True or false:

In a row reduction: if the original augmented matrix has no column of zeros, then the rref cannot have a column of zeros.

True. If you look at any nonzero column, you could use row replacements to turn all the nonzero elements in the column into)' except for one. When a column is reduced to having exactly one nonzero element, there ie no ERO that could be used to convert that last number into a 0 .

Whenever a system has free variables, then the system has infinitely many solutions.

False: the system might be inconsistent. See the Existence and Uniqueness Theorem below (discussed in Lecture 2)

Existence and Uniqueness Theorem

Let A be the augmented matrix for a system of linear equations.

- The system is inconsistent if and only if
a row with form $\left[\begin{array}{lllll}0 & 0 & 0 & 0 & \ldots\end{array}\right]$, where $b \neq 0$, appears in an echelon form of A
(equivalently, if and only if the row $\left[\begin{array}{lllll}0 & 0 & 0 & \ldots & 1\end{array}\right]$ appears in the row reduced echelon form of A)
- Otherwise, the system is consistent, and either i) there is a unique solution (when there are no free variables) or
ii) there are infinitely many solutions
(when one or more variables are free)

What are the solutions of a system if the augmented matrix is
$\left[\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}\right]$

The system has one equation, 5 unknowns; the matrix is already in rref One basic variable, x_{1}; all other variables are free.

Solutions (infinitely many) $\quad x_{1}=6-2 x_{2}-3 x_{3}-4 x_{4}-5 x_{5}$ Parametric solution, expressing basic variable in terms of free variables (the "parameters")

What are the solutions of a system if the augmented matrix is

$$
\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 2 & 1 \\
0 & 0 & 1 & 1 & 0 & 3 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \text { (an echelon fom, but not rref) }
$$

Row reduce: $\left[\begin{array}{llllll}1 & 1 & 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right] \sim\left[\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$
Solutions (infinitely many) $\quad\left\{\begin{array}{l}x_{1}=1-x_{2} \\ x_{2} \text { is free } \\ x_{3}=3-x_{4} \\ x_{4} \text { is free } \\ x_{5}=0\end{array}\right.$

What are the solutions of a system if the augmented matrix is
$\left[\begin{array}{llllll}1 & 1 & 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

No solutions: 3rd row shows the system is inconsistent.

Properties of addition and scalar multiplication of vectors

(from textbook)
If $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ are vectors in $\mathbb{R}^{\underline{n}}$ and c, d are scalars:

| $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$ | $c(\boldsymbol{u}+\boldsymbol{v})=c \boldsymbol{u}+c \boldsymbol{v}$ |
| :---: | :--- | :--- | :--- |
| $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$ | $c(d \boldsymbol{u})=(c d) \boldsymbol{u}$ |
| $\boldsymbol{u}+\mathbf{0}=\mathbf{0}+\boldsymbol{u}=\boldsymbol{u}$ | $(c+d) \boldsymbol{u}=c \boldsymbol{u}+d \boldsymbol{u}$ |
| $\boldsymbol{u}+(-\boldsymbol{u})=-\boldsymbol{u}+\boldsymbol{u}=\mathbf{0}$ | $1 \boldsymbol{u}=\boldsymbol{u}$ |

Every vector in \mathbb{R}^{2} can be expressed as a linear combination of $\boldsymbol{v}_{\mathbf{1}}$ and $\boldsymbol{v}_{\boldsymbol{2}}$. For example, it looks (approximately) like $\quad w=\frac{5}{2} v_{1}-\frac{1}{2} v_{2}$

In the figure, $\boldsymbol{v}_{\boldsymbol{1}}$ and $\boldsymbol{v}_{\mathbf{2}}$ can be used to create a "grid" of parallel lines: a new kind of "graph paper" where the "grid lines" are not perpendicular. On this "graph paper", wis located at $\left(\frac{5}{2},-\frac{1}{2}\right)$

These two vectors \boldsymbol{u} and \boldsymbol{v} in \mathbb{R}^{3} lie in a plane in \mathbb{R}^{3} (only a limited piece of which is pictured). Analogous to the preceding picture, \boldsymbol{u} and \boldsymbol{v} can be used to make a "coordinate grid" ("graph paper") on this plane.

