Homework set 8 - due 11/01/20

Math 5047 – Renato Feres

Turn in problems 1, 2, 8, 11(b). In problems 8 and 11(b) (and all others), you may freely quote from statements made in other exercises from this assignment.

1. **The gradient, divergence and Laplacian.** Let $(M, \langle \cdot, \cdot \rangle)$ be an oriented Riemannian manifold with volume form ω and $f : M \to \mathbb{R}$ a smooth function. The *gradient* of f is the vector field denoted $q \to \text{grad}_q f$ such that, for all $v \in T_a M$,

$$
\langle \text{grad}_q f, v \rangle = df_p(v).
$$

Here $df_p v := v f$ is the directional derivative of f along v. The *divergence* of a vector field *X* on *M* is the function $q \mapsto \text{div}_q X$ such that

$$
\mathscr{L}_X\omega=(\mathrm{div}X)\omega
$$

where \mathcal{L}_X is the Lie derivative along *X*. The *Laplacian* of a smooth function *f* is

$$
\Delta f = \text{div}(\text{grad} f).
$$

Let E_1, \ldots, E_n be an orthonormal frame on the open set $\mathcal{U} \subseteq M$ and ∇ the Levi-Civita connection on *M*. Recall that the connection 1-forms relative to the frame ${E_i}$ are defined as $\omega_{ij}(v) = \langle E_i, \nabla_v E_j \rangle$.

- (a) Show that $\text{grad } f = \sum_{i=1}^{n} (E_i f) E_i$ for any smooth function f on \mathcal{U} .
- (b) Show that div $X = \sum_{i=1}^{n} E_i \langle E_i, X \rangle + \sum_{i,j=1}^{n} \langle E_j, X \rangle \omega_{ij} (E_i)$ for any smooth vector field X on \mathcal{U} .
- (c) Show that $\Delta f = \sum_{i=1}^{n} E_i E_i f + \sum_{i,j=1}^{n} \omega_{ij} (E_i) E_j f$ for any smooth function f on \mathcal{U} .
- (d) Show that if *f* , *g* are smooth functions on *M*,

$$
\Delta(fg) = f\Delta g + g\Delta f + 2\langle \text{grad} f, \text{grad} g \rangle.
$$

(e) We say that the orthonormal frame ${E_i}$ is *geodesic* at $q \in \mathcal{U}$ if $(\nabla_{E_i} E_j)_q = 0$ for all *i*, *j*. Convince yourself that a geodesic frame at *q* exists on some neighborhood of *q*, but you don't have to write it down. (The key idea is this: Let \mathcal{U} be the image under Exp_q of a small ball in T_qM centered at the origin. Let $e_1,...,e_n$ be an orthonormal basis of T_aM . Define E_i at $p \in \mathcal{U}$ as the parallel transport of e_i along the unique geodesic from *q* to *p* contained in \mathcal{U} .) Conclude that, relative to a geodesic orthonormal frame {*E_i*} at *q* on a sufficiently small neighborhood $\mathcal U$ of q , the divergence of X and the Laplacian of f at q (but not necessarily at other points of \mathcal{U} are

$$
\text{div}_{q} X = \sum_{i=1}^{n} E_{i}(\langle E_{i}, X \rangle)(q), \quad (\Delta f)(q) = \sum_{i=1}^{n} E_{i}(E_{i}f)(q).
$$

2. **Harmonic functions are constant on a compact manifold.** For this problem, you may need to review Stokes' theorem on a manifold with boundary:

$$
\int_{\partial M} v = \int_M dv
$$

where *v* is a compactly supported $(n-1)$ -form on the *n*-dimensional manifold *M*.

(a) Show that if *X* is a (compactly supported) smooth vector field on the oriented Riemannian manifold *M*, then

$$
\int_M (\text{div} X) \text{vol}_M = \int_{\partial M} \langle N, X \rangle \text{vol}_{\partial M}
$$

where vol*^M* is the volume form of *M* and vol*∂^M* is the induced volume form on *∂M*. This is the *divergence theorem*. In words: the integral of the divergence of the vector field *X* is the flux of that vector field across the boundary.

