = {ﬁX is first countable
If X is not compact, there is a sequence (z,,) in X with (z,) — p € X — X. Without loss of

generality, we may assume the z,,'s are distinct (why?).
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Let O = {1, 3, ..., Topns1, ...} and E = {xg, x4, ..., Toy, ...}. O and E are disjoint closed sets in
X so Urysohn's Lemma gives us a continuous f : X — [0, 1] for which f|O =0 and f|E = 1.
Let /7 : X — [0,1] be the Stone Extension of f. Then f7(p) = lim f*(x2,1)

= lim f(z2,41) =0 # 1 =lim f(xy,) = lim fP(x2,) = £%(p), which is impossible. e

6. The space SN

The Stone-Cech compactification of N is a strange and curious space.

Example 6.1 (N is a compact Hausdorff space in which N is a countable dense set. Since SN is
separable, Theorem 3.4 gives us the upper bound |GN| < 220 — 9¢,

On the other hand, suppose f: N — [0,1] N Q is a bijection and consider the Stone extension
f?: BN — [0,1]. Since f7[sN] is compact, it is a closed set in [0, 1] and it contains the dense
set Q. Therefore f7[3N] = [0, 1] so we have ¢ < |BN]| < 2°.

A similar argument makes things even clearer. By Pondiczerny's Theorem VI1.3.5, there is a
countable dense set D C [0,1]%!. Pick a bijection f:N — D and consider the extension

f?: BN — [0,1]0U. Just as before, f” must be onto. Therefore [N] > |[0, 1)1 = ¢ = 2¢.

Combining this with our earlier upper bound, we conclude that |GN| = 2¢. AN is quite large but
it contains the dense discrete set N that is merely countable.

Every set A C N is a zero set in N so we can write

ON = ClgNN = ClﬁNA U C|/3N(N — A),
and by Theorem 5.7(6) these sets are disjoint. Therefore for each A C N, clzyA is a clopen set
in GN. In particular, each singleton A = {n} is open in AN (that is, n is isolated in SN), so N is
open in GN. Therefore SN — N is compact.

At each = € N, there is a neighborhood base 5, consisting of clopen neighborhoods:

i) ifz € N,wecanuse B, = {{z}}
i) if z € BN — N, we canuse B, = {clsgnA: A CNandx € clgyA}

If U is an open set in SN containing x, we can use regularity to choose an open
set Wsuchthatz €¢ W CclgyW CU. If A=W NN, then
x € ClgyA = C|/3N(W NN) = clpnW C U. (Why?)

Definition 6.2 Suppose A C X. A is said to be C*-embedded in X if every f € C*(A) has a
continuous extension f € C*(X).

To illustrate the terminology:
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i) Tietze's Theorem states that every closed subspace of a normal space is C*-embedded.

i) For a Tychonoff space X, (X isthe compactification (up to equivalence) in which
X is C*-embedded.

The following theorem is very useful in working with 5X.
Theorem 6.3 Suppose A C X C X, and that A is C*-embedded in X. Then clgxA = BA.

Proof If f: A — [0,1] is continuous, then f extends continuously to f : X — [0,1], and, in

turn, f extends continuously to’f : BX — [0,1]. Then ? Iclzx A is a continuous extension of f
to clzx A. Since clzx A has the extension property in Theorem 5.7 (4), clgx A = SA. o

Example 6.4 Since N is discrete, every A C N is C*-embedded in N and so, by Theorem 6.3,
C|“[,>NA = ,BA

Of course if A is finite, clgnA = A = BA. Butif A is infinite, then A is homeomorphic to N, so
clpnA = BA is homeomorphic to SN.

In particular, if E and O are the sets of even and odd natural numbers, we have N =E U O, so
BN = clgnE U clsyO — so SN is the union of two disjoint, clopen copies of itself. It is easy to
modify this argument to show that, for any natural number k&, SN can be written as the union of k&
disjoint clopen copies of itself.

If we write N = J;° | A, where each Aj's are pairwise disjoint infinite subsets of N, then we
have SN = clgn U,— 1 Ar 2 Up ClsnAy, and these sets clgy Ay, are pairwise disjoint copies of
BN. Moreover, |J;~clsn Ay is dense in SN since the union contains N. (If we choose the Aj's
properly chosen, can we have SN = J;~clsnAr ? Why or why not?)

