Homework set 3 - due 09/20/24

Math 5047

Turn in problems 3, 4, 5, 6.

- 1. **Read all of Chapter 4 of Lee's text.**
- 2. **Read Chapter 5 of Lee's text up to page 26 (end of section 'Connections on Abstract Riemannian Manifolds').**
- 3. **Parallel transport.** Let *M* be a Riemannian manifold. Consider the mapping

$$
P = P_{c,t_0,t} : T_{c(t_0)}M \to T_{c(t)}M
$$

defined by: $P_{c,t_0,t}(v)$, $v \in T_{c(t_0)}M$, is the vector obtained by parallel transporting the vector *v* along the curve *c*. Show that *P* is an isometry and that, if *M* is oriented, *P* preserves the orientation.

4. **Recovering the connection from parallel transport.** Let *X* and *Y* be differentiable vector fields on a Riemannian manifold M. Let $p \in M$ and let $c: I \to M$ be an integral curve of X through p, i.e. $c(t_0) = p$ and $\frac{dc}{dt} = X(c(t))$. Prove that the Riemannian connection of *M* satisfies

$$
(\nabla_X Y)(p) = \frac{d}{dt} (P_{c,t_0,t})^{-1} (Y(c(t))) \Big|_{t=t_0},
$$

where $P_{c,t_0,t}: T_{c(t_0)}M \to T_{c(t)}M$ is the parallel transport along *c*, from t_0 to *t*. (This shows how the connection can be recovered from the concept of parallelism.)

5. **Levi-Civita connection of a submanifold.** Let $f : M^n \to \overline{M}^{n+k}$ be an immersion of a differentiable manifold M into a Riemannian manifold \overline{M} . Assume that *M* has the Riemannian metric induced by *f*. That is, the Riemannian inner product on T_pM is the restriction to T_pM of the Riemannian inner product on T_pM . Let $p \in M$ and let *U* ⊆ *M* be a neighborhood of *p* such that $f(U) \subseteq \overline{M}$ is a submanifold of \overline{M} . Further, suppose that *X*, *Y* are differentiable vector fields on $f(U)$ which extend to differentiable vector fields \overline{X} , \overline{Y} on an open set of \overline{M} . Define

 $(\nabla_X Y)(p) =$ tangential component of $\left(\overline{\nabla}_{\overline{X}} \overline{Y}\right)(p)$,

where $\overline{\nabla}$ is the Levi-Civita connection of \overline{M} . Prove that ∇ is the Levi-Civita connection of M .

- 6. **Covariant derivative of vector field over a constant curve.** Let *M* be a Riemannian manifold and let *p* be a point of *M*. Consider a constant curve $f: I \to M$ given by $f(t) = p$, for all $t \in I$. Let *V* be a vector field along f (that is, *V* is a differentiable mapping of *I* into T_pM). Show that $\frac{DV}{dt}=\frac{dV}{dt}$, that is to say, the covariant derivative coincides with the usual derivative of $V: I \rightarrow T_pM$.
- 7. **Horizontal and vertical subbundles of** *T T M***.** This extended discussion contains a very useful characterization of connections on a vector bundle *N*. We will be a bit sketchy. See, for example, *Differential Geometric Structures* by Walter P. Poor for details omitted here.

We begin by considering $N = TM$, the tangent bundle of a smooth manifold M, and $\pi : N \to M$ the base-point projection. It will be convenient to indicate a point $(p, v) \in N$ simply by *v*, with $\pi(v) = p$. At each $v \in N$ define the *vertical* subspace $V_v \subseteq T_v N$ to be the kernel of $d\pi_v : T_v N \to T_p M$. The disjoint union $V = \coprod_{v \in TM} V_v$ with the natural base-point projection $V \to N$, which maps $\xi \in V_v$ to *v*, is easily shown to be a smooth vector subbundle of *TN*. Notice that V_v is the tangent space at v of the fiber $\pi^{-1}(p)$, where $p = \pi(v)$.

In general, there is no canonical way to select a complementary subbundle to V , that is, a vector subbundle H of *TN* such that $TN = V \oplus \mathcal{H}$ (direct sum of vector bundles). A choice of such *horizontal* subbundle is (essentially) a choice of connection on *T M*, as you will show.

(a) Show that each vertical subspace $V_\nu \subseteq T_\nu N$ is canonically isomorphic to $T_\nu M$, $p = \pi(\nu)$. Specifically, check that the map

$$
\mathcal{I}_v : w \in T_pM \mapsto \left. \frac{d}{dt} \right|_{t=0} (v + tw) \in \mathcal{V}_v
$$

is an isomorphism of vector spaces.

