
Homework set 10 - due Monday 12/02/24

Math 5047 – Renato Feres

For the remainder of the course we will use the text Differential Geometry by Loring W. Tu. The Olin library has the

pdf for free download. This assignment is a work in progress. I expect to make changes which, however, should not

(greatly) affect the exercises to be turned in.

Turn in problems 1(d), 2, 3(c) 5(b,c).

1. Gauss-Bonnet for hypersurfaces. Let M be an oriented hypersurface in R2m+1. (Thus M is a smooth manifold

of even dimension n = 2m.) Let N be a unit normal vector field on M compatible with the orientation. Let

Sv := −Dv N be the shape operator of M , where D is the Euclidean connection in Rn+1. Recall that Sp is a

symmetric operator on Tp M at each p ∈ M . Its eigenvalues k1(p), . . . ,kn(p) are the principal curvatures of M at

p. The Gauss curvature of M at p is defined as the product K (p) = k1(p) . . .kn(p). Thus K is the determinant of

the shape operator.

The purpose of this exercise (mostly reading) is to prove (modulo the statement of the Poincaré-Hopft theorem)

the Gauss-Bonnet theorem for hypersurfaces of even dimension n:∫
M

Kω= 1

2
Vol

(
Sn)

χ(M). (1)

Here ω is the volume form on M .

The Gauss map of the hypersurface is the map g : M → Sn defined by g (p) = N (p), where the normal vector

N (p) can be regarded as a point in the unit sphere once we translate it to the origin of Euclidean space.

Finally observe that the two affine subspaces Tp M and Tg (p)Sn of Rn+1 are translates of each other. Thus the

differential d gp : Tp M → Tg (p)Sn can be regarded as a linear map on the same vector space and its determinant

makes sense.

(a) Check that the Gauss curvature at p equals the determinant of the differential of g . (Note: with the identi-

fication of Tp M and Tg (p)Sn , the differential d gp can be identified with the negative of the shape operator

Sp . So the determinant of Sp and the determinant of d gp differ by (−1)n . But as n is even, the two deter-

minants are the same.)

(b) Letω ∈Ωn(M) denote the volume form on M and deg(g ) the degree of the Gauss map. Let us recall here the

definition of degree. Let g : M → S be a smooth map between compact, connected oriented manifolds of

the same dimension n. Let H n(M) and H n(S) be the top degree de Rham cohomology groups. By definition

H n(M) =Ωn(M)/dΩn−1(M). It can be shown (using Stokes’s theorem) that the map

[ω] ∈ H n(M) 7→
∫

M
ω ∈R

is well-defined. It is also easy to check that this map is surjective. A deeper result (see, for example, From

Calculus to Cohomology: de Rham cohomology and characteristic classes by Madsen and Tornehave) is that



this map is an isomorphism. We then define the degree of g by the commutative diagram

H n(S) H n(M)

R R

g∗

∼= ∼=
deg(g )

Thus ∫
M

g∗ω= deg(g )
∫

S
ω.

The degree of g only depends on the homotopy class of g . A theorem from differential topology states the

following. Choose a regular point p of the smooth map g and let q1, . . . , qℓ be the inverse image of p. Let

Ind(g , qi ) be either 1 or −1 depending on whether d gqi is orientation preserving or reversing. Then

deg(g ) = ∑
q∈g−1(p)

Ind(g , q).

(See Theorem 11.9, page 101, of the above cited book.) In particular, the degree of g is an integer.

If we now take ω to denote the volume form on M , show that∫
M

Kω= deg(g )Vol(Sn).

Note: by the change of variables in integration formula∫
M

Kω=
∫

M
det(d gp )ω=

∫
M

g∗ωS ,

where ωS is the volume form on Sn .

(c) In this and the next item, we show that the degree of the Gauss map g is half the Euler characteristic of M .

From this observation we obtain the Gauss-Bonnet formula for hypersurfaces:∫
M

Kω= 1

2
Vol

(
Sn)

χ(M).

Let u be a point is Sn such that both u and −u are regular values of g . (This is possible: if π : Sn → RP n is

the projection map, pick a regular value of π ◦ g .) Define the vector field X ∈ X(M) such that X (p) is the

orthogonal projection of −u to Tp M :

X (p) :=−u + (
u ·N (p)

)
N (p).

A point p ∈ M is a singular point (zero) of X if and only if u = (u ·N (p))N (p)or, equivalently, g (p) = ±u.

In particular, u is perpendicular to Tp M . Since u and −u are regular values of g and M is compact, X has

only finitely many zeros. Observe that, at a zero p of X where g (p) =±u,

d Xp w =±(
u ·d gp w

)
u ±d gp w

for all w ∈ Tp M . But since g and N are really the same (up to translation) we have d gp w = Dw N ∈ Tp M so

u ·d gp w = 0. Therefore

d Xp =
+d gp if g (p) = u

−d gp if g (p) =−u.
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In particular, d Xp maps Tp M into itself (at a zero point p). It follows that

det
(
d Xp

)= (±1)ndet
(
d gp

)= det
(
d gp

)
since n is even. In class, we introduced the index of a vector field in dimension n = 2 in a somewhat infor-

mal way. A more precise definition (using the above notion of degree) shows that, if d Xp is an isomorphism

(which is the case here since g (p) is a regular value), then

Ind(X , p) = sign
(
det

(
d Xp

))
.

We conclude that Ind(X , p) =+1 if d gp preserves orientation and −1 if d gp reverses orientation. The index

Index(X ) is the sum of the indices of X at all zeros. Since the zeros of X are located at the inverse images

under g of two regular values ±u we conclude that

Index(X ) = 2deg(g ).

We conclude that ∫
M

Kω= 1

2
Index(X )Vol(Sn).

But according to the Poincaré-Hopf theorem (which we discussed briefly in class), the index of X equals

the Euler characteristic χ(M).

Our discussion of degree and index of vector fields has been very abbreviated. (This is a subject in dif-

ferential topology that belongs to Geometry-Topology II.) For more on this topic and Gauss-Bonnet for

hypersurfaces, see the classic Differential Topology by Victor Guillemin and Alan Pollack.

(d) Verify that Equation (1) holds when M is a sphere of radius R.

Solution.

(a) This is immediate since the determinant of the shape operator is the product of the principal curvatures.

(b) Nothing to do.

(c) Nothing to do.

⋄

2. The pfaffian of an even-dimensional hypersurface. In Homework 9, Problem 8 we defined the pfaffian of a

antisymmetric linear transformation of an even-dimensional vector space. Here we use it to define the Euler

form and compute it for a hypersurface. You may want to refer to the solutions to that problem when answering

the exercises enumerated below.

Let R be the curvature tensor of a connection ∇ on an oriented vector bundle E → M of even rank r . (We

will shortly assume that E = T M .) We assume the connection is metric for a given Riemannian metric on E . If

ξ1, . . . ,ξr is a local, positive orthonormal frame of sections of E and X ,Y ∈X(M), we define the following ordinary

2-forms on M :

Ωi j (X ,Y ) := 〈
ξi ,R(X ,Y )ξ j

〉
.

We thus obtain a matrix Ω with entries in Ω2(M). This matrix is antisymmetric due to the symmetries of R. It

thus makes sense to define a differential form Pf(Ω) ∈Ωr (M).
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(a) Check that Pf(Ω) does not depend on the choice of local orthonormal frame. Therefore it defines a global

smooth form on M . Refer to item (c) of Problem 8 in Homework 9.