(b) Using the divergence theorem, show that if *f* is a smooth function on a compact Riemannian manifold *M* without boundary, then

$$
\int_M (\Delta f) \text{vol}_M = 0.
$$

(This is the statement that the volume form is harmonic in the weak sense.)

- (c) Suppose *f* is a harmonic function on the compact, connected Riemannian manifold *M* without boundary; that is, $\Delta f = 0$. Show that *f* must be constant. (Suggestion: Start with $0 = \int_M \Delta(f^2) \text{vol}_M$ and express the integral in terms of the gradient of *f* using an identity from the previous problem.)
- 3. **Geodesics in lens spaces.** Identify \mathbb{R}^4 with \mathbb{C}^2 by letting (x_1, x_2, x_3, x_4) correspond to $(x_1 + ix_2, x_3 + ix_4)$. Let

$$
S^3 = \left\{ (z_1, z_2) \in \mathbb{C}^2 : |z_1|^2 + |z_2|^2 = 1 \right\},\
$$

and let $h: S^3 \to S^3$ be given by

$$
h(z_1,z_2)=\left(e^{\frac{2\pi i}{q}}z_1,e^{\frac{2\pi ir}{q}}z_2\right),\ (z_1,z_2)\in S^3,
$$

where *q* and *r* are relatively prime integers, $q > 2$.

- (a) Show that $G = \{\text{id}, h, \dots, h^{q-1}\}\$ is a group of isometries of the sphere S^3 , with the usual metric, which operates in a totally discontinuous manner. The manifold *S* 3 /*G* is called a *lens space*.
- (b) Consider S^3/G with the metric induced by the projection $p: S^3 \to S^3/G$. Show that all the geodesics of S^3/G are closed but can have different lengths.
- 4. **Exterior derivative expressed in terms of a connection.** If *ω* is a differential *k*-form on a smooth manifold *M* equipped with a torsion-free (i.e., symmetric) connection ∇, show that

$$
d\omega(X_0,\ldots,X_k)=\sum_{i=0}^k(-1)^i\left(\nabla_{X_i}\omega\right)\left(X_0,\ldots,\widehat{X}_i,\ldots,X_k\right),
$$

where $X_0, X_1, \ldots, X_k \in \mathfrak{X}(M)$ and the hat symbol \widehat{X} indicates that the corresponding vector field is dropped. Note: A useful identity involving the exterior product which, unfortunately, is not in the appendix of Lee's text, is the following:

$$
(d\omega)(X_0,...,X_k) = \sum_{i=0}^k (-1)^i X_i \big(\omega(X_0,...,\widehat{X}_i,...,X_k) \big) + \sum_{i < j} (-1)^{i+j} \omega([X_i,X_j],X_0,...,\widehat{X}_j,...,\widehat{X}_i,...,X_k).
$$

You may take it for granted.

5. **Riemannian metric on the tangent bundle of a Riemannian manifold.** It is possible to introduce a Riemannian metric on the tangent bundle $N = TM$ of a Riemannian manifold M in the following manner. Let $(p, v) \in N$ and V, W be tangent vectors in N at (p, v) . Choose curves $\alpha : t \mapsto (p(t), v(t))$ and $\beta : s \mapsto (q(s), w(s))$ in N with $p(0) = q(0) = p$, $v(0) = w(0) = v$, and $V = \alpha'(0)$, $W = \beta'(0)$. Define an inner product on *N* by

$$
\langle V, W \rangle_{(p,v)} := \langle d\pi_{(p,v)} V, d\pi_{(p,v)} W \rangle_p + \langle \frac{Dv}{dt}(0), \frac{Dw}{ds}(0) \rangle_p,
$$
\n(1)

where $d\pi_{(p,\nu)}$ is the differential of the base point projection $\pi : N \to M$. It is not difficult to show that this inner product is well-defined (i.e., it is independent of the choices of *α* and *β*) and that it indeed defines a Riemannian metric on *N*. This is often called the *Sasaki* metric on *T M*.