(b) Let ∇ be an affine connection on *TM*. For each $\nu \in N$, $p = \pi(\nu) \in M$, and *X* a smooth vector field on an open subset of *M* containing *p* such that $X(p) = v$, consider the linear map

$$
\mathcal{K}_v : w \in T_p M \mapsto dX_p w - \mathcal{I}_v \nabla_w X \in T_v N.
$$

Check that: (1) \mathcal{K}_v only depends on the value of *X* at *p*; and (2) it satisfies

$$
d\pi_v \circ \mathcal{K}_v = id_{T_pM}.
$$

The image \mathcal{H}_p of T_pM under this map is called the *horizontal* subspace of T_vN associated to the connection ∇ . It follows from the second part of this item that the \mathcal{H}_p have dimension $n = \text{dim}M$ and

$$
d\pi_v : \mathcal{H}_v \to T_p M
$$

is a linear isomorphism. It can be shown (no need to prove it here) that $v \mapsto \mathcal{H}_v$ is a smooth vector subbundle of *T N* called the *horizontal* subbundle.

(c) For each $v \in N$, $p = \pi(v)$, and $w \in T_pM$, let $t \mapsto c(t)$ be a smooth curve in *M* representing *w* (i.e., such that $c(0) = p$, $c'(0) = w$). Let *V*(*t*) be the parallel transport of *v* along $c(t)$ in *M*. Then $t \mapsto V(t)$ is a smooth curve in *N* such that $V(0) = v$ and $V'(0) \in T_vN$. Check that $V'(0) \in \mathcal{H}_v$ and

$$
d\pi_{v}V'(0)=c'(0)=w.
$$

(d) Check that $T_vN = V_v \oplus \mathcal{H}_v$, the direct sum of the vertical and horizontal subspaces. (Since both V_v and \mathcal{H}_v have dimension dim(*M*), which is half of the dimension of *N*, it suffices to check that $V_v \cap H_v = \{0\}$.) This direct sum decomposition allows us to define the linear map

$$
K_v: T_v N \to T_p M \cong \mathcal{I}_p T_p M = \mathcal{V}_v
$$

called the *connection map*. Thus the kernel of K_v is \mathcal{H}_v and $K_v \circ \mathcal{I}_p$ is the identity map on T_pM .

- (e) For each $a \in \mathbb{R}$, let $\mu_a : N \to N$ be defined by $\mu_a(v) = av$. Show that $d(\mu_a)_v : T_v N \to T_{av}N$ maps \mathcal{H}_v to \mathcal{H}_{av} . We say that the horizontal subbundle is *homogeneous*. (The vertical subbundle is also homogeneous.)
- (f) (This remark won't be needed later, but you may find it interesting if you saw modules in an algebra course.)

A short exact sequence of modules over a fixed ring

$$
0 \to A \xrightarrow{a} B \xrightarrow{b} C \to 0
$$

is called *split exact* if it is isomorphic to the exact sequence:

$$
0 \to A \xrightarrow{i} A \oplus C \xrightarrow{p} C \to 0
$$

where *i* is inclusion and *p* is projection. What we have obtained above is that an affine connection on *T M* gives rise to a splitting of the short exact sequence of modules over $C^\infty(M)$:

$$
\mathfrak{X}(M) \stackrel{\mathcal{I}}{\to} \Gamma(TN) \stackrel{\pi_*}{\to} \mathfrak{X}(M),
$$

so that $\Gamma(TN) \cong \Gamma(V) \oplus \Gamma(\mathcal{H})$, a direct sum of modules over $C^{\infty}(M)$.

(g) Let \mathcal{H} be any complementary vector subbundle of V in *TN* that satisfies the homogeneity property of the above item (7e). Let

$$
K_v: T_v N = V_v \oplus \mathcal{H}_v \to V_v \cong T_p M
$$

be the projection to the vertical subspace, which is canonically isomorphic to T_pM . Show that

$$
\nabla_w X := K_v dX_p w,
$$

for all $X \in \mathfrak{X}(M)$, defines a connection on *TM*. Check that parallel translation with respect to this connection has the following description: Let $t \to c(t)$ be a smooth curve on *M* and $v \in T_{c(0)}M$. Then *c* has a unique lift $\overline{c}(t)$, a curve in *N* such that $\pi \circ \overline{c}(t) = c(t)$, $\overline{c}(0) = v$, and $\overline{c}'(t) \in \mathcal{H}_{\overline{c}(t)}$. Note that $\overline{c}(t)$ can be viewed as a vector field along *c*(*t*) in *M*.