Example 6.5 No sequence (n;)in N can converge to a point of SN — N. In particular, the
sequence (n) has no convergent subsequence in SN so SN is not sequentially compact.

Define f : N — {0,1} by f(x) = {(1) gﬂfeim?ek . Consider the Stone extension

f?: BN — {0,1}. If (ny) — p € BN =N, then (f%(n)) = (f(ne)) — f%(p) € {0,1},
so (f(nx)) must be eventually constant — which is false.

Therefore SN is an example showing that “compact = sequentially compact.” (See the remarks
before and after corollary VI111.8.5.)
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Theorem 6.6 Every infinite closed set F' in SN contains a copy of SN and therefore satisfies
|F| = 2°.

Proof Pick an infinite discrete set A = {a, : n=1,2,...} C F. (See Exercise Ill E9). Using
regularity, pick pairwise disjoint open sets V,, in 6N with a,, € V.

Suppose g : A — [0, 1] (g is continuous since A is discrete). Define G : N — [0, 1] by

~ [g(a,) forkeNNV,
Gk) = {0 forke N—J 2, V,

Extend G to a continuous map G” : BN — [0, 1].

The following diagram gives a very “distorted” image of how the sets in the argument are related.

B

We have G°| NNV, = g(a,). Since NNV, is dense in V,, (why?), we have G”|V,, = g(a,,) sO
GPlA=g.

Thus, g: A — [0,1] has an extension G” : BN — [0,1], so A is C*-embedded in GN. By
Theorem 6.3, clsgyA =p3A and since A is a countably infinite discrete space, A is
homeomorphic to SN.

Since F'is closed, clgnA = A C F,s0 |F|=2° e

Theorem 6.6 illustrates a curious property of SN : there is a “gap” in the sizes of closed subsets.
That is, every closed set in SN is either finite or has cardinality 2¢ — no sizes in-between! This
“gap in the possible sizes of closed subsets” can sometimes occur, however, even in spaces as
nice as metric spaces — although not if the Generalized Continuum Hypothesis is assumed. (See
A.H. Stone, Cardinals of Closed Sets, Mathematika 6 (1959), pp. 99-107.)
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Example 6.7 (N is separable, but its subspace SN — N is not; SN — N does not even satisfy the
weaker countable chain condition CCC (see Definition VII1.11.4). Specifically, we will show
that SN — N contains ¢ pairwise disjoint clopen (in SN — N) subsets, each of which is
homeomorphic to SN — N.

Let {V; : t € [0,1]} be a collection of ¢ infinite subsets of N with the property that any two have
finite intersection. (See Exercise 1.E41.) Let U; = (BN — N) NclgyV; = clgyN; — Ny Each
U, # 0 (why?) and U; is a clopen set in SN — N homeomorphic to 5N — N.

Moreover, the U,'s are disjoint;

Suppose t #t'. If z € U, N Uy, then z € clgnN; N clgn Ny Ina Ty space, deleting
finitely many points from an infinite set A does not change the set cl A — A (why?), so
z € Clgn(Ny — (Ny N Nyv)) and z € clgy (Vg — (N N Nyr)). But N, — (N, N Ny) and
Ny — (Ny N Ny») are disjoint zero sets in N and must have disjoint closures.

An additional tangential observation:

If we choose points z; € U; and let X = NU {x,:t € [0,1]}, then X is notnormal — since a
separable normal space cannot have a closed discrete subset {x; : ¢t € [0,1]} of cardinality c.
(See the ““counting continuous functions” argument in Example VI1.5.6.)

The following example shows us that countable compactness and pseudocompactness are not
even finitely productive.

Example 6.8 There is a countably compact space X for which X x X is not pseudocompact (so
X x X is also not countably compact).

LetE = {2,4,6,...} and O = {1, 3,5, ...} and write SN = clgnE U clgyO = SE U SO.
OE and O are disjoint clopen copies of SN. Choose any homeomorphism f : SE — O

(necessarily, f[E] = O : why?) and define g : SN — SN by g(z) = {ﬁ(fzx) ::i E gg :

The map ¢ is a homeomorphism since g and g~ are continuous on the two disjoint clopen sets 3E
and SO whose union is ON. Clearly, g]N: N — N, ¢ has no fixed points, and go g is the
identity map.