A vector *V* at $(p, v) \in N$ that is orthogonal (in the metric (1)) to the fiber $\pi^{-1}(p) \cong T_pM$ is called a *horizontal vector.* A curve $t \mapsto (p(t), v(t))$ in *N* is *horizontal* if its tangent vector is horizontal for all *t*. Here are some facts we know (from other homework assignments or from class):

- The curve $t \mapsto (p(t), v(t))$ is horizontal if and only if the vector field $v(t)$ is parallel along $p(t) \in M$.
- We define the *geodesic vector field* Z as the horizontal vector field on *N* such that $d\pi_{(p,v)}Z(p,v) = v$ for all $(p, v) \in N$. The flow line $t \mapsto \Phi_t(p, v)$ of the flow Φ_t of *Z* projects under *π* to the geodesic on *M* with initial conditions (*p*, *v*).

Problems:

(a) Let *V* be a vertical vector in $T_{(p,v)}N$. Recall that we may regard *V* as a vector in T_pM due to the canonical isomorphism between T_pM and the vertical subspace of $T_{(p,v)}N$:

$$
V \in T_p M \mapsto \left. \frac{d}{dt} (\nu + tV) \right|_{t=0} \in T_{(p,\nu)} N.
$$

Show that $J(t) := d(\pi \circ \Phi_t)_{(p,v)} V$ is a Jacobi field with initial conditions $J(0) = 0$ and $\frac{DJ}{dt}(0) = V$.

- (b) Let V be a horizontal vector in $T_{(p,v)}N$ and $w := d\pi_{(p,v)}V$. Show that $J(t) := d(\pi \circ \Phi_t)_{(p,v)}V$ is a Jacobi field with initial conditions $J(0) = w$ and $\frac{DJ}{dt}(0) = 0$.
- 6. **Riemannian submersions**. Read about Riemannian products (Chapter 2, page 20) and Riemannian submersions (Chapter 2, page 21) in Lee's text. Let *M* and *M* be manifolds of dimension $n + k$ and *n*, respectively. A differentiable mapping $f : \overline{M} \to M$ is called *submersion* if f is surjective, and for all $\overline{p} \in \overline{M}$, the differential $df_{\overline{p}}:T_{\overline{p}}\overline{M}\to T_{f(\overline{p})}M$ has rank *n*. In this case, for all $p\in M$, the *fiber* $f^{-1}(p)=F_p$ is a submanifold of \overline{M} (by the implicit function theorem) and a tangent vector of \overline{M} , tangent to some F_p , $p \in M$, is called a *vertical vector* of the submersion. If, in addition, *M* and *M* have Riemannian metrics, the submersion *f* is said to be *Riemannian* if $df_p: T_p\overline{M} \to T_{f(p)}M$ preserves lengths of vectors orthogonal to F_p , for all $p \in \overline{M}$.
	- (a) If $M_1 \times M_2$ is the Riemannian product, then the natural projections $\pi_i : M_1 \times M_2 \to M_i$, $i = 1, 2$, are Riemannian submersions.
	- (b) If the tangent bundle $N = TM$ is given the Riemannian metric as in the previous exercise, then the projection $\pi : TM \rightarrow M$ is a Riemannian submersion.
- 7. **Connection of a Riemannian submersion.** Let $f : \overline{M} \to M$ be a Riemannian submersion. A vector $\overline{x} \in T_{\overline{n}}\overline{M}$ is *horizontal* if it is orthogonal to the fiber. The tangent space $T_{\overline{p}}\overline{M}$ then admits a decomposition

$$
T_{\overline{p}}\overline{M} = \left(T_{\overline{p}}\overline{M}\right)^h \oplus \left(T_{\overline{p}}\overline{M}\right)^{\nu},
$$

where $\left(T_{\overline{p}}\overline{M}\right)^h$ and $\left(T_{\overline{p}}\overline{M}\right)^v$ denote the subspaces of horizontal and vertical vectors, respectively. If $X\in\mathfrak{X}(M)$, the *horizontal lift* \overline{X} of X is the horizontal field defined by $df_{\overline{p}}\big(\overline{X}(\overline{p})\big)=X(f(p)).$ You may take for granted (but think about it!) that \overline{X} is a smooth vector field.

