
Homework set 6 - due 10/18/20

Math 5047 – Renato Feres

Turn in problems 1, 2, 5(a,b), 7.

1. Naturality of the exponential map. Let f : M → N be an isometry of Riemannian manifolds, and p ∈ M . Sup-

pose U ⊆ Tp M and V ⊆ T f (p)N are neighborhoods of the origin on which the exponential maps expp and exp f (p)

are defined. If the differential d fp maps U into V , show that

exp f (p) ◦d fp = f ◦expp .

Note: Convince yourself of the following fact (you don’t need to write down the proof for this): a Riemannian

isometry maps (parametrized) geodesics to geodesics. This is an easy fact once you verify that the pull-back of

the Levi-Civita connection on N under a Riemannian isometry is the Levi-Civita connection on N .

2. Isometries of the unit sphere. Let Sn−1 = Sn−1(1) be the sphere of radius 1 centered at the origin of Rn . We give

Sn−1 the Riemannian metric that makes the inclusion map an isometric embedding. This means that the metric

on the sphere is the restriction to its tangent spaces of the standard dot product: 〈u, v〉x = u ·v . Note the natural

identification

Tx Sn−1 = {u ∈Rn : x ·u = 0}.

It is not difficult to show that the restriction to the sphere of an orthogonal transformation A : Rn → Rn is a

Riemannian isometry. Conversely, show that every isometry f : Sn−1 → Sn−1 is the restriction to Sn−1 of an

orthogonal transformation. Thus the isometry group of the sphere is the orthogonal group

O(n) = {A : an n ×n real matrix such that A⊺A = I }.

Suggestion: By composing f with an orthogonal map, we can assume that there is a point x ∈ Sn−1 such that

f (x) = x and d fx is the identity map on the tangent space at x. Now use the result of the previous exercise to

argue that f must be the identity map on a neighborhood of x and, consequently, (why?) the identity map.

3. Triangle inequality for the distance function on a Riemannian manifold. On the connected Riemannian man-

ifold (M ,〈·, ·〉) we define the norm of a vector v ∈ Tp M as ∥v∥ = p〈v, v〉 and the length of a smooth curve

γ : [a,b] → M as ℓ(γ) = ∫ b
a ∥γ′(t )∥d t . If the continuous curve is only piecewise smooth, we define its length

as the sum of the lengths of the smooth pieces.

Given two points p, q on M , we define the distance between them as

d(p.q) = infγℓ(γ),

where the infimum is taken over all piecewise smooth curves joining p to q .



(a) Show that the arclength of a curve γ does not depend on its parametrization. That is, if

s ∈ [c,d ] 7→ t (s) ∈ [a,b]

is a smooth increasing function and η(s) = γ(t (s)) then

ℓ(η) =
∫ d

c
∥η′(s)∥d s =

∫ b

a
∥γ′(t )∥d t = ℓ(γ).

(b) Prove the triangle inequality for the distance function on a Riemannian manifold M : for all p, q,r ∈ M ,

d(p,r ) ≤ d(p, q)+d(q,r ).

4. Geodesics and distance. Chapter 6 of Lee’s text. Read the following sections of Lee’s text:

(a) The definition of a one-parameter family of curves Γ(s, t ) (page 152 of Lee’s text). Here s, t are real param-

eters so that, for each s, t 7→ Γ(s, t ) are called the main curves and, for each t , s 7→ Γ(s, t ) are called the

transverse curves. Here Γ is allowed to be piecewise smooth. See Figure 6.1 on page 153. The context for

introducing one-parameter families of curves is the following: we begin with a continuous and piecewise

smooth curve γ(t ) and wish to define a variation of it (in the sense of calculus of variations; more on this

in the next problem). Then γ(t ) = Γ(0, t ) is the main curve and γs (t ) = Γ(s, t ) is a family of curves defining

the variation of γ. From Γ we obtain a piecewise smooth vector field V (t ) along γ(t ), called the variation

vector field, defined as

V (t ) = Γs (0, t ) := ∂Γ(0, t )

∂s
.

The variation of γ : [a,b] → M is called proper if V (a) =V (b) = 0.

(b) The Symmetry Lemma on page 154. It says that, restricted to the smooth pieces, the two mixed derivatives

of Γ in s and t coincide:
DΓs

∂t
= DΓt

∂s
.

This is essentially Clairaut’s theorem from Calculus, which asserts the equality of mixed partial derivatives

irrespective of order, although here one covariant derivative is involved. The essential point (in addition to

Clairaut’s theorem) is the symmetry (torsion-freeness) of the connection.

(c) The First variation formula, Theorem 6.3. The essence of the argument is given in the next problem about

the Euler-Lagrange equations.

