Homework set 8 - due 11/01/20

Math 5047 — Renato Feres

Turn in problems 1, 2, 8, 11(b). In problems 8 and 11(b) (and all others), you may freely quote from statements
made in other exercises from this assignment.
1. The gradient, divergence and Laplacian. Let (M, (-,-)) be an oriented Riemannian manifold with volume form
w and f: M — R a smooth function. The gradient of f is the vector field denoted g — grad, f such that, for all
veTyM,
(grad, f,v) =d fp(v).
Here d f, v := v is the directional derivative of /" along v. The divergence of a vector field X on M is the function

q — divg X such that
Zxw = (divX)w

where £ is the Lie derivative along X. The Laplacian of a smooth function f is
Af =div(gradf).

Let Ey, ..., E, be an orthonormal frame on the open set 2 < M and V the Levi-Civita connection on M. Recall
that the connection 1-forms relative to the frame {E;} are defined as w;;(v) = (E;, Vy E}).

(a) Show thatgradf =Y1_, (E;f)E; for any smooth function f on %.

(b) Show thatdivX =Y" | E;(E;, X) + Z?,j:l (Ej, X)w; j(E;) for any smooth vector field X on %.
(c) ShowthatAf=3%" EE;f+ Zl'.szl w;j(E;)Ej f for any smooth function f on %.

(d) Show thatif f, g are smooth functions on M,

A(fg) = fAg+gAf+2(gradf,gradg).

(e) We say that the orthonormal frame {E;} is geodesic at q € % if (Vg,Ej)4 = 0 for all i, j. Convince yourself
that a geodesic frame at g exists on some neighborhood of g, but you don't have to write it down. (The key
idea is this: Let % be the image under Exp, of a small ball in T; M centered at the origin. Letey, ..., e, be an
orthonormal basis of T; M. Define E; at p € % as the parallel transport of e; along the unique geodesic from
g to p contained in %/. ) Conclude that, relative to a geodesic orthonormal frame {E;} at g on a sufficiently
small neighborhood % of g, the divergence of X and the Laplacian of f at g (but not necessarily at other
points of %) are

n n
divyX = ) E;(E;, X)(q), (Af)(q@) =) Ei(Eif)(q).
i=1 i=1

2. Harmonic functions are constant on a compact manifold. For this problem, you may need to review Stokes’

f v:f dv
oM M

theorem on a manifold with boundary:



where v is a compactly supported (n — 1)-form on the n-dimensional manifold M.

(a) Show that if X is a (compactly supported) smooth vector field on the oriented Riemannian manifold M,
then
f (divX)vol, =f (N, X)volaps
M oM

where voly, is the volume form of M and voly,, is the induced volume form on 6 M. This is the divergence
theorem. In words: the integral of the divergence of the vector field X is the flux of that vector field across
the boundary.

(b) Using the divergence theorem, show that if f is a smooth function on a compact Riemannian manifold M
without boundary, then

f (Af)volp =0.
M
(This is the statement that the volume form is harmonic in the weak sense.)

(c) Suppose f is a harmonic function on the compact, connected Riemannian manifold M without boundary;
that is, Af = 0. Show that f must be constant. (Suggestion: Start with 0 = f;,A( fz) volys and express the
integral in terms of the gradient of f using an identity from the previous problem.)

3. Geodesics in lens spaces. Identify R* with C? by letting (x1, X2, X3, X4) correspond to (x; + ix», X3 + ix4). Let
$*={(z1,2) € C*: |21/ +|2)* = 1},

andlet h: S — S3 be given by
2mir

i 2nir 3
h(z1,22) = (e 7 z1,e 9 Zz), (z1,22) €57,
where g and r are relatively prime integers, g > 2.
(a) Show that G = {id, h,---, h971} is a group of isometries of the sphere S3, with the usual metric, which oper-
ates in a totally discontinuous manner. The manifold S®/G is called a lens space.
(b) Consider S®/G with the metric induced by the projection p : $3 — S3/G. Show that all the geodesics of S3/G

are closed but can have different lengths.

4. Exterior derivative expressed in terms of a connection. If w is a differential k-form on a smooth manifold M

equipped with a torsion-free (i.e., symmetric) connection V, show that
k . N
do(Xo,...,Xp) = Y_ (-1 (Vx,0) (Xo,-., Xiy ..., Xk),
i=0

where Xy, X3, ..., Xx € X(M) and the hat symbol X indicates that the corresponding vector field is dropped.

