
Homework set 3 - due 09/20/24

Math 5047

Turn in problems 3, 4, 5, 6.

1. Read all of Chapter 4 of Lee’s text.

2. Read Chapter 5 of Lee’s text up to page 26 (end of section ‘Connections on Abstract Riemannian Manifolds’).

3. Parallel transport. Let M be a Riemannian manifold. Consider the mapping

P = Pc,t0,t : Tc(t0)M → Tc(t )M

defined by: Pc,t0,t (v), v ∈ Tc(t0)M , is the vector obtained by parallel transporting the vector v along the curve c.

Show that P is an isometry and that, if M is oriented, P preserves the orientation.

4. Recovering the connection from parallel transport. Let X and Y be differentiable vector fields on a Rieman-

nian manifold M . Let p ∈ M and let c : I → M be an integral curve of X through p, i.e. c(t0) = p and dc
d t = X (c(t )).

Prove that the Riemannian connection of M satisfies

(∇X Y )(p) = d

d t
(Pc,t0,t )−1(Y (c(t )))

∣∣∣∣
t=t0

,

where Pc,t0,t : Tc(t0)M → Tc(t )M is the parallel transport along c, from t0 to t . (This shows how the connection

can be recovered from the concept of parallelism.)

5. Levi-Civita connection of a submanifold. Let f : M n → M
n+k

be an immersion of a differentiable manifold M

into a Riemannian manifold M . Assume that M has the Riemannian metric induced by f . That is, the Rieman-

nian inner product on Tp M is the restriction to Tp M of the Riemannian inner product on Tp M . Let p ∈ M and

let U ⊆ M be a neighborhood of p such that f (U ) ⊆ M is a submanifold of M . Further, suppose that X ,Y are

differentiable vector fields on f (U ) which extend to differentiable vector fields X ,Y on an open set of M . Define

(∇X Y ) (p) = tangential component of
(
∇X Y

)
(p),

where ∇ is the Levi-Civita connection of M . Prove that ∇ is the Levi-Civita connection of M .

6. Covariant derivative of vector field over a constant curve. Let M be a Riemannian manifold and let p be a point

of M . Consider a constant curve f : I → M given by f (t ) = p, for all t ∈ I . Let V be a vector field along f (that is, V

is a differentiable mapping of I into Tp M). Show that DV
d t = dV

d t , that is to say, the covariant derivative coincides

with the usual derivative of V : I → Tp M .

7. Horizontal and vertical subbundles of T T M . This extended discussion contains a very useful characterization

of connections on a vector bundle N . We will be a bit sketchy. See, for example, Differential Geometric Structures

by Walter P. Poor for details omitted here.



We begin by considering N = T M , the tangent bundle of a smooth manifold M , and π : N → M the base-point

projection. It will be convenient to indicate a point (p, v) ∈ N simply by v , with π(v) = p. At each v ∈ N define

the vertical subspace Vv ⊆ Tv N to be the kernel of dπv : Tv N → Tp M . The disjoint union V =∐
v∈T M Vv with the

natural base-point projection V → N , which maps ξ ∈ Vv to v , is easily shown to be a smooth vector subbundle

of T N . Notice that Vv is the tangent space at v of the fiber π−1(p), where p =π(v).

In general, there is no canonical way to select a complementary subbundle to V , that is, a vector subbundle H of

T N such that T N = V ⊕H (direct sum of vector bundles). A choice of such horizontal subbundle is (essentially)

a choice of connection on T M , as you will show.

(a) Show that each vertical subspace Vv ⊆ Tv N is canonically isomorphic to Tp M , p =π(v). Specifically, check

that the map

Iv : w ∈ Tp M 7→ d

d t

∣∣∣∣
t=0

(v + t w) ∈ Vv

is an isomorphism of vector spaces.

(b) Let ∇ be an affine connection on T M . For each v ∈ N , p = π(v) ∈ M , and X a smooth vector field on an

open subset of M containing p such that X (p) = v , consider the linear map

Kv : w ∈ Tp M 7→ d Xp w −Iv∇w X ∈ Tv N .

Check that: (1) Kv only depends on the value of X at p; and (2) it satisfies

dπv ◦Kv = idTp M .