Let C = {A C BN : Ais countably infinite}. |C| = (2°)™ = 2¢. Let X be the first ordinal with
cardinality 2¢ and index C as {A, : @ < A}. For each «, |clagyA,| is an infinite closed set so, by
Theorem 6.6, [clgnA,| = 2¢. Therefore clgyA, — Ay # 0.

Pick pp to be a limit point of Ay not in Ay,. Proceeding inductively, assume that for all
a < B < X we have chosen a limit point p, of A, that is not in A, and that, for the points p,, p,
(o < v < ) already defined :

Pa 7 Dy

Pa 7 9(py) (*)
Py 7 9(Pa)
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For the “next step”, we want to define ps . Since |[0, 3)| < 2¢, we have so far defined fewer than
2¢ points p,. Therefore

{pa:a < BYU{g(pa) - a < BYU{g (pa) : @ < B}] < 2°

But |clsnAg — Ap| = 2¢, so we can chose a limit point ps of As with pg ¢ Apg so that the
conditions () continue to hold fora < v < §+ 1.

Therefore, by transfinite recursion, we have defined distinct points p, (o < A) in such a way that
fora # B <A, g(pa) # psand g(ps) # pa-

Let X = NU {p, : @« < A}. By construction, X is countably compact because every infinite set
in X (for that matter, even every infinite set in SN) has a limit point in X. But we claim that
X x X is not pseudocompact.

To see this, consider Z = {(n,g(n) :n € N} C X x X. We claim Z is clopen in
X x X.

Since (n, g(n)) isisolated in X x X, Zis a discrete open subset of X x X.

On the other hand, the graph of g = {(z, g(x)) : x € SN} is closed in N x N
so that

{(z,9(z)) : z € BN} N (X x X)isclosed in X x X.
and we claim that {(z,g(z) : z € SN} N (X x X) = Z.
Indeed, it is clear that

7 C {(w,9(x) : @ € BN} N (X x X)

and the complicated construction of the p,'s was done precisely to guarantee the
reverse inclusion:

If (z,9(x)) € X x X, then z € N — for otherwise we would
have z = p, for some «, and then g(x) = g(p.) ¢ X by construction.

Therefore Z is closed in X x X.

Therefore function h : X x X — N defined by

n ifu=(n,g(n)) ez
h(“>:{0 ifue(Xi]X)—Z

continuous. But & is unbounded, so X x X is not pseudocompact.
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7. Alternate Constructions of 8X

We constructed 5X by defining an order > between certain compactifications of X and showing
that there must exist a largest compactification (unique up to equivalence) in this ordering.
Theorem 5.7, however, shows that there are many different characterizations of X and some of
these characterizations suggest other ways to construct 5.X. .

For example, Theorem 5.7 shows that the zero sets in a Tychonoff space X play a special role in
6X. Without going into the details, one can construct 5.X as follows:

Let Z be the collection of zero sets in X. A filter 7 in Z (also called a z-filter ) means a
nonempty collection of nonempty zero sets such that

i) if i, Fy, € F,then 1N Fy, € F, and
i) if F € F and G O F where GG is a zero set, then G € F.

A z-ultrafilter in X is a maximal z-filter.

Define aset 5X = {U : U is a z-ultrafilter in X'}. For each p € X, the collection
U, ={Z : Zisazero set containing p} is a (trivial) z-ultrafilter, so ¢/, € 5X. The
map h(p) = U, isal — 1 map of X into the set 5.X.

It turns out that X compact iff every z-ultrafilter is of the form ¢4, for some p € X.
Therefore the set X — X = () iff X is compact. Each z-ultrafilter / in X that is
not of the trivial form 4, is a point in 53X — X.

The details of putting a topology on 38X to create the largest compactification
of X are a bit tricky and we will not go into them here.

The situation is simpler in the case X = N. Since every subset of N is a zero set,
a “z-ultrafilter” in N is just an ordinary ultrafilter in N.

Then, to be a bit more specific,

let BN = {U : U is an ultrafilter in N} and for A C N, define
clA={U:AclU}

Give SN the topology for which {cl A : A C N} is a base for the open sets.

This topology makes N into a compact 75 and we can embed N into SN using
the mapping h(n) = U, ( = the trivial ultrafilter “fixed” at n). This “copy” of N
is dense in BN, so BN is a compactification of N. It can be shown that “this
OGN is the largest compactification of N (and therefore equivalent to the SN
constructed earlier).