Note: we obtain directly from the above definition of Ωi j the following change of frame equation. Let

ξ′k = ∑
i Fkiξi be a new local, positive orthonormal frame and Ω′

kℓ the curvature forms in this new frame.

Then there is a smooth function (locally defined) F taking values in SO(r ), where r is the rank of E , so that

Ω′ = FΩF ⊺ holds.

(b) Let S denote the shape operator (page 235 of Lee’s text) of a hypersurface M ⊂Rn+1. Let R be the curvature

tensor of M . Show that

〈R(W, X )Y , Z 〉 = 〈Z ,SW 〉〈Y ,SX 〉−〈Y ,SW 〉〈Z ,SX 〉,

where W, X ,Y , Z ∈X(M). (Use the Gauss Equation, Theorem 8.5, page 230, in Lee’s text.)

(c) Let e1, . . . ,en be a local, positive orthonormal frame consisting of eigenvectors of S (recall that the shape

operator is symmetric) with eigenvalues (principal curvatures) k1, . . . ,kn . Note that these ki are smooth

real-valued functions. Let θ1, . . . ,θn be the dual frame, so that θi (e j ) = δi j . Show that

Ωi j := 〈ei ,R(·, ·)e j 〉 = ki k jθi ∧θ j .

(d) Let m = n/2. Using the notation of Problem 8, Homework 9 we write

α := ∑
i< j
Ωi j ei ∧e j = 1

2

∑
i , j
Ωi j ei ∧e j .

By the definition of the pfaffian given in that assignment,

αm =α∧·· ·∧α︸ ︷︷ ︸
m

= m!Pf(Ω)e1 ∧·· ·∧e2m .

Show that

Pf(Ω) = (2m)!

2mm!
Kω

where K =∏
ki is the Gauss curvature and ω is the volume form.

Comparing the above expression for the pfaffian with the Gauss-Bonnet formula for hypersurfaces we see that

the integrand in the latter formula is, in fact, the pfaffian of curvature.

3. Induced connection on a pullback bundle. (See section 22.10, page 210, of Loring Tu’s text.) Let π : E → M be a

smooth vector bundle of rank r over the manifold M . Let f : N → M be a smooth map and consider the pullback

vector bundle f ∗E . (This is defined in Section 20.4, page 177.) Given a connection ∇ on E , we wish to define a

connection ∇ on f ∗E that satisfies the following properties:

(a) If e is a smooth section of E and f ∗e denotes the pullback section ( f ∗e)(q) := (
q,e( f (q))

)
then

∇u
(

f ∗e
)= (

q,∇dfq ue
)

for any u ∈ Tq N . (Here dfq u = ( f∗)q u : Tq N → T f (q)M is the standard tangent map.)

(b) The fundamental properties for a connection. (Definition 10.1, page 72.)

Show the following:

(a) The above properties uniquely specify a connection on f ∗E .
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(b) If e1, . . . ,er is a local frame defined on an open set U ⊆ M and ωi j are the connection 1-forms for ∇ relative

to this frame, then the pull-back ωi j := f ∗ωi j are the connection 1-forms for ∇ relative to the local frame

f ∗e1, . . . , f ∗er on f −1(U ).

(c) With the same notation as in the previous item, let Ωi j be the curvature 2-forms for ∇ relative to the local

frame ei . ThenΩi j = f ∗Ωi j are the curvature 2-form for ∇ relative to the pullback frame.

(d) Let R denote the curvature tensor of ∇ and R the curvature tensor of ∇. Show that

Rq (u, v)ξ= (
q,R f (q)

(
dfq u,dfq v

)
ξ
)

for u, v ∈ Tq N and ξ= (q,ξ) ∈ ( f ∗E)q .

Further comments: We may consider the vector bundle Λk (T ∗M)⊗E over M , whose sections are differential

k-forms with coefficients in E . (See the next problem.) For such a form µ we define its pullback under f as

( f ∗µ)q (v1, . . . , vk ) = (
q,µ f (q)

(
d fq v1, . . . ,d fq vk

))
.

If µ=α⊗ξ is the tensor product of an ordinary differential form on M and a section of E , then the definition just

given amounts to f ∗(α⊗ξ) = ( f ∗α)⊗( f ∗ξ), where f ∗α is the ordinary pullback of differential forms and f ∗ξ is as

defined at the beginning of this exercise. If we think of the curvature tensor R as a section ofΛ2(T ∗M)⊗End(E),

then under this definition R = f ∗R and Rq (v1, v2)ξq = ( f ∗R)q (v1, v2)( f ∗ξ)q . Also note that the definition of ∇
implies ∇( f ∗ξ) = f ∗(∇ξ).

Solution.

(a) Let ξ be a section of f ∗E and e1, . . . ,er a local frame of E on the open set U ⊂ M . On f −1(U ), we may express

ξ in terms of the pullback frame e i := f ∗ei : ξ=∑
i hi e i . Then a connection ∇ having the desired properties

must satisfy:

∇uξ=
∑

i

(
(uhi )e i (q)+hi (q)∇ue i

)=∑
i

(
(uhi )e i +hi (q)

(
q,∇dfq uei

))
for all u ∈ Tq N and q ∈ f −1(U ). This implies uniqueness. We need to check that this is well-defined (i.e.,

independent of the local frame) and is indeed a connection.

To verify that ∇ is well-defined, let ξ1, . . . ,ξr be another choice of local frame on U . Let the change of frame

matrix-valued function be denoted A = (
ai j

)
: U → GL(r,R), so that ξ j = ∑

i ai j e j . The change of frame

matrix-valued function on f −1(M) for the pullback frames is then A := A ◦ f = (
ai j ◦ f

)
.

A section ξ of f ∗E can then be expressed in both frames at any q ∈ f −1(U ) as:

ξ(q) =∑
j

g j (q)ξ j (q) =∑
i , j

g j (p)ai j (q)e i (q).

We observe that

∇u
∑

j
g jξ j =∇u

∑
i , j

g j ai j e i

=∑
i , j

(
u

(
g j ai j

)
e i (q)+ g j (q)ai j (q)∇ue i

)
=∑

i , j
(ug j )ai j (q)e i (q)+∑

i , j
g j (q)

[(
uai j

)
e i (q)+ai j (q)∇ue i

]
=∑

j

[
(ug j )ξ j (q)+ g j (q)∇uξ j

]
.
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Thus we have ∑
i

(
(uhi )e i (q)+hi (q)∇ue i

)=∑
j

(
(ug j )ξ j (q)+ g j (q)∇uξ j

)
.

Therefore the definition does not depend on the choice of local pullback frame.

It is clear from the expression for ∇ given in terms of a pullback frame that ∇uξ is C∞(M)-linear (linear over

functions) in u is R-linear in ξ. The Leibniz property also holds:

∇u(gξ) =∑
i

(
u(hi g )e i (q)+hi (q)g (q)∇ue i

)
=∑

i
(ug )hi (q)e i (q)+ g (q)

∑
i

(
(uhi )e i (q)+hi (q)∇ue i

)
= (ug )ξ(q)+ g (q)∇uξ.

(b) Let ωi j be the connection 1-forms for ∇ relative to the pullback frame f ∗ei . Then

∑
i
ωi j (u)e i (q) =∇ue j =

(
q,∇dfq ue j

)
=

(
q,

∑
i
ωi j (dfq u)ei ( f (q))

)
=∑

i

(
f ∗ωi j

)
(u)e i (q).