- (h) Convince yourself that all that we have done above works just as well if we replace *T M* with a general vector bundle $\pi : N \to M$. That is, a connection on *N* is equivalent to a splitting of *TN* into a direct sum $V \oplus \mathcal{H}$ of vertical and horizontal bundles, where for each $e \in N$, V_e is canonically isomorphic to the fiber N_p , $p = \pi(e)$, and \mathcal{H}_e is homogeneous and isomorphic to T_pM . Parallel transport in *M* amounts to the horizontal lifting of curves in *M*.
- 8. **Parallel transport on** S^2 . Let $S^2 \subseteq \mathbb{R}^3$ be the unit sphere, *c* an arbitrary parallel of latitude on S^2 and v_0 a tangent vector to S^2 at a point of c . Convince yourself that the following claim holds. Consider the cone tangent to S^2 that intersects S^2 at $c.$ Then the parallel transport of ν_0 along c is the same whether it is performed on the sphere or on the cone. Furthermore, parallel translation on the cone is obtained by cutting it along a ray and unrolling it flat on $\mathbb{R}^2.$ Then parallel translation on the cone is then simply vector space translation in $\mathbb{R}^2.$
- 9. **Review of exterior calculus (or calculus of differential forms).** The following are all definitions.
	- (a) **Interior product**. Let *X* be a vector field on the smooth manifold *M*. Given a *k*-form *θ* on *M*, we define the $(k-1)$ -form $i_Xθ$ to be 0 if $k = 0$ and

$$
(i_X\theta)(Y_1,\ldots,Y_{k-1}) = \theta(X,Y_1,\ldots,Y_{k-1})
$$

if $k \ge 1$, where Y_1, \ldots, Y_{k-1} are smooth vector fields.

(b) **Lie derivative of differential forms.** Let *X* be a smooth vector field on a smooth manifold *M*. Recall that to *X* one can associate its (local) flow Φ_t such that for any given $p \in M$, $\Phi_t(p)$ is the integral curve of *X* with initial condition $Φ_0(p) = 0$, defined for some open interval in *t* containing 0. In other words, $γ(t) = Φ_t(p)$ satisfies the initial value problem

$$
\gamma'(t) = X_{\gamma(t)}, \ \gamma(0) = p.
$$

From the general theory of differential equations we know that there is a unique solution (over a maximal interval for *t*) and that Φ_t defines a local flow of diffeomorphisms: $\Phi_{t+s} = \Phi_t \circ \Phi_s$ whenever the composition makes sense. In addition, Φ_0 is the identity diffeomorphism. (Under certain conditions, e.g., when the manifold is compact, we know that Φ_t is a diffeomorphism of M for all $t \in \mathbb{R}$. In such cases we say that Φ_t defines a flow on *M*.) If *θ* is a differential form on *M*, it makes sense (for *t* sufficiently close to 0) to define the pullback Φ_t^* t^* *θ*. The *Lie derivative* of *θ* with respect to *X* at $p \in M$ is defined by

$$
(\mathscr{L}_X\theta)_p:=\lim_{t\to 0}\frac{(\Phi_t^*\theta)_p-\theta_p}{t}=\left.\frac{d}{dt}(\Phi_t^*\theta)_p\right|_{t=0}.
$$

A similar definition applies to vector fields if we define Φ_t^* t_t^* *Y* := $(\Phi_{-t})_* Y$, where *Y* is a smooth vector field on *M*. (With a little thought, it is not difficult to figure out how to define the Lie derivative for a general tensor field. We may return to this later.)

10. **Interior multiplication as a signed derivation.** Show that *i^X* satisfies the following signed product rule:

$$
i_X(\theta \wedge \eta) = i_X \theta \wedge \eta + (-1)^k \theta \wedge i_X \eta
$$

where *θ* is a *k*-form and *η* is an arbitrary differential form. (This is a pointwise operation; there are no derivatives actually involved. Note: You can find the proof of this fact in John Lee's "Introduction to Smooth Manifolds," second edition, Lemma 14.13, page 358. You can get a pdf of this text from the Olin library.)