- (a) Show that \overline{X} is a smooth vector field.
- (b) Let ∇ and $\overline{\nabla}$ be the Riemannian connections of *M* and \overline{M} , respectively. Show that

$$
\overline{\nabla}_{\overline{X}}\overline{Y} = \overline{\nabla_{X}Y} + \frac{1}{2} \left[\overline{X}, \overline{Y} \right]^{\nu}, \quad X, Y \in \mathfrak{X}(M),
$$

where Z^v is the vertical component of Z .

(c) $\left[\overline{X}, \overline{Y}\right]^{\nu}(\overline{p})$ depends only on $\overline{X}(\overline{p})$ and $\overline{Y}(\overline{p})$.

Hint for (b): Let *X*, *Y*, *Z* \in $\mathfrak{X}(M)$. Let T \in $\mathfrak{X}\left[\overline{M}\right]$ be a vertical field. Observe that

$$
\langle \overline{X}, T \rangle = \langle \overline{Y}, T \rangle = \langle \overline{Z}, T \rangle = 0, \overline{X} \langle \overline{Y}, \overline{Z} \rangle = X \langle Y, Z \rangle.
$$

Also

$$
df\left[\overline{X},T\right] = 0, \quad [X,Y] = \left[d\overline{fX},d\overline{fY}\right] = df\left[\overline{X},\overline{Y}\right]
$$

and

$$
T\left\langle \overline{X},\overline{Y}\right\rangle =0.
$$

From this we can conclude that

$$
\left\langle \left[\overline{X}, \overline{Y} \right], \overline{Z} \right\rangle = \left\langle [X, Y], Z \right\rangle, \quad \left\langle \left[\overline{X}, T \right], \overline{Y} \right\rangle = 0.
$$

We can now use the expression for the Levi-Civita connection in Theorem 5.10 to obtain

$$
\left\langle \overline{\nabla}_{\overline{X}} \overline{Y}, \overline{Z} \right\rangle = \left\langle \nabla_X Y, Z \right\rangle, \quad 2 \left\langle \overline{\nabla}_{\overline{X}} \overline{Y}, T \right\rangle = \left\langle T, \left[\overline{X}, \overline{Y} \right] \right\rangle.
$$

This implies the desired identities.

8. **Curvature of a Riemannian submersion.** Let $f : \overline{M} \to M$ be a Riemannian submersion. Let *X*, *Y*, *X*, *W* $\in \mathfrak{X}(M)$ and \overline{X} , \overline{Y} , \overline{Z} , \overline{W} be their horizontal lifts. Let *R* and \overline{R} be the curvature tensors of *M* and \overline{M} , respectively. Prove that

(a)

$$
\langle R(X,Y)Z,W\rangle \circ f = \left\langle \overline{R}(\overline{X},\overline{Y})\overline{Z},\overline{W} \right\rangle - \frac{1}{4} \left\langle \left[\overline{X},\overline{Z} \right]^{\nu}, \left[\overline{Y},\overline{W} \right]^{\nu} \right\rangle + \frac{1}{4} \left\langle \left[\overline{Y},\overline{Z} \right]^{\nu}, \left[\overline{X},\overline{W} \right]^{\nu} \right\rangle - \frac{1}{2} \left\langle \left[\overline{Z},\overline{W} \right]^{\nu}, \left[\overline{X},\overline{Y} \right]^{\nu} \right\rangle.
$$