We conclude that ωi j = f ∗ωi j .

(c) (HW)

(d) It is enough to check the relation for ξ= E j . In this case

Rq (u, v)e j (q) =∑
i
Ωi j (u, v)e i (q) =

(
q,

∑
i
Ωi j (dfq u,dfq v)ei ( f (q))

)
= (

q,R f (q)(dfq u,dfq v)e j ( f (q))
)

.

⋄

4. More on vector bundle-valued differential forms. Let π : E → M be a smooth vector bundle over the manifold

M . Recall that differential k-forms on M with coefficients in E are defined as sections of the vector bundle

Λk (T ∗M)⊗E . The space of such sections will be denoted Ωk (M ,E) := Γ(
Λk (T ∗M)⊗E

)
. In this definition, E

may be replaced with other vector bundles obtained from E . We are especially interested in the bundleΛ∗(E∗),

that is, the exterior algebra bundle of alternating forms on E . This is the vector bundle over M whose fiber over

p ∈ M is the exterior algebraΛ∗
(
E∗

p

)
=⊕

kΛ
k
(
E∗

p

)
, where E∗

p is the dual vector space to Ep . An element

µ ∈Ωk
(
M ,Λℓ(E∗)

)
:= Γ

(
Λk (T ∗M)⊗Λℓ(E∗)

)
will be called a (k,ℓ)-differential form. Note that at any p ∈ M and given v1, . . . , vk ∈ Tp M ,

µp (v1, . . . , vk ) ∈Λℓ
(
E∗

p

)
.

Thus it makes sense to write µp (v1, . . . , vk )(u1, . . . ,uℓ) ∈R (or C if E is complex), where the ui are elements of Ep ,

and the resulting number is anti-symmetric separately in the vi and in the u j arguments.

For example, if E is Riemannian, with metric 〈·, ·〉 and ∇ is a metric connection on E , then

Rp (v1, v2)(u1,u2) := 〈u1,R(v1, v2)u2〉p

defines a section R ∈ Ω2
(
M ,Λ2 (E∗)

)
, where R is the curvature tensor of ∇. Given a local orthonormal frame
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e1, . . . ,er of E , where r is the rank of the vector bundle, we have already employed the notation

Ωi j (v1, v2) := R(v1, v2)(ei ,e j ).

This is a locally defined ordinary 2-form on M .

If µ is a differential (r, j )-form on M and ν is a differential (s,k)-form, we define their wedge product as the

(r + s, j +k)-form µ∧ν as follows:

(µ∧ν)(v1, . . . , vr+s ) := 1

r !s!

∑
σ∈Sr+s

sign(σ)µ(vσ(1), . . . , vσ(r ))∧ν(vσ(r+1), . . . , vσ(r+s)).

Notice the need for the wedge product symbol on the right-hand side of this identity. This is the wedge product

on the exteriorΛ∗(E∗).

(a) Show that if µ is a (r, i )-form and ν is an (s, j )-form, then

µ∧ν= (−1)r s+i jν∧µ.

(b) Show that if µ=α⊗ξ and ν=β⊗η, then µ∧ν= (α∧β)⊗(ξ∧η). Here α,β are ordinary forms on M and ξ,η

are sections ofΛ∗(E∗).

(c) Suppose E is an oriented Riemannian vector bundle over M of rank 2m. (The even parity of the rank is not

required in this part of the exercise, but will be needed later.) Let e1, . . . ,e2m be a local positive (relative to

the given orientation) orthonormal frame for E over an open set U ⊂ M . Let ϵ1, . . . ,ϵ2m be the dual frame,

so that ϵi = 〈ei , ·〉. Then ω= ϵ1 ∧·· ·∧ϵ2m is the Riemannian volume form on E .

i. Argue that ω is globally defined.

ii. Show that ω is parallel: ∇ω= 0.

(d) We define the Chern-Euler form e ∈Ω2m
(
M ,Λ2m (E∗)

)
as

e = Rm

m!(2π)m ,

where R is the curvature form defined above. (Note: this is a frame-independent version of the curvature

matrix previously defined.) I am writing the exterior power R∧·· ·∧R as Rm .

Show that

e = Pf

(
Ω

2π

)
⊗ω.

HereΩ is the curvature matrix relative to a choice of positive orthonormal frame, whose entries are:

Ωi j (v1, v2) =Ω(v1, v2)(ei ,e j ).

In other words,

Ω(v1, v2) = 1

2

∑
i , j
Ωi j (v1, v2)ϵi ∧ϵ j =

∑
i< j
Ωi j (v1, v2)ϵi ∧ϵ j .

(Suggestion: use the definition of the Pfaffian given in Exercise 1 of Homework set 9.)

Note: the form ω trivializesΛ2m(E∗). This allows us to identity e = Pf(Ω/2π), which we do going forward.

Solution.
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(a) Let η be the permutation

η(1) = r +1, η(2) = r +2, . . . , η(s) = r +2, η(1+ s) = 1, η(2+ s) = 2, . . . , η(r + s) = r,

which has sign sign(η) = (−1)r s . First note that

(µ∧ν)(v1, . . . , vr+s ) := 1

r !s!

∑
σ∈Sr+s

sign(σ)µ(vσ(1), . . . , vσ(r ))∧ν(vσ(r+1), . . . , vσ(r+s))

= (−1)i j 1

r !s!

∑
σ∈Sr+s

sign(σ)ν(vσ(r+1), . . . , vσ(r+s))∧µ(vσ(1), . . . , vσ(r ))

= (−1)i j 1

r !s!

∑
σ∈Sr+s

sign(σ)ν(vσ(η(1)), . . . , vσ(η(s)))∧µ(vσ(η(1+s)), . . . , vσ(η(r+s)))

= (−1)i j+r s 1

r !s!

∑
σ∈Sr+s

sign(σ)ν(vσ(1), . . . , vσ(s))∧µ(vσ(r+1), . . . , vσ(r+s))

= (−1)i j+r s (ν∧µ)(v1, . . . , vr+s )

(b) We may assume that µ is an (r, i )-form and ν is an (s, j )-form. Then

(µ∧ν)(v1, . . . , vr+s ) = 1

r !s!

∑
σ∈Sr+s

sign(σ)µ(vσ(1), . . . , vσ(r ))∧ν(vσ(r+1), . . . , vσ(r+s))

= 1

r !s!

∑
σ∈Sr+s

sign(σ)
(
α(vσ(1), . . . , vσ(r ))ξ

)∧ (
β(vσ(r+1), . . . , vσ(r+s))η

)
= 1

r !s!

∑
σ∈Sr+s

sign(σ)α(vσ(1), . . . , vσ(r ))β(vσ(r+1), . . . , vσ(r+s))ξ∧η

= (α∧β)(v1, . . . , vr+s )ξ∧η
= (

(α∧β)⊗ (ξ∧η)
)

(v1, . . . , vr+s ).

We conclude that µ∧ν= (α∧β)⊗ (ξ∧η).

(c) Let ω be the Riemannian volume form on E , as defined locally above.

i. If e1, . . . ,e2m is another local, positive orthonormal frame on some neighborhood U that overlaps with

U , then on their intersection the change of frame matrix A lies in SO(2m). It follows that

e1 ∧·· ·∧e2m = det(A)e1 ∧·· ·∧e2m = e1 ∧·· ·∧e2m .