(d) Theorem 6.4 and Corollary 6.5: every length minimizing curve is a geodesic; a unit-speed curve is a critical

point of the length functional if and only if it is a geodesic. (Not always minimizing; past the injectivity

radius there may be more than one geodesic joining a pair of points. Think of Sn and geodesics having

length greater than π.)

(e) Theorem 6.15: Riemannian geodesics are locally length minimizing. A critical ingredient is Gauss’s lemma,

which is Theorem 6.9.

(f) Theorem 6.19 (Hopf-Rinow): A connected Riemannian manifold is metrically complete if and only if it is

geodesically complete.

⋄

5. The Euler-Lagrange equations. In this problem we will look at the key variational argument that goes into

showing that geodesics are critical points of a length-related functional. But instead of the length functional
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itself we consider the so-called energy functional, whose critical curves are also geodesics. We will, in fact, be a

bit more general and consider a Lagrangean functional that contains a potential function. I’ll call these systems

Newtonian-Riemannian. Let (M ,〈·, ·〉) be a Riemannian manifold and U : M → R a smooth function, which we

call the potential. We define the Lagrangean L : T M →R as the smooth function defined by

L(q, v) = 1

2
∥v∥2

q −U (q).

The term 1
2∥v∥2

q may be called the kinetic energy of the mechanical state indicated by (q, v). M itself describes

the space of configurations of a mechanical system and T M is the state space. In mechanical systems, the

coefficients of the inner product whose norm appears in the kinetic energy contains the mass distribution of

the mechanical system. Thus the term 1
2∥v∥2

q has mass terms implicitly (recall the elementary equation 1
2 m|v |2

for the kinetic energy of a point particle with mass m.)

We now define the action functional on curves γ : [a,b] → M joining points q1 = γ(a) and q2 = γ(b):

S[γ] =
∫ b

a
L

(
γ(t ),γ′(t )

)
d t .

The point of this exercise is to find the equation of curves which are critical points of the action functional. We

will show that such curves satisfy Newton’s equation:

Dγ′

d t
=−grad U , (1)

where on the left-hand side we have the covariant derivative for the Levi-Civita connection ∇. Recall that the

gradient of a function U on M is the unique vector field X such that 〈X , ·〉 = dU .

We follow the same ideas used in the textbook for the length functional. Let Γ(s, t ) be a proper variation of the

critical curve γ(t ) = Γ(0, t ), where a ≤ t ≤ b and q1 = γ(a) = Γ(s, a) and q2 = γ(b) = Γ(s,b) for all s ∈ (−ϵ,ϵ). In this

problem, we assume γ and Γ are smooth instead of piecewise smooth. The variation vector field is defined by

V (t ) = Γs (0, t ).

Note that V (a) = 0 and V (b) = 0. Now write

S[Γ(s, ·)] =
∫ b

a
L (Γ(s, t ),Γt (s, t )) d t =

∫ b

a

[
1

2
∥Γt (s, t )∥2 −U (Γ(s, t ))

]
d t .

(a) Using an integration by parts along the way, and the Symmetry Lemma, show that

d

d s

∣∣∣∣
s=0

S[Γ(s, ·)] =−
∫ b

a

〈
Dγ′(t )

d t
+grad U ,V (t )

〉
d t .

When γ is a critical point of S, and since V (t ) is arbitrary, we arrive at the conclusion that γ is a critical

point of the action functional if and only if Equation (1) holds. Naturally, if U = 0, then critical curves are

geodesics.

(b) Now suppose that the Lagrangian function is general and do the same calculation again, but in local coor-

dinates. That is, suppose γ(t ) = (x1(t ), . . . , xn(t )), γ′(t ) = (ẋ1(t ), . . . , ẋn(t )). Show that the same integration

by parts arguments gives the following Euler-Lagrange equations for critical curves:

d

d t

∂L

∂ẋi
− ∂L

∂xi
= 0, i = 1, . . . ,n.
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(c) Write down the Euler-Lagrange equations for the special case

L(x, ẋ) = 1

2

∑
i , j

gi j (x)ẋi ẋ j .

Here the gi j (x) are the coefficients of the metric tensor of a Riemannian metric. More specifically, show

that those equations are ∑
i , j

(
∂gki

∂x j
− 1

2

∂gi j

∂xk

)
ẋi ẋ j +

∑
i

gki ẍi = 0.

(d) Denoting by g−1 the inverse of the coefficients matrix g = (gi j ), it follows from the previous item that

ẍi +
∑

k,ℓ, j
g−1

i k

(
∂gkℓ

∂x j
− 1

2

∂gℓ j

∂xk

)
ẋℓẋ j = 0.