The free ultrafilters in N are the points in SN — N. Since |fN| = 2¢ and there
are only countably many trivial ultrafilters I4,, we conclude that there are 2¢ free
ultrafilters in N

443



It turns out that the z-ultrafilters in a Tychonoff space X are associated in a natural 1 — 1
way with the maximal ideals of the ring C'(X), so it is also possible to construct X by
putting an appropriate topology on the set

BX = {M : M is amaximal ideal in C(X)}

It turns out that if p € X, then M, ={f € C(X) : f(p) =0} is a (trivial) maximal
ideal and the mapping h(p) = M, gives a natural way to embed X in 5X. X is not
compact iff there are maximal ideals in C'(X) that are not of the form M/, (that is,
nontrivial maximal ideals) and these are the points of 56X — X.

More information about these constructions can be found in the beautifully written
classic Rings of Continuous Functions (Gillman & Jerison).

In this section, we give one alternate construction of SX in detail. It is essentially the
construction used by Tychonoff, who was the first to construct X for arbitrary Tychonoff
spaces. In his paper Uber die topologische Erweiterung von Raumen (Math. Annalen 102(1930),
544-561) Tychonoff also established the notation “3.X.” The construction involves a specially
chosen embedding of X into a cube.

Suppose X is a Tychonoff space. For each f € C*(X), choose a closed interval I; C R such
that ran(f) C Iy. If F C C*(X) is a family that F separates points from closed sets, then
according to Theorem V1.4.10 the evaluation map er : X — [[,.-I; given by ex(z) = f(z) is

an embedding. In this way, every such family 7 C C*(X') generates a compactification
(cler[X],er) of X. In fact, the following theorem states that every compactification of X can
be obtained by choosing the correct family F C C*(X).

Theorem 7.1 Every compactification of X can be achieved using the construction in the
preceding paragraph. More precisely, if Y is a compactification containing X (with embedding
i), then there exists a family 7 C C*(X) such that F separates points and closed sets and

(CI e]—'[X]: 6]:) = (Y: 7’)

Proof Let F={f e C*(X): f can be continuously extended to ? :Y — Iy}, (Note that
? is unique if it exists — since any two extensions would agree on the dense set X.)

The family F separates points from closed sets:

If F is a closed set in X and x ¢ F', then there is a closed set K CY with
x ¢ KNX =F. By complete regularity there is a continuous function g : Y — [0, 1]
such that g(x) = 0and g|K = 1. Since Y is compact, g must be bounded and therefore
f=g/X € C*(X). Moreover, f € F (because g is the required extension). Clearly,

f(z) =g(x) =0¢clf[F] Cclg[K] = {1}.

Therefore (cl ex[X], ex) is a compactification of X.

Define b : Y — [[;c 1 by h(p)(f) = 7 (p). Then h is continuous and, for z € X, h(z)(f)
=7 () = f(z) = ex(x)(f). Therefore h[X] =ez[X]and hoi=er.
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Clearly, ex[X] = h[X] C h[Y] and h[Y] is compact Hausdorff, so clex[X] C A[Y]. On the
other hand, by continuity, h[Y] = hlcl X] C cl h[X] = clex[X]. Therefore h[Y] = cler[X].

H——  wcle [H]=III

F f
r

Since h : Y — clexs[X] is continuous and onto, (Y,4) > ((clex[X], ex)).
We claim hisalso 1 — 1:

If p+#q €Y, then there is a continuous map ¢:Y — [0,1] such that g(p) =0 and

glg)=1.Then f=g/XeF and T (p)=gp)#9(@) =T (qg).  Therefore
h(p)(f) # h(a)(f), S0 h(p) # h(q).

Since Y is compact and cl ex[X] is Hausdorff, i is a homeomorphism and, as mentioned above,
hoi=eg. Therefore (Y,i) ~ ((clex[X], ex).
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Theorem 7.2 Suppose F C F' C C*(X) and that both F and F' separate points from closed
sets. Then (clexs/[X],er/) > (cler[X], er).

cle .I:‘:J':nlf
feF

h

X rcIeF[KJE = {p
feF

For p € cles/[X], define h(p) € cler[X] by h(p)(f) = p(f) = ps. (Informally, h(p) is just the
result of deleting from p all the coordinates corresponding to functions in ' — F.) Clearly
er = hoer SO (Cl 6]:![X],€]:/) > (Cl 6]:[X],6]:). °

Corollary 7.3 A Tychonoff space X has a largest compactification.