Thusω does not depend on the choice of the positive orthonormal frame. Therefore it defines a global

form.

ii. Let v ∈ Tp M for p ∈ M and γ(t ) a smooth curve satisfying γ(0) = p and γ′(0) = v . Let e1(t ), . . . ,e2m(t )

be parallel sections of E along γ, so that ∇ei
d t (0) = 0. Then

∇vω= ∇
d t

∣∣∣∣
t=0

ϵ1(t )∧·· ·∧ϵ2m(t ) =
2m∑
i=1

ϵ1 ∧·· ·∧ ∇ϵi

d t

∣∣∣∣
t=0

∧·· ·∧ϵ2m .

But if the ei (t ) are parallel along γ, then so are the ϵi (t ). This follows from the fact that the connection

is metric. Therefore ∇vω= 0.

(d) As noted, we can writeΩ= 1
2

∑
i j Ωi j ⊗ϵi ∧ϵ j . Using the definition of the Pfaffian from Homework 9 (1), we
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readily obtain

Rm = m!Pf(Ω)⊗ϵ1 ∧·· ·∧ϵ2m = m!Pf(Ω)⊗ω. (2)

The expression for the Chern-Euler form in terms of the Pfaffian follows from this identity.

Note 1: We have already seen (homework 9) that Pf(Ω) does not depend on the choice of positive local orthonormal

frame ei , so this differential 2m-form is globally defined on M . Equation 2 makes this explicit.

Note 2: We will see in the next problem that d∇R = 0, which is an expression of the second Bianchi identity.

Note 3: It can be shown that the cohomology class of the Chern-Euler form e = Pf(Ω/2π) is independent of the Rieman-

nian metric on M and the connection ∇ on E . It does depend, however, on the orientation of E . It is called the

Euler class of the oriented vector bundle E .

Note 4: The Euler class is natural: if f maps N to M , then the Euler class of the pull-back bundle f ∗E is the pullback by

f of the Euler class of E . (See the previous Exercise 3.) In addition, the Euler class of the Whitney sum E1 ⊕E2

of oriented vector bundles of M is the product of the Euler classes of E1 and E2. Finally, the Euler class of E is

integral: if the rank of E is 2k then the Euler class of E is in H 2k (M ;Z).

Note 5: The general Gauss-Bonnet theorem states:

Theorem 0.1 (Gauss-Bonnet-Allendoerfer-Weil-Chern). Let M be a 2m-dimensional, oriented, compact Rie-

mannian manifold (without boundary). Then ∫
M

Pf

(
Ω

2π

)
=χ(M).

Note 6: What follows is further remarks towards the proof of this theorem. With this in mind, you may take throughout

E = T M , although the more general case is useful.

⋄

5. More on the exterior covariant derivative. Different from Homework 9, I’ll define here the exterior covariant

derivative for a vector bundle E as the map

d∇ :Ωk (M ,E) →Ωk+1 (M ,E)

such that, at a point p ∈ M ,

(
d∇ψ

)
(v0, . . . , vk ) =

∑
i

(−1)i∇viψ(V0, . . . ,V̂i , . . . ,Vk )+ ∑
i< j

ψ
(
[Vi ,V j ], v0, . . . , v̂i , . . . , v̂ j , . . . , vk

)
(3)

forψ ∈Ωk (M ,E), v0, . . . , vk ∈ Tp M , and V0, . . . ,Vk ∈X(M) such that Vi (p) = vi . It follows from this definition that

if ξ is a section of E , hence an element of Ω0 (M ,E) = Γ(E), then d∇ξ=∇ξ; and for ω⊗ξ ∈Ωk (M ,E), where ω is

an ordinary k-form on M and ξ a section of E ,

d∇(ω⊗ξ) = dω⊗ξ+ (−1)kω∧d∇ξ. (4)

As before in this assignment, we are especially interested here in the case where the vector bundle in question

is the exterior algebra Λ∗(E∗) over a given vector bundle E . Keep in mind that if ξ,η are sections of Λi (E∗) and
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Λ j (E∗), respectively, and v ∈ Tp M , then

∇v (ξ∧η) = (∇vξ)∧η+ξ∧ (∇vη
)

.

(The definition in Section 22.5, Proposition 22.7, page 206, in Loring Tu’s textbook extends to tensors over a

general vector bundle E , not only T M .) Note that, different from expressions involving the exterior derivative,

there is no sign in this Leibniz rule for the covariant derivative.

(a) Show that the definition of d∇ given by Equation (3) implies the identity (4).

(b) If µ is an (r, i )-form and ν is (s, j )-form, show that

d∇(µ∧ν) = (
d∇µ

)∧ν+ (−1)rµ∧d∇ν.

(c) If f : N → M is a smooth map and E → M is a smooth vector bundle over M , let ∇ be the pullback connec-

tion on f ∗E . Show that f ∗ ◦d∇ = d∇ ◦ f ∗.

(d) Let R be the curvature (2,2)-form defined in the previous exercise for a given metric connection ∇ on the

Riemannian vector bundle E . Show that d∇R = 0. This is an expression of the Second Bianchi Identity. Also

show that d∇R = 0. The latter identity does not depend on the connection being metric and on E being

Riemannian.

(e) Recalling from the previous exercise the relation betweenΩm and the Pfaffian, show that if E has rank 2m,

then Pf(Ω) is a closed 2m-form (of the standard kind) on M .

Solution.

(a) Identity (4) can be seen as follows. Let X0,

d∇ (ω⊗ξ) (v0, . . . , vk ) =∑
i

(−1)i∇vi

(
ω(V0, . . . ,V̂i , . . . ,Vk )ξ

)+ ∑
i< j

ψ
(
[Vi ,V j ], v0, . . . , v̂i , . . . , v̂ j , . . . , vk

)
ξ

=
(∑

i
(−1)i viω(V0, . . . ,V̂i , . . . ,Vk )+ ∑

i< j
ψ

(
[Vi ,V j ], v0, . . . , v̂i , . . . , v̂ j , . . . , vk

))
ξ

+∑
i

(−1)iω(v0, . . . , v̂i , . . . , vk )∇vi ξ

= dω(v0, . . . , vk )ξ+∑
i

(−1)iω(v0, . . . , v̂i , . . . , vk )∇vi ξ.

It is helpful here to use the shuffle form of the wedge product (Proposition 19.15, page 172 of Tu’s textbook).

Let πi be the shuffle permutation given in cycle form as πi = (i i +1 · · · k). Note that sign(πi ) = (−1)k+i and

(
vπi (0), . . . , vπi (k)

)= (v0, . . . , v̂i , . . . , vk , vi ) .

It follows that (
ω∧d∇ξ

)
(v0, . . . , vk ) =∑

i
(−1)k+iω(v0, . . . , v̂i , . . . , vk )∇vi ξ.

Therefore d∇(ω⊗ξ) = dω⊗ξ+ (−1)kω∧d∇ξ.

(b) (HW)

(c) (HW)
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(d) Let V0,V1,V2 be vector fields on M and ξ0,ξ1 sections on E . We wish to evaluate
(
d∇R

)
(V0,V1,V2)(ξ0,ξ1).

From the definition of d∇ we have

(
d∇R

)
(V0,V1,V2) =∇V0 R(V1,V2)−∇V1 R(V0,V2)+∇V2 R(V0,V1)−R([V0,V1],V2)+R([V0,V2],V1)−R([V1,V2],V0).