Note: A useful identity involving the exterior product which, unfortunately, is not in the appendix of Lee’s text,

is the following:

k . -~
(dw) (Xo,..., Xx) = Y (-1'X; (0 (Xo, ..., Xi, .., X))
i=0
+ Y Do (X, XG1, Xoye oo Xy oo Xiy oo X2

i<j

You may take it for granted.



5. Riemannian metric on the tangent bundle of a Riemannian manifold. It is possible to introduce a Riemannian
metric on the tangent bundle N = T M of a Riemannian manifold M in the following manner. Let (p, v) € N and
V, W be tangent vectors in N at (p,v). Choose curves a : t — (p(t),v(f)) and B: s — (g(s), w(s)) in N with
p(0)=¢q(0) = p, v(0) = w(0) = v, and V = a’(0), W = §/(0). Define an inner product on N by

Dv Dw
V,w =(d v,d W) +(—1(00),— () ) , 1
( Y(p,v) < T(p,v) T(p,v) >p <dt( ) s ( )>p D
where d7(y,y) is the differential of the base point projection 7 : N — M. It is not difficult to show that this inner
product is well-defined (i.e., it is independent of the choices of @ and ) and that it indeed defines a Riemannian
metric on N. This is often called the Sasaki metric on T M.

A vector V at (p,v) € N that is orthogonal (in the metric (1)) to the fiber 77! (p) = Ty M is called a horizontal
vector. A curve t — (p(1),v(#)) in N is horizontal if its tangent vector is horizontal for all ¢. Here are some facts

we know (from other homework assignments or from class):

e The curve ¢t — (p(1), v(?)) is horizontal if and only if the vector field v(¢) is parallel along p(¢) € M.

» We define the geodesic vector field Z as the horizontal vector field on N such that d7 ) Z(p, v) = v for all
(p,v) € N. The flow line t — ®(p, v) of the flow @; of Z projects under 7 to the geodesic on M with initial
conditions (p, v).

Problems:

(a) Let V be a vertical vector in T, ,) N. Recall that we may regard V as a vector in T, M due to the canonical
isomorphism between T, M and the vertical subspace of Ty ) N:

d
VeT,M— —(@+tV)| €TyyN.
dt =0

Show that J(¢) := d(w o @) p,1) V is a Jacobi field with initial conditions J(0) = 0 and % o=V.

(b) Let V be a horizontal vector in T(p,,) N and w := d7(,,,) V. Show that J(£) := d(7w o ®¢)(p,) V is a Jacobi field
with initial conditions J(0) = w and Z—{(O) =0.

6. Riemannian submersions. Read about Riemannian products (Chapter 2, page 20) and Riemannian submer-
sions (Chapter 2, page 21) in Lee’s text. Let M and M be manifolds of dimension 7 + k and n, respectively.
A differentiable mapping f : M — M is called submersion if f is surjective, and for all p € M, the differential
dfg: TﬁM — Ty M has rank n. In this case, for all p € M, the fiber flp = F, is a submanifold of M (by the
implicit function theorem) and a tangent vector of M, tangent to some F,, p € M, is called a vertical vector of
the submersion. If, in addition, M and M have Riemannian metrics, the submersion f is said to be Riemannian
ifdfy,: T,,I\_/I — Trp M preserves lengths of vectors orthogonal to F, forall p € M.

(@) If M; x M, is the Riemannian product, then the natural projections ; : My x M, — M;, i = 1,2, are Rieman-
nian submersions.
(b) If the tangent bundle N = T M is given the Riemannian metric as in the previous exercise, then the projec-

tionz: TM — M is a Riemannian submersion.

7. Connection of a Riemannian submersion. Let f : M — M be a Riemannian submersion. A vector X € Tﬁl\_/[ is
horizontal if it is orthogonal to the fiber. The tangent space Tgl\_/l then admits a decomposition

1,8 = (15M)" o (1;3)',



—\h —\V
where (TgM ) and (TﬁM) denote the subspaces of horizontal and vertical vectors, respectively. If X € X(M),

the horizontal lift X of X is the horizontal field defined by d i (Y(ﬁ)) = X(f(p)). You may take for granted (but
think about it!) that X is a smooth vector field.

(a) Show that X is a smooth vector field.