(b) If σ is the plane generated by the orthonormal vectors *X*, $Y \in \mathfrak{X}(M)$ and $\overline{\sigma}$ is the plane generated by \overline{X} , \overline{Y} , then

$$
K(\sigma) = \overline{K}(\sigma) + \frac{3}{4} \left\| \left[\overline{X}, \overline{Y} \right]^{\nu} \right\|^2 \ge \overline{K}(\overline{\sigma}).
$$

9. The Hopf bundle and $\mathbb{C}P^1$. (This is only reading.) The complex projective space of complex dimension 1 is defined as the set of complex lines (one-dimensional complex vector subspaces) in \mathbb{C}^2 . Formally, it is defined as the quotient of $\mathbb{C}^2 \setminus \{0\}$ (the 2-dimensional complex vector space minus the origin) under the equivalence relation that identifies any two non-zero vectors that are collinear. Equivalently, let *S* ³ denote the 3-dimensional

unit sphere, regarded as the submanifold of C^2 consisting of pairs (z_1,z_2) such that $|z_1|^2+|z_2|^2=1$, and define on it the action by the group $U(1)$ of unit modulus complex numbers:

$$
\left(e^{i\theta},(z_1,z_2)\right)\mapsto \left(e^{i\theta}z_1,e^{i\theta}z_2\right).
$$

Then $\mathbb{C}P^1$ is the quotient of S^3 under this action. Notice that the orbits are circles, so we should expect the quotient to be a 2-dimensional (real) manifold. In fact, C*P* ¹ has the structure of a smooth manifold diffeomorphic to *S* 2 . (It is also a 1-dimensional complex manifold.) The quotient map defines a *circle bundle π* : *S* ³ → *S* 2 called the *Hopf bundle*.

There are several ways to show that $\mathbb{C}P^1$ is diffeomorphic to S^2 . I find the following, inspired by a view from quantum theory, especially interesting. Let *M* denote the space of self-adjoint 2×2 complex matrices of trace 0. Such matrices can be written as

$$
\sigma \cdot x := x_1 \sigma_1 + x_2 \sigma_2 + x_3 \sigma_3 = \begin{pmatrix} x_3 & x_1 + i x_2 \\ x_1 - i x_2 & -x_3 \end{pmatrix}
$$

where

$$
\sigma_1 := \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \ \ \sigma_2 := \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right), \ \ \sigma_3 := \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)
$$

are the so called *Pauli matrices*. The x_j are real. We are interested in $x \in S^2$. Note that

$$
(\sigma \cdot x)^2 = |x|^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I
$$

where $|x|^2 = x_1^2 + x_2^2 + x_3^2 = 1$ and *I* is the identity matrix. The matrices $\sigma \cdot x$ for $x \in S^2$ have eigenvalues ± 1 . In fact, consider the matrices $P_{\pm}(x) = \frac{1}{2}(I \pm \sigma \cdot x)$. They are the orthogonal projections to the 1-dimensional subspaces of \mathbb{C}^2 spanned by the eigenvalues ± 1 . This is a consequence of the easy to verify matrix identities (where P^* indicates the transpose-conjugate, or matrix adjoint):

$$
P_{\pm}(x)^{*}=P_{\pm}(x),\;\;P_{\pm}(x)^{2}=P_{\pm}(x),\;\;P_{-}(x)P_{+}(x)=P_{+}(x)P_{-}(x)=0,\;\;P_{-}(x)+P_{+}(x)=I,\;\;\sigma\cdot xP_{\pm}(x)=\pm P_{\pm}(x).
$$

We have in this way used S^2 to parametrize all the (both) self-adjoint and unitary 2 × 2 complex matrices having distinct eigenvalues. Let $u(x)$ be a unit length eigenvector in \mathbb{C}^2 associated to the eigenvalue 1 of $P_+(x)$. Thus *u*(*x*) ∈ *S*³ and *P*₊(*x*)*u*(*x*) = *u*(*x*). Observe that *P*₊(*x*) is the rank-1 orthogonal projection matrix given by

$$
v \mapsto P_+(x) v = \langle u(x), v \rangle u(x)
$$

for $v \in \mathbb{C}^2$. Here $\langle \cdot, \cdot \rangle$ is the Hermitian inner product in \mathbb{C}^2 given by: $\langle (z_1, z_2), (w_1, w_2) \rangle = \overline{z}_1 w_1 + \overline{z}_2 w_2$.