And from the general properties of ∇ acting on tensors over E ,

(∇V0 R(V1,V2)
)

(ξ0,ξ1) =V0R(V1,V2)(ξ0,ξ1)−R(V1,V2)
(∇V0ξ0,ξ1

)−R(V1,V2)
(
ξ0,∇V0ξ1

)
=V0〈ξ0,R(V1,V2)ξ1〉−

〈∇V0ξ0,R(V1,V2)ξ1
〉−〈

ξ0,R(V1,V2)∇V0ξ1
〉

= 〈
ξ0,∇V0 R(V1,V2)ξ1 −R(V1,V2)∇V0ξ1

〉
= 〈

ξ0,
(∇V0 R(V1,V2)

)
ξ1

〉
.

Thus

(
d∇R

)
(V0,V1,V2)(ξ0,ξ1) = 〈

ξ0,
(∇V0 R(V1,V2)

)
ξ1

〉−〈
ξ0,

(∇V1 R(V0,V2)
)
ξ1

〉+〈
ξ0,

(∇V2 R(V0,V1)
)
ξ1

〉
−〈ξ0,R([V0,V1],V2)ξ1〉+〈ξ0,R([V0,V2],V1)ξ1〉−〈ξ0,R([V1,V2],V0)ξ1〉

= 〈
ξ0,

(
d∇R

)
(V0,V1,V2)ξ1

〉
.

Thus it suffices to show d∇R = 0. To simplify expanding the terms of
(
d∇R

)
(V0,V1,V2)ξ I will use the fol-

lowing notation: ∇Vi = |i , R(Vi ,V j ) = (i , j ), [Vi ,V j ] = [i , j ]. Thus, for example, we write

∇Vi R(V j ,Vk )ξ= |i ( j ,k), R(V j ,Vk )∇V0ξ= ( j ,k)|i , R([Vi ,V j ],Vk )ξ= ([i , j ],k), ∇[Vi ,V j ]∇Vk ξ= |[i , j ]|k

and so on. We can then write

(
d∇R

)
(V0,V1,V2)ξ= |0(1,2)− (1,2)|0 −|1(0,2)+ (0,2)|1 +|2(0,1)− (0,1)|2 − ([0,1],2)+ ([0,2],1)− ([1,2],0)

= |0
(|1|2 −|2|1 −|[1,2]

)− (|1|2 −|2|1 −|[1,2]
) |0 −|1

(|0|2 −|2|0 −|[0,2]
)+ (|0|2 −|2|0 −|[0,2]

) |1
+|2

(|0|1 −|1|0 −|[0,1]
)− (|0|1 −|1|0 −|[0,1]

) |2 − (|[0,1]|2 −|2|[0,1] − [[0,1],2]
)

+ (|[0,2]|1 −|1|[0,2] − [[0,2],1]
)− (|[1,2]|0 −|0|[1,2] − [[1,2],0]

)
= [[0,1],2]− [[0,2],1]+ [[1,2],0]

= 0.

The Jacobi identity was used at the last step.

(e) Since d∇R = 0 and d∇R∧Θ= (d∇R)∧Θ+R∧Θ, a simple induction shows that d∇Rm = 0. So

0 = (m!)−1d∇Rm = d∇ (Pf(Ω)⊗ω) = (dPf(Ω))⊗ω+ (−1)2mPf((Ω))∧∇ω.

Here ω is the Riemannian volume form of the oriented Riemannian bundle E of rank 2m. By Exercise 4, ω

is parallel. Therefore (dPf(Ω))⊗ω= 0. As ω is nowhere vanishing, we conclude that dPf(Ω) = 0.

For the application to Gauss-Bonnet-Chern, this is trivial since Pf(Ω) is a top degree form.

⋄

6. The canonical section and canonical form on π∗E . Using the bundle map π : E → M we can pull back E under

π. Then π∗E is a vector bundle over the manifold E . By the definition of pullback bundles, elements of π∗E have
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the form (e,e ′) ∈ E ×E such that π(e) = π(e ′). Another vector bundle we can define over the manifold E is the

vertical bundle V . The vector fiber at each e ∈ E is the kernel of dπe : Ve = {ξ ∈ Te E : dπeξ = 0}. Note that Ve is

linearly isomorphic to Eπ(e), with the isomorphism given by the map

Ie : e ′ ∈ Eπ(e) 7→ d

d t

∣∣∣∣
t=0

(
e + te ′

) ∈Ve .

Given a connection ∇ on E , we can define the horizontal subbundle of T E , denoted H . The fiber He is the kernel

of a map Ke : Te E → Eπ(e) which we define as follows. An element ξ ∈ Te E can be represented by a curve e(t ) ∈ E ,

so that e(0) = e and e ′(0) = ξ. Then e(t ) is a section of E over the curve γ(t ) = π(e(t )) ∈ M . Therefore it makes

sense to define

Keξ= ∇e

d t

∣∣∣∣
t=0

∈ Eπ(e).

Note that Ke ◦Ie is the identity map on Eπ(e). Moreover, the rank of H is equal to the dimension of M and

dπe : He → Tπ(e)M and Ke : Ve → Eπ(e) are linear isomorphisms for each e, as can be easily checked. Also

observe that Ie ◦Ke is the identity on Ve . From these definitions we obtain a splitting of T E as a direct sum of

subbundles: T E =V ⊕H .

The pullback bundle π∗E admits a canonical section s ∈ Γ(π∗E) such that s(e) = (e,e). Given the isomorphism

of π∗E and V that you will establish below, s may be regarded as a section of V , in which case it is given by

s(e) =Ie e.

Further define the (0,1)-form η on π∗E (which we may regard as a section of the dual vertical bundle V ∗ over E):

ηe
(
Ie e ′

)= 〈
s(e),Ie e ′

〉
e =

〈
e,e ′

〉
π(e) .

We are using here the pullback metric to π∗E , also denoted by 〈·, ·〉. I note that ∇ is a metric connection for this

metric.

Finally, we define the connection (1,1)-form θ = d∇η ∈ Γ (T ∗E ⊗V ∗).

(a) Show that π∗E and V are isomorphic vector bundles over E .

(b) If ∇ is the pullback connection on the vector bundle π∗E ∼=V → E and ξ ∈ Te E , show that ∇ξs=IeKeξ.

(c) Let ξ ∈ Te E and e ′ ∈ Eπ(e). Show that θe (ξ)
(
Ie e ′

)= 〈
Keξ,e ′

〉
π(e).

(d) Show that d∇θe (ξ1,ξ2) (u) = (π∗R)e (ξ1,ξ2) (u,s(e)) for ξ1,ξ2 ∈ Te E and u ∈Ve .

(e) Let E1 ⊆ E denote the subbundle of E whose fiber at p ∈ M consists of the vectors of unit length in Ep . We

call it the sphere bundle of E . (It is a fiber bundle over M but, naturally, not a vector bundle.) If ξ is tangent

to E1 at e ∈ E1, show that θe (ξ)(s(e)) = 0.

(f) Consider the (2m −1,2m)-form Π j := η∧θ2 j−1 ∧π∗Rm− j . Let ξ1, . . . ,ξ2m−1 be tangent vectors to (E1)p at

e ∈ E1 (thus the ξi are vertical vectors; that is, ξi ∈Ve ) and let X0, X1, . . . , X2m−1 form a positive orthonormal

basis of (π∗E)e such that X0 = s(e). Show that

Π j (ξ1, . . . ,ξ2m−1)(X0, . . . , X2m−1) = 0

for j < m and

Πm(ξ1, . . . ,ξ2m−1)(X0, . . . , X2m−1) = (2m −1)!ωe (ξ1, . . . ,ξ2m−1)

where ω is the volume form on the fiber of E1 at p ∈ M .
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Solution.

