
Homework set 8 - due 11/01/20

Math 5047 – Renato Feres

Turn in problems 1, 2, 8, 11(b). In problems 8 and 11(b) (and all others), you may freely quote from statements

made in other exercises from this assignment.

1. The gradient, divergence and Laplacian. Let (M ,〈·, ·〉) be an oriented Riemannian manifold with volume form

ω and f : M → R a smooth function. The gradient of f is the vector field denoted q 7→ gradq f such that, for all

v ∈ Tq M ,

〈gradq f , v〉 = d fp (v).

Here d fp v := v f is the directional derivative of f along v . The divergence of a vector field X on M is the function

q 7→ divq X such that

LXω= (divX )ω

where LX is the Lie derivative along X . The Laplacian of a smooth function f is

∆ f = div(grad f ).

Let E1, . . . ,En be an orthonormal frame on the open set U ⊆ M and ∇ the Levi-Civita connection on M . Recall

that the connection 1-forms relative to the frame {Ei } are defined as ωi j (v) = 〈Ei ,∇v E j 〉.

(a) Show that grad f =∑n
i=1(Ei f )Ei for any smooth function f on U .

(b) Show that divX =∑n
i=1 Ei 〈Ei , X 〉+∑n

i , j=1〈E j , X 〉ωi j (Ei ) for any smooth vector field X on U .

(c) Show that ∆ f =∑n
i=1 Ei Ei f +∑n

i , j=1ωi j (Ei )E j f for any smooth function f on U .

(d) Show that if f , g are smooth functions on M ,

∆( f g ) = f ∆g + g∆ f +2〈grad f ,gradg 〉.

(e) We say that the orthonormal frame {Ei } is geodesic at q ∈ U if (∇Ei E j )q = 0 for all i , j . Convince yourself

that a geodesic frame at q exists on some neighborhood of q , but you don’t have to write it down. (The key

idea is this: Let U be the image under Expq of a small ball in Tq M centered at the origin. Let e1, . . . ,en be an

orthonormal basis of Tq M . Define Ei at p ∈U as the parallel transport of ei along the unique geodesic from

q to p contained in U . ) Conclude that, relative to a geodesic orthonormal frame {Ei } at q on a sufficiently

small neighborhood U of q , the divergence of X and the Laplacian of f at q (but not necessarily at other

points of U ) are

divq X =
n∑

i=1
Ei (〈Ei , X 〉)(q), (∆ f )(q) =

n∑
i=1

Ei (Ei f )(q).

2. Harmonic functions are constant on a compact manifold. For this problem, you may need to review Stokes’

theorem on a manifold with boundary: ∫
∂M

ν=
∫

M
dν



where ν is a compactly supported (n −1)-form on the n-dimensional manifold M .

(a) Show that if X is a (compactly supported) smooth vector field on the oriented Riemannian manifold M ,

then ∫
M

(divX )volM =
∫
∂M

〈N , X 〉vol∂M

where volM is the volume form of M and vol∂M is the induced volume form on ∂M . This is the divergence

theorem. In words: the integral of the divergence of the vector field X is the flux of that vector field across

the boundary.

(b) Using the divergence theorem, show that if f is a smooth function on a compact Riemannian manifold M

without boundary, then ∫
M

(∆ f )volM = 0.

(This is the statement that the volume form is harmonic in the weak sense.)

(c) Suppose f is a harmonic function on the compact, connected Riemannian manifold M without boundary;

that is, ∆ f = 0. Show that f must be constant. (Suggestion: Start with 0 = ∫
M ∆

(
f 2

)
volM and express the

integral in terms of the gradient of f using an identity from the previous problem.)

3. Geodesics in lens spaces. Identify R4 with C2 by letting (x1, x2, x3, x4) correspond to (x1 + i x2, x3 + i x4). Let

S3 = {
(z1, z2) ∈C2 : |z1|2 +|z2|2 = 1

}
,

and let h : S3 → S3 be given by

h(z1, z2) =
(
e

2πi
q z1,e

2πi r
q z2

)
, (z1, z2) ∈ S3,

where q and r are relatively prime integers, q > 2.