11. **Properties of the Lie derivative**

- (a) Show that if *f* is a smooth function on *M* (a 0-form) then $\mathcal{L}_X f = X f$.
- (b) Show that \mathcal{L}_X commutes with the exterior derivative: $\mathcal{L}_X d = d \mathcal{L}_X$.
- (c) Show that if θ_1 , θ_2 are arbitrary smooth forms,

$$
\mathcal{L}_X(\theta_1 \wedge \theta_2) = \mathcal{L}_X \theta_1 \wedge \theta_2 + \theta_1 \wedge \mathcal{L}_X \theta_2
$$

(d) Show that

$$
\mathscr{L}_X Y = [X, Y].
$$

I suggest the following approach: first recall that if *Y* is a vector field on a manifold *M* and $F : M \to N$ is a smooth map into another manifold *N*, then the derivative map $F_{*,p}: T_pM \to T_{F(p)}N$ satisfies

$$
(F_{*,p}Y_p)f = Y_p(f \circ F)
$$

where f is any smooth function on N . (Convince yourself of this basic fact!) Let now F be a diffeomorphism. Then the push-forward of *Y* under *F* is defined as the vector field *F*∗*Y* on *N* given at any $q = F(p) \in N$ by

$$
(F_*Y)_q = F_{*,p}Y_p.
$$

Now suppose that *f* and *Y* are vector fields on *N*. It follows from the above remarks and the definition of

pull-back of functions $(F^* f = f \circ F)$ that

$$
(Yf)(F(p)) = (F_*^{-1}Y)_p(F^*f)(p).
$$

Now let $F = \Phi_t$ (the local flow of *X*) and take derivatives in *t* at $t = 0$.

(e) If θ is a differential *k*-form and *X*, Y_1, \ldots, Y_k are smooth vector fields,

$$
X\theta(Y_1,\ldots,Y_k)=(\mathscr{L}_X\theta)(Y_1,\ldots,Y_k)+\theta(\mathscr{L}_XY_1,Y_2,\ldots,Y_k)+\cdots+\theta(Y_1,\ldots,Y_{k-1},\mathscr{L}_XY_k).
$$

As a suggestion, you may begin by observing that if $F : M \to N$ is a diffeomorphism between smooth manifolds, θ a *k*-form on *N* and Y_1, \ldots, Y_k vector fields on *N*, then

$$
(\theta(Y_1, ..., Y_k)) \circ F = (F^*\theta) \left(\left(F^{-1} \right)_* Y_1, ..., \left(F^{-1} \right)_* Y_k \right).
$$

Now let $N = M$, set $F = \Phi_t$ the local flow of *X*, and take the derivative in *t* on both sides of the equation.

(f) Show that for any smooth form θ and smooth vector field *X*,

$$
\mathscr{L}_X\theta=(di_X+i_Xd)\theta.
$$

Here are some potentially useful remarks: From the general properties of the exterior derivative (See the beginning of A.5, page 299 of Tu's text), if *θ* is a *k*-form and *ω* is a general smooth form, then

$$
d(\theta \wedge \omega) = d\theta \wedge \omega + (-1)^k \theta \wedge d\omega.
$$

Using the previous problem concerning the interior product, show that the operation $\mathcal{M}_X = \frac{di_X + i_X d}{\sqrt{X}}$ satisfies

$$
\mathcal{M}_X(\theta \wedge \omega) = \mathcal{M}_X \theta \wedge \omega + \theta \wedge \mathcal{M}_X \omega.
$$

We need to show that $\mathcal{M}_X = \mathcal{L}_X$. From the previous remark, it suffices to show this equality of operations on smooth functions and 1-forms of the type fdg . Now, both \mathscr{L}_X and \mathscr{M}_X commute with d so, in fact, it suffices to check that the operations are the same on functions.

(g) Show that if θ is a differential 1-form and X_1, X_2 are smooth vector fields, then

$$
d\theta(X_1, X_2) = X_1 \theta(X_2) - X_2 \theta(X_1) - \theta([X_1, X_2]).
$$

Suggestion: express this identity in terms of the exterior derivative, the Lie derivative, and the interior product.

(h) Show that if θ is a smooth 2-form and X_1, X_2, X_3 are smooth vector fields, then

$$
d\theta(X_1,X_2,X_3)=X_1\theta(X_2,X_3)-X_2\theta(X_1,X_3)+X_3\theta(X_1,X_2)-\theta([X_1,X_2],X_3)+\theta([X_1,X_3],X_2)-\theta([X_2,X_3],X_1).
$$

Suggestion: follow the same pattern of proof as the previous problem.