We may write $P_+(x) = u(x) \otimes u(x)^*$, where $u(x)^*$ is the dual vector to $u(x)$. (In quantum theory notation, using Dirac's bra-kets, $u(x) \otimes u(x)^* = |x\rangle\langle x|$.)

The outcome of the above discussion is this: if we identify each element of projective space $\mathbb{C}P^1$ with the orthogonal projection operator $P_+(x)$ in the Hilbert space \mathbb{C}^2 onto the eigenspace of $\sigma \cdot x$ for eigenvalue 1, we obtain a map $S^2 \to \mathbb{C}P^1$ which it is not difficult to show is a diffeomorphism. (In this way, the complex projective space can be regarded as a submanifold of a three-dimensional (over R) space of matrices.) Note that this map is well-defined since a different choice $e^{i\theta}u(x)$ of unit length eigenvector will give the same projection map

 $u(x) \otimes u(x)^*$. On the other hand, each projection can be written as the image of a point in S^3 under the map

$$
\pi : S^3 = \{z = (z_1, z_2) \in \mathbb{C}^2 : |z_1|^2 + |z_2|^2 = 1\} \to \mathbb{C}P^1 \cong S^2
$$

such that $\pi(z) = z \otimes z^*$. Observe that $\pi(e^{\lambda i}z) = \pi(z)$ since

$$
\pi\left(e^{\lambda i}z\right) = \left(e^{\lambda i}z\right)\otimes\left(e^{\lambda i}z\right)^* = e^{\lambda i}e^{-\lambda i}z\otimes z^* = z\otimes z^* = \pi(z).
$$

So we have, as expected, that $\mathbb{C}P^1$ is a quotient of S^3 under the diagonal action of the circle group $U(1)$ on S^3 :

$$
e^{\lambda i}(z_1, z_2) = \left(e^{\lambda i}z_1, e^{\lambda i}z_2\right).
$$

The identification between S^2 and $\mathbb{C}P^1$ is accomplished by the bijection $x\mapsto \sigma\cdot x.$ The resulting map $\pi:S^3\to S^2$ is, again, the Hopf bundle.

$$
\Diamond
$$

10. **The complex projective space** $\mathbb{C}P^n$. On $\mathbb{C}^{n+1}\setminus\{0\} = \{Z = (z_0, ..., z_n) \neq 0 : z_j = x_j + iy_j\}$ define the equivalence relation on $\mathbb{C}^{n+1}\setminus\{0\}$: $Z=(z_0,\ldots,z_n)\sim W=(w_0,\ldots,w_n)$ if $z_j=\lambda w_j$ for all j where $\lambda\in\mathbb{C}\setminus\{0\}$. The equivalence class represented by *Z*—the complex line through the origin containing *Z*—will be denoted [*Z*]. The quotient

$$
\mathbb{C}P^n:=\mathbb{C}^{n+1}\setminus\{0\}/\sim
$$

is called the *complex projective space* of complex dimension *n*.

- (a) Show that $\mathbb{C}P^n$ has a differentiable structure of a manifold of real dimension $2n$. Note: The proof is in Example C.19, page 413, of Lee's text.
- (b) Let $\langle Z, W \rangle = \overline{z}_0 w_0 + \cdots + \overline{z}_n w_n$ be the Hermitian product on \mathbb{C}^{n+1} , where the bar denotes complex conjugation. Identify $\mathbb{C}^{n+1} \approx \mathbb{R}^{2n+2}$ by writing $z_j = x_j + iy_j = (x_j, y_j)$. Show that

$$
S^{2n+1} = \{ N \in \mathbb{C}^{n+1} \approx \mathbb{R}^{2n+2} : \langle N, N \rangle = 1 \}
$$

is the unit sphere in \mathbb{R}^{2n+2} .