(a) For each e ∈ E , both (π∗E)e and Ve are naturally isomorphic to Eπ(e) under the maps pr2 : (π∗E)e → Eπ(e),

pr2(e,e ′) = e ′, and Ke : Ve → Eπ(e). Define I :π∗E →V by

(e,e ′) ∈ (π∗E)e 7→I(e,e ′) =Ie e ′ ∈Ve .

It can be checked that I is a bundle map, a linear isomorphism on each fiber, and smooth. It has an inverse

bundle map given by K : V →π∗E defined for each ξ ∈Ve by Kξ= (e,Keξ), also smooth.

(b) Let ξ= e ′(0) ∈ Te E , where e(t ) is a differentiable curve in E such that e(0) = e and e ′(0) = ξ. Letγ(t ) =π(e(t )).

Then e(t ) is a section of E along γ(t ) and s(t ) = (e(t ),e(t )) is a section of π∗E along e(t ). We have

∇s
d t

∣∣∣∣∣
t=0

=
(
e(0),

∇e

d t

∣∣∣∣
t=0

)
= (e,Keξ).

The right-most term is identified with IeKeξ by the first part of this exercise.

(c) Let X ∈X(E) and U ∈ Γ(π∗E) = Γ(V ). Then

θe (X )(U ) =
(
d∇η

)
(X )(U ) = (∇X η

)
e (U ) = Xη(U )−ηe (∇X U ) = X 〈s,U 〉−〈s,∇X U 〉e = 〈∇X s,U 〉e = 〈IeKe X ,U 〉e .

If U =Ie e ′ and Xe = ξ, then θe (ξ)(Ie e ′) = 〈Keξ,e ′〉π(e).

(d) Let X ,Y ∈X(E), U ∈ Γ(V ). Then(
d∇θ

)
(X ,Y )(U ) = (∇X θ(Y )−∇Y θ(X )−θ([X ,Y ])

)
(U )

= Xθ(Y )(U )−θ(Y )
(∇X U

)−Y θ(X )(U )+θ(X )
(∇Y U

)−θ([X ,Y ])(U )

= X
〈∇Y s,U

〉−〈∇Y s,∇X U
〉−Y

〈∇X s,U
〉+〈∇X s,∇Y U

〉−〈∇[X ,Y ]s,U
〉

= 〈∇X ∇Y s−∇Y ∇X s−∇[X ,Y ]s,U
〉

=
〈

R(X ,Y )s,U
〉

Writing ξ1 = Xe ,ξ2 = Ye , u =Ue . Then(
d∇θ

)
e

(ξ1,ξ2)(u) =
〈

R(ξ1,ξ2)s,u
〉
= (

π∗R
)

(ξ1,ξ2)(u,s(e)).

(e) Let ξ= e ′(0) ∈ Te E1 where e(t ) is a smooth curve in E1 representing ξ. Then 〈s(e(t )),s(e(t ))〉 = 1 and

0 = 1

2

d

d t

∣∣∣∣
t=0

〈e(t ),e(t )〉 =
〈

∇e

d t

∣∣∣∣∣
t=0

,e

〉
= 〈Keξ,e〉π(e) = θe (ξ)(s(e)).

(f) If j < m, the form Π j contains a factor π∗R. But this term vanishes when evaluated on a vertical vector ξ j .

Thus Π j (ξ1, . . . ,ξ2m−1)(X0, . . . , X2m−1) = 0 if j < m. Let us now look at Πm = η∧θ∧·· ·∧θ = η∧θ2m−1. Keep
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in mind that θ(ξ)(X0) = θ(ξ)(s) = 0 and ηe (s(e)) = 〈e,e〉 = 1 for e ∈ E1.

Πm(ξ1, . . . ,ξ2m−1)(X0, . . . , X2m−1) = ∑
σ∈S2m−1

sign(σ)
(
η∧θ (

ξσ(1)
)∧·· ·∧θ (

ξσ(2m−1)
))

(X0, . . . , X2m−)

= (2m −1)!
(
η∧θ (ξ1)∧·· ·∧θ (ξ2m−1)

)
(X0, . . . , X2m−1)

= (2m −1)!
∑

σ∈S2m

sign(σ)η
(
Xσ(0)

)[
θ(ξ1)

(
Xσ(1)

)] · · ·[θ(ξ2m−1)
(
Xσ(2m−1)

])
= (2m −1)!

∑
σ∈S2m :σ(0)=0

sign(σ)
[
θ(ξ1)

(
Xσ(1)

)] · · ·[θ(ξ2m−1)
(
Xσ(2m−1)

])
.

The vectors ξ are tangent to the fiber (E1)p at e ∈ E1 and the Xi lie in π∗E ∼=V . So we may write Xi =Ie ei

where the ei are tangent to E at p and form a positive orthonormal basis. Since the Xi are orthogonal to

X0 = s for i ≥ 1, the ei are orthogonal to e for i ≥ 1. This means that the e1, . . . ,e2m−1 constitute a positive

orthonormal basis for the tangent space to (E1)p at e. Observe that θ(ξi )(X j ) = 〈IKξi ,Ie j 〉e = 〈ξi ,Ie j 〉e .

Consequently, the above alternating sum gives ωe (ξ1, . . . ,ξ2m−1) and we conclude that

Πm(ξ1, . . . ,ξ2m−1)(X0, . . . , X2m−1) = (2m −1)!ωe (ξ1, . . . ,ξ2m−1) .

⋄

7. Pull-back of the Chern-Euler form to E1. Keeping with the notation of the previous exercise, define

Π :=
m∑

j=1
c jΠ j ,

where

c j =− ( j −1)!

2m− j+1(m − j )!(2 j −1)!πm
.

ThenΠ ∈ Γ(
Λ2m−1(T ∗E)⊗Λ2m(π∗E∗)

)
. Show that d∇Π=π∗e on E1.

Note that Π and π∗e are forms on E (or E1) with coefficients in the vector bundle Λ2m(E∗). Since the latter

bundle is trivial for an oriented E , with the volume form ω serving as a global section, we can write Π and π∗e

as a product of ordinary forms on the base manifold E1 tensor ω. Using the same notationsΠ and π∗e for these

ordinary forms, then π∗e = dΠ, where d is now the ordinary exterior derivative. Another point to observe is that

the integral ofΠ over (E1)p is −1. This is due to the previous item and the choice of the constant cm .

Solution. This is a tedious calculation which you can find in Section 3.67, pages 142 and 143 of Walter Poor’s

text. Here are the main steps. For simplicity we write ∇ for ∇. Since d∇R = 0 and d∇η= θ, we have

d∇Π j = d∇
(
η∧θ2 j−1 ∧π∗Rm− j

)
= d∇η∧θ2 j−1 ∧π∗Rm− j +η∧d∇

(
θ2 j−1

)
∧π∗Rm− j +ηθ2 j−1 ∧d∇π∗Rm− j

= θ2 j ∧π∗Rm− j + (2 j −1)θ2 j−2 ∧η∧d∇θ∧π∗Rm− j .