Proof Combining Theorems 7.1 and 7.2, we see that the largest compactification corresponds to
taking F = C*(X) in the preceding construction. e

Of course we can do the construction (from the paragraph preceding Theorem 7.1) simply using
F =C*(X) in the first place (that is what Tychonoff did) and define the resulting
compactification to be 5X. We would then need to prove that it has one of the features that make
it interesting — for example, the Stone Extension Property. Instead, using Theorems 7.1 and 7.2,
what we did was first to argue that 7 = C*(C') produces the largest compactification of X; then
Theorem 5.7 told us that the compactification we constructed is the same as our earlier 5X.
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Exercises
E1. Show that the Sorgenfrey line (Example 111.5.3) is not locally compact.

E2. Suppose X is a locally compact 75 space that is separable and not compact. Show
that the one-point compactification X* is metrizable.

E3. Suppose C' and K are disjoint compact subsets in a locally compact Hausdorff space
X. Prove that there exist disjoint open sets U © C' and V' O K such that clU and cl V/
are compact.

E4. a) Let K be a compact subspace of a Tychonoff space X. Prove that for each g € C'(K)
thereisan f € C(X) that g = f|K — that is, every continuous real valued function on K can be
extended to X. (A subspace of X with this property is said to be C'-embedded in X. Compare
Definition 6.2; for a compact since K is compact, “C-embedded” and “C*-embedded” mean
the same thing.)

b) Suppose A is a dense C'-embedded subspace of a Tychonoff space X. If f € C(X) and
f(xz) =0 for some x € X, prove that f(a) =0 for some a € A. Hint: if f| A is never 0, then
+€0(A)

¢) Every bounded function f : N — R has a continuous extension f? : BN — N. In particular,
the function f(n) =1 can be extended. If p € BN — N, what is f°(p)? Why does this not
contradict part b) ?

E5. Prove that |SR| = |5Q| = 2¢.

E6. Prove that a Tychonoff space X is connected iff 53X is connected. Is it true that X is
connected iff every compactification of X is connected?
E7. a) Show that SR — R has two components A and B.

b) [0,00) has a limit point in SR — R, say intheset B. Is 3[0,1) = B ?

E8. Let U/ be a free ultrafilter in N.

a) Choose a pointoc € SN —Nandlettf = {A CN: o € clgyA}. Showthati/isa
free ultrafilter on N.

b) Using the ultrafilter Z/ from a), construct the space 3 as in Exercise IX.E8. Prove that
Y is homeomorphic to N U {o} with the subspace topology from SN.
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c) Define an equivalence relation on SN — N by = ~ y if NU {z} is homeomorphic to
NU{y}. For x € SN — N, let [z] be the equivalence class of z. Prove that each equivalence
class satisfies |[x]| < ¢ (so there must be 2¢ different equivalence classes.)

Note: Part c) says that, in some sense, there are 2¢ topologically different points o € SN — N.

By part a), each of these points ¢ is associated with a free ultrafilter / in N that determines the
topology on N U {o}. Therefore there are 2¢ “essentially different” free ultrafilters ¢/ in N.
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Chapter X Review

Explain why each statement is true, or provide a counterexample.

1. Every Tychonoff space has a one-point compactification.

2. If X is Tychonoff and 5X is first countable, then | BX | < c.

3. R has a compactification of cardinal 2.

4. R has a compactification Y D R where Y — R is infinite and Y is metrizable.

5. Suppose that X is a compact Hausdorff space and that each x € X has a metrizable
neighborhood (i.e., X is locally metrizable). Then X is metrizable.

6. Let N* be the 1-point compactification of N. Every subset of N* is Borel.
7. BN — N is dense in GN.

8. If X = [0, wy + wp), then BX = [0, wy + wy.

9. Every point in SN is the limit of a sequence from N.

10. The one-point compactification of R is completely metrizable.

11. If X and Y are locally compact Hausdorff spaces with homeomorphic one-point
compactifications, then X must be homeomorphic to Y.

12. Let n € N. All n-point compactifications of the Tychonoff space X are equivalent.
13. Every subset of R is C*-embedded in R.

14. If X is compact Hausdorff and a € X, then (X — {a}) = X.

15. Every compact Hausdorff space is separable.

16. A metric space (X, d) has a metrizable compactification iff X is separable.

17. Q = U n F for some open U and closed £ in R.

449