(c) Show that ∼ induces on S^{2n+1} the following equivalence relation: $Z \sim W$ if $W = e^{i\theta} Z$. Establish that there exists a differentiable map (the Hopf bundle) $f : S^{2n+1} \to \mathbb{C}P^n$, such that

$$
f^{-1}([Z]) = \left\{ e^{i\theta} N \in S^{2n+1} : N \in [Z] \cap S^{2n+1}, 0 \le \theta \le 2\pi \right\} = [Z] \cap S^{2n+1}.
$$

- (d) Show that f is a submersion. (This is already in Example C.19, so nothing more to do here.)
- 11. **Curvature of the complex projective space.** (This is similar to Problem 8-13, page 258 of Lee's text.) Define a Riemannian metric on $\mathbb{C}^{n+1}\setminus\{0\}$ in the following way: If $Z\in\mathbb{C}^{n+1}\setminus\{0\}$ and $V,W\in T_Z(\mathbb{C}^{n+1}\setminus\{0\}),$

$$
\langle V,W\rangle_Z=\frac{\text{Real}(\langle V,W\rangle_0)}{\langle Z,Z\rangle_0}
$$

where $\langle V, W \rangle_0 := \overline{\nu}_0 w_0 + \cdots + \overline{\nu}_n w_n$. Observe that the metric $\langle \cdot, \cdot \rangle$ restricted to $S^{2n+1} \subseteq \mathbb{C}^{n+1} \setminus \{0\}$ coincides with the metric induced from \mathbb{R}^{2n+2} .

- (a) Show that, for all $0 \le \theta \le 2\pi$, $e^{i\theta}$: $S^{2n+1} \to S^{2n+1}$ is an isometry, and that, therefore, it is possible to define a Riemannian metric on $P^n(\mathbb{C})$ in such a way that the submersion f defined in the previous problem is Riemannian.
- (b) Show that, in this metric, the sectional curvature of $P^n(\mathbb{C})$ is given by

$$
K(\sigma) = 1 + 3\cos^2\varphi,
$$

where σ is generated by the orthonormal pair X,Y , $\cos\varphi=\left\langle \overline{X},i\overline{Y}\right\rangle$, and $\overline{X},\overline{Y}$ are the horizontal lifts of X and *Y*, respectively. In particular, $1 \le K(\sigma) \le 4$.

Hint for part (b): Let *Z* be the position vector describing S^{2n+1} . Since

$$
\left(\frac{d}{d\theta}e^{i\theta}Z\right)_{\theta=0} = iZ
$$

iZ ∈ $T_Z S^{2n+1}$ and it is vertical. Let $\overline{\nabla}$ be the Levi-Civita connection of $\mathbb{R}^{2n+2} \approx \mathbb{C}^{n+1}$ and *X*, *Y* ∈ $\mathfrak{X}(\mathbb{C}P^n)$. Take α : ($-\epsilon, \epsilon$) → *S*^{2*n*+1} with α (0) = *Z*, α ['](0) = \overline{X} . Then

$$
\left(\overline{\nabla}_{\overline{X}}iZ\right)_Z = \left. \frac{d}{dt}iZ \circ \alpha(t) \right|_{t=0} = i\alpha(t)|_{t=0} = i\alpha'(0) = i\overline{X}.
$$

Therefore

$$
\left\langle \left[\overline{X}, \overline{Y} \right], iZ \right\rangle = \left\langle \overline{\nabla}_{\overline{X}} \overline{Y} - \overline{\nabla}_{\overline{Y}} \overline{X}, iZ \right\rangle = -\left\langle i \overline{X}, \overline{Y} \right\rangle + \left\langle i \overline{Y}, \overline{X} \right\rangle = 2\cos\varphi.
$$

Now use the above facts about the sectional curvature of a Riemannian submersion.