For the last line, keep in mind that η is a (0,1)-form, θ is a (1,1)-form, and d∇θ is a (2,1)-form and use previous

formulas for wedge product and exterior derivative. Going back to the relationship between d∇θ and π∗R, it is

14



possible to show (see W. Poor’s text, page 143) that

θ2 j−2 ∧η∧d∇θ∧π∗Rm− j =− 1

m − j +1
θ2 j−2 ∧π∗Rm− j+1.

Therefore

d∇Π j = θ2 j ∧π∗Rm− j − 2 j −1

m − j +1
θ2 j−2 ∧π∗Rm− j+1.

We thus obtain

d∇Π=
m∑

j=1
c j d∇Π j

=
m∑

j=1
c j

(
θ2 j ∧π∗Rm− j − 2 j −1

m − j +1
θ2 j−2 ∧π∗Rm− j+1

)

=− c1

m
π∗Rm +

m−1∑
j=1

(−1)m− j
(
c j + 2 j +1

m − j
c j+1

)
θ2 j ∧π∗Rm− j + cmθ

2m

=π∗
(

Rm

2mπmm!

)
+ cmθ

2m

=π∗e.

At the last step we used that θ2m = 0 on E1.

8. End of the proof of the Gauss-Bonnet-Chern theorem. At this point, let E = T M and E1 the sphere bundle

T 1M . The rest of the proof of the Gauss-Bonnet-Chern theorem follows a similar pattern used in dimension 2,

with the Poincaré-Hopf theorem playing a central role.

Let e be the Chern-Euler form on a compact, oriented 2m-dimensional Riemannian manifold M and let

Π ∈Ω2m−1 (
T 1M ,Λ2mπ∗T ∗M

)
be the above defined form, so that d∇Π=π∗e on SM .

Fix a vector field X on M with finitely many zeros, and let Z ⊂ M be the zero set of X . Let Y = X /∥X ∥, a smooth

section of the sphere bundle T 1M ′ on the complement M ′ of Z . We may choose X so that the limit Y ◦γ(t ) as

t → 0+ exists for every geodesic γ issuing from each zero of X .

There exists ϵ > 0 such that for each zero p ∈ Z of X , the set {v ∈ Tp M : ∥v∥ ≤ ϵ} is mapped diffeomorphically

by expp to the closure Bϵ(p) in M of the geodesic ball Bϵ(p) about p of radius ϵ, and such that the distance in

M between any two zeros of X is bigger than 2ϵ. Fix p ∈ Z and let F be the unit sphere T 1
p M in Tp M . Define

ϕ : F × [0,ϵ] → M by ϕ(v, t ) := expp (t v). The image of ϕ is Bϵ(p) and ϕ maps F × (0,ϵ] diffeomorphically to

Bϵ(p) \ {p}.

The smooth map Y ◦ϕ : F ×(0,ϵ] → T 1M is a section of the sphere bundle alongϕ. It has a unique extension to a

section W : F × [0,ϵ] → T 1M along ϕ, even though Y cannot be extended continuously to Bϵ(p). The extension

W maps F ∼= F × {0} differentiably to T 1
p M = F , and since p is the only zero of X in Bϵ(p), the degree of the map

W from F to F equals the degree of the map d(exp−1
p )◦Y ◦expp from F to F . This degree is called the index of

the vector field X at p ∈ M .

The pull-back π∗e to T 1M of the Chern-Euler form on M equals the exterior covariant derivative d∇Π of the

form Π defined above in the previous problem. Using the volume form on the bundle (π◦ inc)∗T M over T 1M ,

we can identify π∗e andΠwith ordinary differential forms on T 1M and can write dΠ=π∗e. Since Y is a section
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of T 1M ′, on M ′ the Chern-Euler form e equals

e = (π◦Y )∗e = Y ∗π∗e = Y ∗dΠ= dY ∗Π.

Hence ∫
Bϵ(p)

e =
∫

Bϵ(p)\{p}
e =

∫
ϕ(F×(0,ϵ])

dY ∗Π=
∫

F×(0,ϵ]
d(Y ◦ϕ)∗Π=

∫
F×[0,ϵ]

dW ∗Π

=
∫
∂(F×[0,ϵ])

W ∗Π=
∫

F×{ϵ}
W ∗Π−

∫
F×{0}

W ∗Π

=
∫
∂Bϵ(p)

Y ∗Π−
∫

F
W ∗Π

=
∫
∂Bϵ(p)

Y ∗Π−deg(W )
∫

F
Π.

Recall from HW 9 that the volume of the sphere S2m−1 is 2πm/(m −1)!. Therefore∫
F
Π=

∫
F

cmΠm = cm(2m −1)!
∫

F
ωe =− (m −1)!

2(2m −1)!πm (2m −1)!Vol(S2m−1) =−1

hence ∫
Bϵ(p)

e =
∫
∂Bϵ(p)

Y ∗Π+ Ind(X , p).

Set N :=⋃
p∈Z Bϵ(p). Then ∫

M
e =

∫
M\N

e+ ∑
p∈Z

∫
Bϵ(p)

e

=
∫
∂(M\N )

Y ∗Π+ ∑
p∈Z

(∫
∂Bϵ(p)

Y ∗Π+ Ind(X , p)

)
=−

∫
∂N

Y ∗Π+
∫
∂N

Y ∗Π+ ∑
p∈Z

Ind(X , p)

= Index(X ).

By the Poincaré-Hopf theorem, the index of X equals the Euler characteristic of M .

9. The Hopf bundle and Chern number. In what follows, elements ofCP 1 will be written as [z] = [z1 : z2] (so-called

homogeneous coordinates) to indicate the equivalence class represented by z ∈ C2 \ {(0,0)} under the action of

the multiplicative group of non-zero complex numbers. (Or, equivalently, z ∈ S3 under the action of U (1).)

The Hopf bundle is the bundle of unit length vectors of a complex line bundle over CP 1 called the tautological

bundle, which is a rank 1 (complex) subbundle L of the trivial bundle pr1 : CP 1 ×C2 → CP 1 defined by the

property that the fiber L[z] of L at [z] the one-dimensional complex subspace in C2 spanned by z itself (thus the

name tautological). I’ll used the same letter π to denote the base point map π : L →CP 1. By definition,

L = {([z],λz) : [z] ∈CP 1,λ ∈C} = {(ℓ, z) ∈CP 1 ×C2 : z ∈ ℓ}, π(ℓ, z) = ℓ.

The trivial vector bundle CP 1 ×C2 can be endowed with a Hermitian metric by giving C2 the standard (complex

valued) inner product

〈(z1, z2), (w1, w2)〉 = z1w1 + z2w2.
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(Note: as a matter of taste, I deviate from the textbook convention by placing the complex conjugate bar over

the first vector argument of the inner product.) The Hopf bundle is then the bundle of unit length vectors of

L. (It is a principal bundle over CP 1 with structure group U (1), according to the definitions at the beginning of

Chapter 6 of the textbook, although we don’t need this fact for this assignment.) We thus have S3 ⊆ L ⊆CP 1×C2,

and these are all bundles over projective space.

Our goal is to compute the Chern number of L, which is the integral over S2 ∼=CP 1 of the Chern class c1(L).

The line bundle L with the Hermitian metric 〈·, ·〉 can be given a metric connection as follows. For each [z] ∈CP 1,

we have the orthogonal direct sum decomposition C2 = L[z] ⊕L⊥
[z] where L[z] is the fiber of L over [z] and

L⊥
[z] =

{
u ∈C2 : 〈z,u〉 = 0

}
.