The points in this plane are all the possible linear combinations of \boldsymbol{u} and \boldsymbol{v}; So $\operatorname{Span}\{\boldsymbol{u}, \boldsymbol{v}\}$ is the set of all points in this plane.

In particular, Span $\{u, v\}$ contains the line in \mathbb{R}^{3} v and 0 . See the figure below.
through u and 0 and the line through -

Question: (in \mathbb{R}^{4})

$$
\text { Is }\left[\begin{array}{r}
1 \\
2 \\
-1 \\
4
\end{array}\right] \text { in } \quad \operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
0 \\
1 \\
2
\end{array}\right],\left[\begin{array}{r}
-1 \\
3 \\
-1 \\
2
\end{array}\right]\right\} ?
$$

That is, does the vector equation
$x_{1}\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 2\end{array}\right]+x\left[\begin{array}{r}-1 \\ 3 \\ -1 \\ 2\end{array}\right]=\left[\begin{array}{c}2 x_{1}-x_{2} \\ 3 x_{2} \\ x_{1}-x_{2} \\ 2 x_{1}+2 x_{2}\end{array}\right]=\left[\begin{array}{r}1 \\ 2 \\ -1 \\ 4\end{array}\right]$ have a solution?
That is, does the system of linear equations

$$
\left\{\begin{aligned}
2 x_{1}-x_{2} & =1 \\
3 x_{2} & =2 \\
x_{1}-x_{2} & =-1 \\
2 x_{1}+2 x_{2} & =4
\end{aligned} \quad\right. \text { have a solution? }
$$

We solve the vector equation by solving the corresponding linear system (they are equivalent) and we do that by row reducing the augmented matrix

Augmented Matrix $=$

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
2 & -1 & 1 \\
0 & 3 & 2 \\
1 & -1 & -1 \\
2 & 2 & 4
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & -1 & -1 \\
0 & 3 & 2 \\
2 & -1 & 1 \\
2 & 2 & 4
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & -1 & -1 \\
0 & 3 & 2 \\
0 & 1 & 3 \\
0 & 4 & 6
\end{array}\right]} \\
& \sim\left[\begin{array}{rrr}
1 & -1 & -1 \\
0 & 1 & 3 \\
0 & 3 & 2 \\
0 & 4 & 6
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & -1 & -1 \\
0 & 1 & 3 \\
0 & 0 & -7 \\
0 & 0 & -6
\end{array}\right] \swarrow \text { INCONSISTENT }
\end{aligned}
$$

The system of linear equations has no solution, so the equivalent vector equation has no solution.

That says: $\left[\begin{array}{r}1 \\ 2 \\ -1 \\ 4\end{array}\right] \quad$ is not in $\operatorname{Span}\left\{\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{r}1 \\ 2 \\ -1 \\ 4\end{array}\right]\right\}$

In general

$$
x_{1} v_{1}+\ldots+x_{p} v_{p}=b \quad \text { (a vector equation) }
$$

has the same solutions as the linear system whose augmented matrix is

$$
\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & \left.v_{p} \mid b\right]
\end{array}\right.
$$

As illustrated above:

$$
\begin{gathered}
\boldsymbol{v}_{\mathbf{1}}
\end{gathered} \boldsymbol{v}_{\mathbf{2}} \quad \boldsymbol{b}
$$

has the same solutions as $\left\{\begin{aligned} 2 x_{1}-x_{2} & =1 \\ 3 x_{2} & =2 \\ x_{1}-x_{2} & =-1 \\ 2 x_{1}+2 x_{2} & =4\end{aligned}\right.$ for which the augmented matrix is

$$
\begin{aligned}
& \begin{array}{ccc}
{\left[\begin{array}{ccc}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{b}] \\
\downarrow & \downarrow & \downarrow
\end{array}\right]}
\end{array} \\
& {\left[\begin{array}{rrr}
2 & -1 & 1 \\
0 & 3 & 2 \\
1 & -1 & -1 \\
2 & 2 & 4
\end{array}\right]}
\end{aligned}
$$