(b) LetV and V be the Riemannian connections of M and M, respectively. Show that

17— —v
vgyzvxy+5[x,y] . X,Y e X(M),

where ZV is the vertical component of Z.

(© [X?] ’ (p) depends only on X (p) and Y (p).

Hint for (b): Let X, Y, Ze X(M). Let Te X (1\_/[) be a vertical field. Observe that
(X, 1)=(V,1)=(Z1)=0, X(V,Z) = X(V,2).

Also
df [Y, :r] =0, [X,Y]= [dfi,df?] =df [Y,?]

and

From this we can conclude that
(|x7].2)=ax.v,2, ([x1]¥)=0.
We can now use the expression for the Levi-Civita connection in Theorem 5.10 to obtain
(Vx¥.Z) =xv,2), 2(V5Y,T)=(T,[X,7]).
This implies the desired identities.

8. Curvature of a Riemannian submersion. Let f : ‘M — M be a Riemannian submersion. Let X, Y, X, W € X(M)
and X,Y,Z, W be their horizontal lifts. Let R and R be the curvature tensors of M and M, respectively. Prove
that

oz e = (R 570) 4 (%2) [70] Yo b7 7] (£ )32 57

(b) If o is the plane generated by the orthonormal vectors X, Y € X(M) and G is the plane generated by X, Y,
then
— 30— —1v)12 — _
K©o) =Ko+ |[X7] | 2k@.

9. The Hopf bundle and CP'. (This is only reading.) The complex projective space of complex dimension 1 is
defined as the set of complex lines (one-dimensional complex vector subspaces) in C2. Formally, it is defined
as the quotient of C?\ {0} (the 2-dimensional complex vector space minus the origin) under the equivalence
relation that identifies any two non-zero vectors that are collinear. Equivalently, let 3 denote the 3-dimensional



unit sphere, regarded as the submanifold of c? consisting of pairs (z1, z2) such that |z; |2 +|22]? = 1, and define

on it the action by the group U(1) of unit modulus complex numbers:
(ew' (Zl'Zz)) — (eiezl, eiBZZ) .

Then CP! is the quotient of S® under this action. Notice that the orbits are circles, so we should expect the quo-
tient to be a 2-dimensional (real) manifold. In fact, CP! has the structure of a smooth manifold diffeomorphic
to S2. (It is also a 1-dimensional complex manifold.) The quotient map defines a circle bundlen : S — S? called
the Hopf bundle.

There are several ways to show that CP! is diffeomorphic to S2. I find the following, inspired by a view from
quantum theory, especially interesting. Let M denote the space of self-adjoint 2 x 2 complex matrices of trace 0.
Such matrices can be written as

X3 X1 +ixo
X1 — i.X'Q —X3

0 1 0 —i 1 0
01:= , O2:= , 03:=
711 o0 =Tl oo 1o -1

are the so called Pauli matrices. The x; are real. We are interested in x € S2. Note that

(a-x)2=IXI2( Lo )=I
0 1

where |x|? = xf + x% + xg =1and [ is the identity matrix. The matrices o - x for x € S2 have eigenvalues +1. In fact,

U'XZ:.X10'1+JC20'2+)C303=(

where

consider the matrices P, (x) = %(I + 0 - x). They are the orthogonal projections to the 1-dimensional subspaces
of C? spanned by the eigenvalues +1. This is a consequence of the easy to verify matrix identities (where P*
indicates the transpose-conjugate, or matrix adjoint):

Py(x)* = Pu(x), P+(x)*=Ps(x), P_(x)P+(x) = P4(x)P_(x) =0, P_(x)+P4(x) =1, 0-xPs(x) = +P.(x).

We have in this way used S? to parametrize all the (both) self-adjoint and unitary 2 x 2 complex matrices having
distinct eigenvalues. Let u(x) be a unit length eigenvector in C? associated to the eigenvalue 1 of P, (x). Thus

u(x) € S® and P, (x)u(x) = u(x). Observe that P, (x) is the rank-1 orthogonal projection matrix given by
v— P, (x)v =(u(x), vyu(x)

for v € C2. Here (-,-) is the Hermitian inner product in C? given by: ((z1, 22), (W1, W) =Z1 W1 + 2o W>.

We may write P, (x) = u(x) ® u(x)*, where u(x)* is the dual vector to u(x). (In quantum theory notation, using
Dirac’s bra-kets, u(x) ® u(x)* = |x){x|.)