Let Π[z] : C2 → L[z] be the resulting projection map. We now define a connection ∇ on smooth sections of L as

follows: given ξ ∈ Γ(L) and u ∈ T[z]CP 1,

∇uξ=Π[z]Duξ (5)

where D is the ordinary derivative of a C2-valued (equivalently, R4-valued) function on CP 1:

Du( f1 + i f2, f3 + i f4) = (
u f1 + i u f2,u f3 +u f4

)
.

We will need the connection and curvature forms of ∇ for convenient choices of local trivializations of L. But

first note that if ξ : U → S3 ⊆ L is a section of L over U ⊆CP 1, then the corresponding connection form isωp (u) =
〈ξ(p),∇uξ〉 = 〈ξ(p),Duξ〉 for u ∈ TpCP 1. This being an actual 1-form on U , the associated curvature form is

simplyΩ= dω+ω∧ω= dω. The effect of taking sections of L of unit length (hence in S3) is that Re(〈ξ,Duξ〉) = 0.

In fact,

0 = u〈ξ,ξ〉 = 〈∇uξ,ξ〉+〈ξ,∇uξ〉 = 〈ξ,∇uξ〉+〈ξ,∇uξ〉 = 2Re(〈ξ,∇uξ〉) .

Therefore

ωp (u) = 2i Im
(〈ξ(p),Duξ〉

)
. (6)

Observe that if η is another section also defined on U , then η = f ξ where f is a complex-valued function on

U of unit modulus: | f (p)| = 1. Then ωη = ωξ+ f −1d f and dωη = dωξ. This means that the curvature form Ω

will define a global closed form on CP 1. The Chern class is then (according to the definition on page 235 of the

textbook in the special case of rank 1) c1(L) = i
2πΩ and the Chern number, our ultimate goal here, is the value of∫

CP 1 c1(L).

We now choose trivializing neighborhoods and sections of the Hopf bundle. Let {U−,U+} be the open cover of

CP 1 given by

U− := {
[z1 : z2] ∈CP 1 : z2 ̸= 0

}
, U+ := {

[z1 : z2] ∈CP 1 : z1 ̸= 0
}

.

We define coordinates ϕ± : U± →C by ϕ−([z1 : z2]) = z− := z1/z2 and ϕ+([z1 : z2]) = z+ := z2/z1. (These give us a

smooth (in fact, holomorphic) atlas on CP 1.) On U± we define the section ξ± as follows:

ξ−([z1 : z2]) := 1√
1+|z−|2

(
z−
1

)
, ξ+([z1 : z2]) := 1√

1+|z+|2

(
1

z+

)
(7)

Associated to these sections we have connection forms ω−,ω+. You will show in one of the exercises below that

on U−∩U+
ω+ =ω++ f d f (8)
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where f ([z1 : z2]) = z+/|z+|.

⋄

Before moving forward, let us try to get a better sense of what parts of S2 are covered by U±. Let us define the

map F :CP 1 → S2 such that F ([z1 : z2]) = (x1, x2, x3) where

x1 = 2Re
(
z1z2

)
, x2 = 2Im

(
z1z2

)
, x3 = |z1|2 −|z2|2.

We are assuming here that |z1|2 +|z2|2 = 1. It is not difficult to see from this expression that F is injective. To see

that it is surjective, observe that

F
([

cos
(ϕ

2

)
e
ψ+θ

2 i : sin
(ϕ

2

)
e
ψ−θ

2 i
])

= (
sinϕcosθ, sinϕsinθ,cosϕ

)
.

On the right-hand side we have an arbitrary point on S2 expressed in spherical coordinates by allowing θ ∈
[0,2π) and ϕ ∈ [0,π]. Changing ψ does not change the point [z1 : z2] (ψ parametrizes the U (1) fiber of the Hopf

bundle). From this description we see that [1 : 0] is mapped to the North Pole N = (0,0,1)⊺ and [0 : 1] to the

South Pole S = (0,0,−1)⊺, while
[

1p
2

: eiθp
2

]
is mapped to the equator (x3 = 0). Also note that the function f in (8)

maps
[

1p
2

: eiθp
2

]
to e iθ. We have that (U+,ϕ+) parametrizes a region of S2 that contains the northern hemisphere

S2+ while (U−,ϕ−) parametrizes a region containing the southern hemisphere S2−. As θ increases in
[

1p
2

: eiθp
2

]
we traverse the equation in the positive direction if we regard the equation as the boundary of the northern

hemisphere, and in the negative direction relative to the boundary orientation of the southern hemisphere.

Also observe that f
([

1p
2

: eiθp
2

])
= e iθ and that the pull-back (or restriction) of f d f to the equator is

e−iθd
(
e iθ

)
= e−iθe iθi dθ = i dθ.

Finally observe that∫
CP 1

Ω=
∫

S2+
dω++

∫
S2−

dω− =
∫
∂S2+

ω++
∫
∂S2−

ω− =
∫
∂S+

(ω+−ω−) =
∫ 2π

0
i dθ = i 2π.

We conclude that ∫
CP 1

c1(L) =
∫
CP 1

iΩ

2π
= i

2π
2πi =−1.

Therefore the Chern number of the tautological line bundle over CP 1 is −1.

⋄

(a) Let L⊗n be the line bundle over CP 1 given by the tensor product L ⊗·· ·⊗L (n times). Show that the Chern

number of L⊗n is −n. (As a lemma, show that if L1,L2 are two line bundles then the first Chern class of their

tensor product is c1(L1 ⊗L2) = c1(L1)+ c1(L2).)

(b) Let L∗ denote the dual bundle to the tautological line bundle L. Show that c1(L∗) =−c1(L). In particular, L∗

has Chern number 1. (Note: L ⊗L∗ is the bundle of endomorphisms of L. This line bundle has a nowhere

vanishing section given by the identity map on each fiber of L. )

Knowing that the trivial line bundle has Chern number 0, we conclude from the above that every integer n ∈Z is

the Chern number of some complex line bundle over CP 1 (and line bundles with different Chern numbers are

not isomorphic).
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Solution.

(a) If ξ1 and ξ2 are local sections of the line bundles L1 and L2, and ω1 and ω2 are the respective connection

forms, then ξ1 ⊗ξ2 is a local section of L1 ⊗L2 whose connection form can be found as follows:

∇u(ξ1 ⊗ξ2) = (∇uξ1)⊗ξ2 +ξ1 ⊗ (∇uξ2) =ω1(u)ξ1 ⊗ξ2 +ω2(u)ξ1 ⊗ξ2 = (ω1(u)+ω2(u))ξ1 ⊗ξ2.

Thus the product bundle has connection form ω1 +ω2. In particular, the curvature forms, which are the

globally defined closed 2-forms c1(Li ) = dωi , satisfy

c1(L1 ⊗L2) = c1(L1)+ c1(L2).

By a simple induction we obtain that c1(L⊗n) = nc1(L). For the tautological line bundle overCP 1, we proved

above that
∫
CP 1 c1(L) =−1, so

∫
CP 1 c1(L⊗n) =−n as claimed.

(b) Using the result of the previous item (concerning the Chern class of a tensor product of line bundles) and

the observation that L⊗L∗ is trivial, we obtain: 0 = c1(L∗)+ c1(L) as claimed.

⋄
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