
Homework set 7 - due 10/25/20

Math 5047 – Renato Feres

Turn in problems 2, 7, 8, 9.

1. The sectional curvatures determine the curvature tensor. For this exercise, first read Proposition 8.31 (and

its proof), which states that the sectional curvatures completely specify the full curvature tensor R. Without

using this fact, but using the idea of the proof, which relies on the symmetries of the curvature tensor given in a

previous homework (see also Proposition 7.12, page 202 of Lee’s text), show that if the sectional curvatures are

equal to 0 then R = 0.

2. Zero sectional curvature implies exp is an isometry. Let M be a Riemannian manifold with sectional curvature

identically zero. Show that, for every p ∈ M , the mapping expp : Bϵ(0) ⊆ Tp M → Bϵ(p) is an isometry, where

Bϵ(p) is a normal ball at p.

3. Useful Identity involving the curvature tensor. Let V be a smooth vector field on a Riemannian manifold M

and x1, . . . , xn local coordinates. Show that
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where R is the Riemann curvature tensor. The proof should be fairly quick. Now Read Proposition 7.5 (and its

proof), page 197 of Lee’s text. Make sure you understand in what way this proposition is more general than the

result you are asked to prove, and so necessitates a longer proof.

4. Path independent parallel transport implies zero curvature. (do Carmo’s Riemannian Geometry.) Let M be

a Riemannian manifold with the following property: given any two points p, q ∈ M , the parallel transport from

p to q does not depend on the curve joining p and q . Prove that the curvature of M is identically zero, that is,

R(X ,Y )Z = 0 for all X ,Y , Z ∈X(M).

Hint: Consider a parametrized surface f : U ⊆R2 → M where

U = {(s, t ) ∈R2 : −ϵ< t < 1+ϵ,−ϵ< s < 1+ϵ,ϵ> 0}.

and f (s,0) = f (0,0), for all s. Let V0 ∈ T f (0,0)M and define a field V along f by : V (s,0) =V0 and, if t ̸= 0, V (s, t ) is

the parallel transport of V0 along the curve t → f (s, t ). Then, from Proposition 7.5 (see the previous problem),
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Since parallel transport does not depend on the curve chosen, V (s,1) is the parallel transport of V (0,1) along

the curve s 7→ f (s,1), hence D
∂s V (s,1) = 0. Thus
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Now use the arbitrariness of f and V0 to draw the desired conclusion about R.

5. Converse of the previous item. If the curvature tensor of a torsion-free connection (not necessarily Rieman-

nian) is zero, then parallel transport does not depend on the curve joining two points on simply connected

regions. In this case its is possible to define local coordinates whose coordinate vector fields are parallel. This

characterizes the manifold as being locally affinely isomorphic to Euclidean space.

A finer result for Riemannian manifolds is discussed in Chapter 7 of Lee’s text. We say that the Riemannian

manifold M is flat if it is locally isometric to a Euclidean space (page 195). Read the discussion on pages 199-

201, specifically Theorem 7.10, which states that a Riemannian manifold is flat if and only if its curvature tensor

vanishes. I’ll return to this in class if we find time.

6. Geodesic variation from Jacobi field. (From do Carmo’s text.) Let M be a Riemannian manifold, γ : [0,1] → M a

geodesic, and J a Jacobi field along γ. Prove that there exists a parametrized surface f (t , s), where f (t ,0) = γ(t )

and the curves t → f (t , s) are geodesics, such that J (t ) = ∂ f
∂s (t ,0).

Hint: Choose a curve λ(s), s ∈ (−ϵ,ϵ), in M such that λ(0) = γ(0), λ′(0) = J (0). Along λ choose a vector field W (s)

with W (0) = γ′(0) and DW
d s (0) = D J

d t (0). Define f (s, t ) = expλ(s)tW (s) and verify that ∂ f
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7. Conjugate locus. Let M be a Riamnnian manifold and let γ : [0, a] → M be a geodesic. The point γ(t0) is said

to be conjugate to γ(0) along γ, t0 ∈ (0, a], if there exists a Jacobi field J along γ, not identitcally zero, with

J (0) = 0 = J (t0). The maximum number of such linearly independent fields is called the multiplicity of the

conjugate point γ(t0). The set of (first) conjugate points to p ∈ M is called the conjugate locus of p and denoted

C (p). Read about conjugate points in Lee’s text, pages 297-299, in particular Proposition 10.20 (page 299), which

relates conjugate points with critical points of the exponential map.

Now suppose that the Riemannian manifold M has non-positive sectional curvature and let γ : [0, a] → M be a

geodesic. Prove that, for all p, the conjugate locus C (p) is empty.

Hint: Assume the existence of a non-trivial Jacobi field along the geodesic γ : [0, a] → M , with γ(0) = p, J (0) =
J (a) = 0. Use the Jacobi equation to show that
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is identically equal to 0. Since
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for all t we arrive at the contradiction that ∥J∥2 is constant.

8. Locally symmetric spaces. Read about locally symmetric spaces in Lee’s text, pages 295-297, in particular The-

orem 10.19. Here we will take a short-cut (justified by that theorem) and say that a Riemannian manifold M is a

locally symmetric space if the the curvature tensor R is parallel: ∇R = 0.

(a) Let M be a locally symmetric space and let γ : [0,ℓ) → M be a smooth curve in M . Let X ,Y , Z be parallel

vector fields along γ. Prove that R(X ,Y )Z is a parallel vector field along γ.

(b) Prove that if M is locally symmetric, connected, and has dimension two, then M has constant (sectional)

curvature.
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(c) Prove that if M has constant (sectional) curvature, then M is a locally symmetric space.

9. Jacobi fields and conjugate points on locally symmetric spaces (From do Carmo’s text.) Let γ : [0,∞) → M be a

geodesic in a locally symmetric space M and let v = γ′(0) be its velocity at p = γ(0). Define a linear transforma-

tion Kv : Tp M → Tp M by

Kv (x) = R(x, v)v, x ∈ Tp M .

(a) Prove that Kv is self-adjoint.

(b) Choose an orthonormal basis {e1, . . . ,en} of Tp M that diagonalizes Kv ; that is,

Kv (ei ) =λi ei , i = 1, . . . ,n.

Extend the ei to fields along γ by parallel transport. Show that, for all t ,

Kγ′(t )(ei (t )) =λi ei (t ),

where λi does not depend on t .

(c) Let J (t ) =∑
i xi (t )ei (t ) be a Jacobi field along γ. Show that the Jacobi equation is equivalent the the system

d 2xi

d t 2 +λi xi = 0, i = 1, . . . ,n.

(d) Show that the conjugate points of p along γ are given by γ
(
πk/

√
λi

)
, where k is a positive integer and λi

is a positive eigenvalue of Kv .
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