The outcome of the above discussion is this: if we identify each element of projective space CP! with the or-
thogonal projection operator P, (x) in the Hilbert space C? onto the eigenspace of o - x for eigenvalue 1, we
obtain a map S?> — CP! which it is not difficult to show is a diffeomorphism. (In this way, the complex projec-
tive space can be regarded as a submanifold of a three-dimensional (over R) space of matrices.) Note that this

map is well-defined since a different choice e’/ u(x) of unit length eigenvector will give the same projection map



u(x) ® u(x)*. On the other hand, each projection can be written as the image of a point in $% under the map
n:8={z=(21,22) €C*:|z1)* +|22/* =1} - CP' = §*
such that 7(z) = z® z*. Observe that 7 (e} z) = 7(z) since
T (e’“z) = (e’”z) ® (e’“z)* =eMeMze 2" = 202" = n1(2).
So we have, as expected, that CP! is a quotient of S* under the diagonal action of the circle group U(1) on S3:

A

Mz, 29) = (e lzl,eMZz).

The identification between S? and CP! is accomplished by the bijection x — o - x. The resulting map 7 : S — 52
is, again, the Hopf bundle.

i

10. The complex projective space CP”. On C**!\ {0} = {Z=(z0,...,20) #0: Zj=Xj+ iyj} define the equivalence
relation on C"*\ {0}: Z = (zg,...,2,) ~ W = (W, ..., wy) if zj = Aw; for all j where A € C\ {0}. The equivalence
class represented by Z—the complex line through the origin containing Z—will be denoted [Z]. The quotient

CP":=C™ !\ {0}/ ~

is called the complex projective space of complex dimension n.

(a) Show that CP" has a differentiable structure of a manifold of real dimension 2n. Note: The proof is in
Example C.19, page 413, of Lee’s text.

(b) Let(Z,W)=2zywqo+ -+ z, Wy be the Hermitian product on C"*! where the bar denotes complex conju-
gation. Identify C"*! = R*"*2 by writing z; = xj + iy; = (x;, y;). Show that

52n+1 — {NE Cn+1 ~ [R2n+2 . (N,N> — 1}

is the unit sphere in R?"**2,

(c) Show that ~ induces on §2"*! the following equivalence relation: Z ~ W if W = ¢'? 7. Establish that there
exists a differentiable map (the Hopf bundle) f: S?**! — CP", such that

Fluzn={e"Nesm i Ne(Z1ns*" 0 <0 <2n} = (2] n S*T

(d) Show that f is a submersion. (This is already in Example C.19, so nothing more to do here.)

11. Curvature of the complex projective space. (This is similar to Problem 8-13, page 258 of Lee’s text.) Define a
Riemannian metric on C"*!\ {0} in the following way: If Z € C**1\ {0} and V, W € Tz (C"*"' \ {0}),

Real({V, W)o)

(V\W)z = Z. 7%

where (V, W) := Towg + - -- + U wy,. Observe that the metric (-,-) restricted to $2"*1 < C"*1\ {0} coincides with
the metric induced from R2"+2,



(a) Show that, for all 0 < 0 < 27, e/ : §27*1 — §27*+1 js an isometry, and that, therefore, it is possible to define
a Riemannian metric on P"(C) in such a way that the submersion f defined in the previous problem is
Riemannian.

(b) Show that, in this metric, the sectional curvature of P"(C) is given by
Ko)=1 +3cosz(p,

where o is generated by the orthonormal pair X, Y, cos¢ = <f, i?>, and X, Y are the horizontal lifts of X

and Y, respectively. In particular, 1 < K(0) < 4.

Hint for part (b): Let Z be the position vector describing $>"*!. Since

d .
(—e’9 Z) =iz
do =0

iZ € T,S*"*1 and it is vertical. Let V be the Levi-Civita connection of R?"*2 =~ C"*1 and X, Y € ¥(CP"). Take
a:(—€e) — S with a(0) = Z, a/(0) = X. Then

=ia(t)|,=0 =ia'(0) = iX.

V+iZ) iz a(t)
~ = — [e]
X Z dt =0

Therefore
([%7].iz)=(Vx7-V3X,iz) == (iX,7)+(iV,X) =2cos¢.

Now use the above facts about the sectional curvature of a Riemannian submersion.