(a) Show that G = {
id,h, · · · ,hq−1

}
is a group of isometries of the sphere S3, with the usual metric, which oper-

ates in a totally discontinuous manner. The manifold S3/G is called a lens space.

(b) Consider S3/G with the metric induced by the projection p : S3 → S3/G . Show that all the geodesics of S3/G

are closed but can have different lengths.

4. Exterior derivative expressed in terms of a connection. If ω is a differential k-form on a smooth manifold M

equipped with a torsion-free (i.e., symmetric) connection ∇, show that

dω(X0, . . . , Xk ) =
k∑

i=0
(−1)i (∇Xiω

)(
X0, . . . , X̂i , . . . , Xk

)
,

where X0, X1, . . . , Xk ∈X(M) and the hat symbol X̂ indicates that the corresponding vector field is dropped.

Note: A useful identity involving the exterior product which, unfortunately, is not in the appendix of Lee’s text,

is the following:

(dω) (X0, . . . , Xk ) =
k∑

i=0
(−1)i Xi

(
ω

(
X0, . . . , X̂i , . . . , Xk

))
+ ∑

i< j
(−1)i+ jω

(
[Xi , X j ], X0, . . . , X̂ j , . . . , X̂i , . . . , Xk

)
.

You may take it for granted.
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5. Riemannian metric on the tangent bundle of a Riemannian manifold. It is possible to introduce a Riemannian

metric on the tangent bundle N = T M of a Riemannian manifold M in the following manner. Let (p, v) ∈ N and

V ,W be tangent vectors in N at (p, v). Choose curves α : t 7→ (p(t ), v(t )) and β : s 7→ (q(s), w(s)) in N with

p(0) = q(0) = p, v(0) = w(0) = v , and V =α′(0), W =β′(0). Define an inner product on N by

〈V ,W 〉(p,v) := 〈
dπ(p,v)V ,dπ(p,v)W

〉
p +

〈
Dv

d t
(0),

Dw

d s
(0)

〉
p

, (1)

where dπ(p,v) is the differential of the base point projection π : N → M . It is not difficult to show that this inner

product is well-defined (i.e., it is independent of the choices ofα and β) and that it indeed defines a Riemannian

metric on N . This is often called the Sasaki metric on T M .

A vector V at (p, v) ∈ N that is orthogonal (in the metric (1)) to the fiber π−1(p) ∼= Tp M is called a horizontal

vector. A curve t 7→ (p(t ), v(t )) in N is horizontal if its tangent vector is horizontal for all t . Here are some facts

we know (from other homework assignments or from class):

• The curve t 7→ (p(t ), v(t )) is horizontal if and only if the vector field v(t ) is parallel along p(t ) ∈ M .

• We define the geodesic vector field Z as the horizontal vector field on N such that dπ(p,v)Z (p, v) = v for all

(p, v) ∈ N . The flow line t 7→Φt (p, v) of the flow Φt of Z projects under π to the geodesic on M with initial

conditions (p, v).

Problems:

(a) Let V be a vertical vector in T(p,v)N . Recall that we may regard V as a vector in Tp M due to the canonical

isomorphism between Tp M and the vertical subspace of T(p,v)N :

V ∈ Tp M 7→ d

d t
(v + tV )

∣∣∣∣
t=0

∈ T(p,v)N .

Show that J (t ) := d(π◦Φt )(p,v)V is a Jacobi field with initial conditions J (0) = 0 and D J
d t (0) =V .

(b) Let V be a horizontal vector in T(p,v)N and w := dπ(p,v)V . Show that J (t ) := d(π◦Φt )(p,v)V is a Jacobi field

with initial conditions J (0) = w and D J
d t (0) = 0.

6. Riemannian submersions. Read about Riemannian products (Chapter 2, page 20) and Riemannian submer-

sions (Chapter 2, page 21) in Lee’s text. Let M and M be manifolds of dimension n + k and n, respectively.