Check that this same system of equations can be written in the equivalent form

ẍi + 1

2

∑
k,ℓ, j

g−1
i k

(
∂gkℓ

∂x j
+ ∂g j k

∂xℓ
− ∂gℓ j

∂xk

)
ẋℓẋ j = 0.

Compare this system with the equations for geodesics in local coordinates (Lee’s text: Equations 4.16,

page103, and Equation 5.7, page 123.)

6. Geodesics in conformal metrics. (You may ignore this problem if it does not seem interesting to you.) Let M be

a Riemannian manifold without boundary with metric 〈·, ·〉. You may take M to be an open subset in Euclidean

space with the dot-product metric, but the result of this exercise holds in general. Let η be a smooth bounded

positive function on M , to be referred to as the refractive index. Let E be a constant such that 0 < η2 < E and

define the function U := E − 1
2η

2. Thus U is another positive smooth function which we call the potential. Now

define the optical path length metric, or simply the optical metric

〈·, ·〉′ := η2〈·, ·〉.

We denote by D and D ′ the Levi-Civita connections associated to 〈·, ·〉 and 〈·, ·〉′ and the respective norms by ∥ ·∥
and ∥ ·∥′.
According to Fermat’s principle, light rays are geodesics of the optical length metric. Let γ(τ) be such a geodesic,

where τ indicates arclength parameter for the optical metric. Arclength for the starting metric 〈·, ·〉 will be de-

noted by s. Let us consider the time change

t (τ) :=
∫ τ

0
η(γ(u))−2 du (2)

and write x(t ) := γ(τ(t )). We refer to t simply as the (mechanical) time parameter ortime. Let us further define

the a priori time-dependent quantity

m :=
(
η(x(t ))

∥ẋ(t )∥
)2

. (3)

Here ẋ indicates derivative with respect to t .

(a) Prove the following result, known as Maupertuis’s principle.

Proposition 1 (Maupertuis). Let γ(τ) be a smooth path in M parametrized by arclength relative to the op-

tical metric, and x(t ) = γ(τ(t )) the same path, now parametrized by t , as defined in Equation (2). Then γ(τ)
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is a geodesic with respect to the optical metric if and only if m is constant in time and Newton’s second law

equation holds:

m
Dẋ

d t
=−grad U .

(b) Show that if x(t ) satisfies Newton’s equation with mass parameter m then

E :=U (x(t ))+ m

2
∥ẋ∥2,

the total energy (potential plus kinetic energies, respectively), is a constant of motion.

(c) We record here the identity relating the refractive index and potential function:

η=
√

2(E −U ). (4)

We could as well have considered geodesics in the optical metric expressed relative to the arclength pa-

rameter s associated to the original metric on M . Denoting this path by x(s), show that Newton’s equation

is equivalent to the so-called eikonal equation:

D

d s

(
η

d x

d s

)
= grad η. (5)

Another fact concerning this general theory that I mention in passing has to do with families of solutions.

From wave optics one is naturally led to consider the eikonal function S, whose level sets define wave

fronts. The eikonal function is obtained as a solution to the equation

grad S = ηX , (6)

where X is a unit vector field (in the original metric of M , so ∥X ∥ = 1) whose integral curves are solutions

to the eikonal equation. Note that S satisfies

∥grad S∥2 = η2,

which is also called the eikonal equation. Light rays are integral curves of the vector field X . The full signif-

icance of the function S is only apparent in connection with electromagnetism; from Maxwell’s equations

one obtains S in terms of the electric and magnetic fields and the so-called Poynting vector.

7. Killing vector fields. Problems 5-22 and 6-24, pages 150 and 190 of Lee’s text. Let (M , g ) be a Riemannian

manifold. A vector field X ∈ X(M) is called a Killing vector field if the Lie derivative of the metric tensor with

respect to X is 0: LX g = 0. By Proposition B.10 (appendix B of Lee’s text) this is equivalent to the condition that

the metric tensor g be invariant under the flow of X : Φ∗
t g = g .

(a) Show that X is a Killing vector field if and only if the covariant 2-tensor (∇X )♭ (a (0,2)-tensor field) is anti-

symmetric. Note: given Y , Z ∈X(M), you may take it as a definition that

(∇X )♭(Y , Z ) := 〈∇Y X , Z 〉 .

(b) Prove that a Killing vector field that is normal to a geodesic at one point is normal everywhere along the

geodesic.

(c) Prove that if a Killing vector field vanishes at a point p, then it is tangent to geodesic spheres centered at p.

(The concept of geodesic sphere is defined on page 158.)
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(d) Prove that a Killing vector field on an odd-dimensional manifold cannot have an isolated zero. (You may

take for granted the hairy ball theorem: There is no nonvanishing continuous tangent vector field on even-

dimensional n-spheres.)
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