A differentiable mapping f : M → M is called submersion if f is surjective, and for all p ∈ M , the differential

d fp : Tp M → T f (p)M has rank n. In this case, for all p ∈ M , the fiber f −1(p) = Fp is a submanifold of M (by the

implicit function theorem) and a tangent vector of M , tangent to some Fp , p ∈ M , is called a vertical vector of

the submersion. If, in addition, M and M have Riemannian metrics, the submersion f is said to be Riemannian

if d fp : Tp M → T f (p)M preserves lengths of vectors orthogonal to Fp , for all p ∈ M .

(a) If M1×M2 is the Riemannian product, then the natural projections πi : M1×M2 → Mi , i = 1,2, are Rieman-

nian submersions.

(b) If the tangent bundle N = T M is given the Riemannian metric as in the previous exercise, then the projec-

tion π : T M → M is a Riemannian submersion.

7. Connection of a Riemannian submersion. Let f : M → M be a Riemannian submersion. A vector x ∈ Tp M is

horizontal if it is orthogonal to the fiber. The tangent space Tp M then admits a decomposition

Tp M =
(
Tp M

)h ⊕
(
Tp M

)v
,
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where
(
Tp M

)h
and

(
Tp M

)v
denote the subspaces of horizontal and vertical vectors, respectively. If X ∈X(M),

the horizontal lift X of X is the horizontal field defined by d fp

(
X (p)

)
= X ( f (p)). You may take for granted (but

think about it!) that X is a smooth vector field.

(a) Show that X is a smooth vector field.

(b) Let ∇ and ∇ be the Riemannian connections of M and M , respectively. Show that

∇X Y =∇X Y + 1

2

[
X ,Y

]v
, X ,Y ∈X(M),

where Z v is the vertical component of Z .

(c)
[

X ,Y
]v (

p
)

depends only on X
(
p

)
and Y

(
p

)
.

Hint for (b): Let X ,Y , Z ∈X(M). Let T ∈X
(
M

)
be a vertical field. Observe that

〈
X ,T

〉
=

〈
Y ,T

〉
=

〈
Z ,T

〉
= 0, X

〈
Y , Z

〉
= X 〈Y , Z 〉.

Also

d f
[

X ,T
]
= 0, [X ,Y ] =

[
d f X ,d f Y

]
= d f

[
X ,Y

]
and

T
〈

X ,Y
〉
= 0.

From this we can conclude that 〈[
X ,Y

]
, Z

〉
= 〈[X ,Y ], Z 〉,

〈[
X ,T

]
,Y

〉
= 0.

We can now use the expression for the Levi-Civita connection in Theorem 5.10 to obtain〈
∇X Y , Z

〉
= 〈∇X Y , Z 〉, 2

〈
∇X Y ,T

〉
=

〈
T,

[
X ,Y

]〉
.

This implies the desired identities.

8. Curvature of a Riemannian submersion. Let f : M → M be a Riemannian submersion. Let X ,Y , X ,W ∈X(M)

and X ,Y , Z ,W be their horizontal lifts. Let R and R be the curvature tensors of M and M , respectively. Prove

that

(a)

〈R(X ,Y )Z ,W 〉◦ f =
〈

R(X ,Y )Z ,W
〉
−1

4

〈[
X , Z

]v
,
[

Y ,W
]v 〉

+1

4

〈[
Y , Z

]v
,
[

X ,W
]v 〉

−1

2

〈[
Z ,W

]v
,
[

X ,Y
]v 〉

.

(b) If σ is the plane generated by the orthonormal vectors X ,Y ∈X(M) and σ is the plane generated by X , Y ,

then

K (σ) = K (σ)+ 3

4

∥∥∥[
X ,Y

]v ∥∥∥2
≥ K (σ).

9. The Hopf bundle and CP 1. (This is only reading.) The complex projective space of complex dimension 1 is

defined as the set of complex lines (one-dimensional complex vector subspaces) in C2. Formally, it is defined

as the quotient of C2 \ {0} (the 2-dimensional complex vector space minus the origin) under the equivalence

relation that identifies any two non-zero vectors that are collinear. Equivalently, let S3 denote the 3-dimensional
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unit sphere, regarded as the submanifold of C2 consisting of pairs (z1, z2) such that |z1|2 +|z2|2 = 1, and define

on it the action by the group U (1) of unit modulus complex numbers:(
e iθ, (z1, z2)

)
7→

(
e iθz1,e iθz2

)
.

Then CP 1 is the quotient of S3 under this action. Notice that the orbits are circles, so we should expect the quo-

tient to be a 2-dimensional (real) manifold. In fact, CP 1 has the structure of a smooth manifold diffeomorphic

to S2. (It is also a 1-dimensional complex manifold.) The quotient map defines a circle bundle π : S3 → S2 called

the Hopf bundle.

There are several ways to show that CP 1 is diffeomorphic to S2. I find the following, inspired by a view from

quantum theory, especially interesting. Let M denote the space of self-adjoint 2×2 complex matrices of trace 0.

Such matrices can be written as

σ · x := x1σ1 +x2σ2 +x3σ3 =
(

x3 x1 + i x2

x1 − i x2 −x3

)

where

σ1 :=
(

0 1

1 0

)
, σ2 :=

(
0 −i

i 0

)
, σ3 :=

(
1 0

0 −1

)

are the so called Pauli matrices. The x j are real. We are interested in x ∈ S2. Note that

(σ · x)2 = |x|2
(

1 0

0 1

)
= I

where |x|2 = x2
1+x2

2+x2
3 = 1 and I is the identity matrix. The matricesσ·x for x ∈ S2 have eigenvalues ±1. In fact,

consider the matrices P±(x) = 1
2 (I ±σ · x). They are the orthogonal projections to the 1-dimensional subspaces

of C2 spanned by the eigenvalues ±1. This is a consequence of the easy to verify matrix identities (where P∗

indicates the transpose-conjugate, or matrix adjoint):

P±(x)∗ = P±(x), P±(x)2 = P±(x), P−(x)P+(x) = P+(x)P−(x) = 0, P−(x)+P+(x) = I , σ · xP±(x) =±P±(x).

We have in this way used S2 to parametrize all the (both) self-adjoint and unitary 2×2 complex matrices having

distinct eigenvalues. Let u(x) be a unit length eigenvector in C2 associated to the eigenvalue 1 of P+(x). Thus

u(x) ∈ S3 and P+(x)u(x) = u(x). Observe that P+(x) is the rank-1 orthogonal projection matrix given by

v 7→ P+(x)v = 〈u(x), v〉u(x)

for v ∈C2. Here 〈·, ·〉 is the Hermitian inner product in C2 given by: 〈(z1, z2), (w1, w2)〉 = z1w1 + z2w2.

We may write P+(x) = u(x)⊗u(x)∗, where u(x)∗ is the dual vector to u(x). (In quantum theory notation, using

Dirac’s bra-kets, u(x)⊗u(x)∗ = |x〉〈x|.)
The outcome of the above discussion is this: if we identify each element of projective space CP 1 with the or-

thogonal projection operator P+(x) in the Hilbert space C2 onto the eigenspace of σ · x for eigenvalue 1, we

obtain a map S2 → CP 1 which it is not difficult to show is a diffeomorphism. (In this way, the complex projec-

tive space can be regarded as a submanifold of a three-dimensional (over R) space of matrices.) Note that this

map is well-defined since a different choice e iθu(x) of unit length eigenvector will give the same projection map
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u(x)⊗u(x)∗. On the other hand, each projection can be written as the image of a point in S3 under the map

π : S3 = {z = (z1, z2) ∈C2 : |z1|2 +|z2|2 = 1} →CP 1 ∼= S2

such that π(z) = z ⊗ z∗. Observe that π
(
eλi z

)=π(z) since

π
(
eλi z

)
=

(
eλi z

)
⊗

(
eλi z

)∗ = eλi e−λi z ⊗ z∗ = z ⊗ z∗ =π(z).

So we have, as expected, that CP 1 is a quotient of S3 under the diagonal action of the circle group U (1) on S3:

eλi (z1, z2) =
(
eλi z1,eλi z2

)
.

The identification between S2 and CP 1 is accomplished by the bijection x 7→σ ·x. The resulting map π : S3 → S2

is, again, the Hopf bundle.

⋄

10. The complex projective space CP n . On Cn+1 \ {0} = {
Z = (z0, . . . , zn) ̸= 0 : z j = x j + i y j

}
define the equivalence

relation on Cn+1 \ {0}: Z = (z0, . . . , zn) ∼ W = (w0, . . . , wn) if z j = λw j for all j where λ ∈ C \ {0}. The equivalence

class represented by Z —the complex line through the origin containing Z —will be denoted [Z ]. The quotient

CP n :=Cn+1 \ {0}/ ∼

is called the complex projective space of complex dimension n.

(a) Show that CP n has a differentiable structure of a manifold of real dimension 2n. Note: The proof is in

Example C.19, page 413, of Lee’s text.

(b) Let 〈Z ,W 〉 = z0w0 +·· ·+ zn wn be the Hermitian product on Cn+1, where the bar denotes complex conju-

gation. Identify Cn+1 ≈R2n+2 by writing z j = x j + i y j = (x j , y j ). Show that

S2n+1 = {
N ∈Cn+1 ≈R2n+2 : 〈N , N〉 = 1

}
is the unit sphere in R2n+2.

(c) Show that ∼ induces on S2n+1 the following equivalence relation: Z ∼W if W = e iθZ . Establish that there

exists a differentiable map (the Hopf bundle) f : S2n+1 →CP n , such that

f −1([Z ]) =
{

e iθN ∈ S2n+1 : N ∈ [Z ]∩S2n+1,0 ≤ θ ≤ 2π
}
= [Z ]∩S2n+1.

(d) Show that f is a submersion. (This is already in Example C.19, so nothing more to do here.)

11. Curvature of the complex projective space. (This is similar to Problem 8-13, page 258 of Lee’s text.) Define a

Riemannian metric on Cn+1 \ {0} in the following way: If Z ∈Cn+1 \ {0} and V ,W ∈ TZ (Cn+1 \ {0}),

〈V ,W 〉Z = Real(〈V ,W 〉0)

〈Z , Z 〉0

where 〈V ,W 〉0 := v0w0 +·· ·+ vn wn . Observe that the metric 〈·, ·〉 restricted to S2n+1 ⊆ Cn+1 \ {0} coincides with

the metric induced from R2n+2.
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(a) Show that, for all 0 ≤ θ ≤ 2π, e iθ : S2n+1 → S2n+1 is an isometry, and that, therefore, it is possible to define

a Riemannian metric on P n(C) in such a way that the submersion f defined in the previous problem is

Riemannian.

(b) Show that, in this metric, the sectional curvature of P n(C) is given by

K (σ) = 1+3cos2ϕ,

where σ is generated by the orthonormal pair X ,Y , cosϕ=
〈

X , i Y
〉

, and X ,Y are the horizontal lifts of X

and Y , respectively. In particular, 1 ≤ K (σ) ≤ 4.

Hint for part (b): Let Z be the position vector describing S2n+1. Since(
d

dθ
e iθZ

)
θ=0

= i Z

i Z ∈ TZ S2n+1 and it is vertical. Let ∇ be the Levi-Civita connection of R2n+2 ≈ Cn+1 and X ,Y ∈ X(CP n). Take

α : (−ϵ,ϵ) → S2n+1 with α(0) = Z , α′(0) = X . Then

(∇X i Z
)

Z = d

d t
i Z ◦α(t )

∣∣∣∣
t=0

= iα(t )|t=0 = iα′(0) = i X .

Therefore 〈[
X ,Y

]
, i Z

〉
=

〈
∇X Y −∇Y X , i Z

〉
=−

〈
i X ,Y

〉
+

〈
i Y , X

〉
= 2cosϕ.

Now use the above facts about the sectional curvature of a Riemannian submersion.
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