The image Hp of Tp M under this map is called the horizontal subspace of Tv N associated to the connec-

tion ∇. It follows from the second part of this item that the Hp have dimension n = dimM and

dπv : Hv → Tp M

is a linear isomorphism. It can be shown (no need to prove it here) that v 7→ Hv is a smooth vector sub-

bundle of T N called the horizontal subbundle.

(c) For each v ∈ N , p =π(v), and w ∈ Tp M , let t 7→ c(t ) be a smooth curve in M representing w (i.e., such that

c(0) = p, c ′(0) = w). Let V (t ) be the parallel transport of v along c(t ) in M . Then t 7→V (t ) is a smooth curve

in N such that V (0) = v and V ′(0) ∈ Tv N . Check that V ′(0) ∈Hv and

dπv V ′(0) = c ′(0) = w.

(d) Check that Tv N = Vv ⊕Hv , the direct sum of the vertical and horizontal subspaces. (Since both Vv and Hv

have dimension dim(M), which is half of the dimension of N , it suffices to check that Vv ∩Hv = {0}.) This

direct sum decomposition allows us to define the linear map

Kv : Tv N → Tp M ∼=Ip Tp M = Vv

called the connection map. Thus the kernel of Kv is Hv and Kv ◦Ip is the identity map on Tp M .

(e) For each a ∈R, let µa : N → N be defined by µa(v) = av . Show that d(µa)v : Tv N → Tav N maps Hv to Hav .

We say that the horizontal subbundle is homogeneous. (The vertical subbundle is also homogeneous.)

(f) (This remark won’t be needed later, but you may find it interesting if you saw modules in an algebra course.)
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A short exact sequence of modules over a fixed ring

0 → A
a→ B

b→C → 0

is called split exact if it is isomorphic to the exact sequence:

0 → A
i→ A⊕C

p→C → 0

where i is inclusion and p is projection. What we have obtained above is that an affine connection on T M

gives rise to a splitting of the short exact sequence of modules over C∞(M):

X(M)
I→ Γ(T N )

π∗→X(M),

so that Γ(T N ) ∼= Γ(V )⊕Γ(H ), a direct sum of modules over C∞(M).

(g) Let H be any complementary vector subbundle of V in T N that satisfies the homogeneity property of the

above item (7e). Let

Kv : Tv N = Vv ⊕Hv → Vv
∼= Tp M

be the projection to the vertical subspace, which is canonically isomorphic to Tp M . Show that

∇w X := Kv d Xp w,

for all X ∈ X(M), defines a connection on T M . Check that parallel translation with respect to this con-

nection has the following description: Let t 7→ c(t ) be a smooth curve on M and v ∈ Tc(0)M . Then c has

a unique lift c(t ), a curve in N such that π ◦ c(t ) = c(t ), c(0) = v , and c ′(t ) ∈ Hc(t ). Note that c(t ) can be

viewed as a vector field along c(t ) in M .

(h) Convince yourself that all that we have done above works just as well if we replace T M with a general

vector bundle π : N → M . That is, a connection on N is equivalent to a splitting of T N into a direct sum

V ⊕H of vertical and horizontal bundles, where for each e ∈ N , Ve is canonically isomorphic to the fiber

Np , p = π(e), and He is homogeneous and isomorphic to Tp M . Parallel transport in M amounts to the

horizontal lifting of curves in M .

8. Parallel transport on S2. Let S2 ⊆R3 be the unit sphere, c an arbitrary parallel of latitude on S2 and v0 a tangent

vector to S2 at a point of c. Convince yourself that the following claim holds. Consider the cone tangent to S2

that intersects S2 at c. Then the parallel transport of v0 along c is the same whether it is performed on the sphere

or on the cone. Furthermore, parallel translation on the cone is obtained by cutting it along a ray and unrolling

it flat on R2. Then parallel translation on the cone is then simply vector space translation in R2.

9. Review of exterior calculus (or calculus of differential forms). The following are all definitions.

(a) Interior product. Let X be a vector field on the smooth manifold M . Given a k-form θ on M , we define the

(k −1)-form iX θ to be 0 if k = 0 and

(iX θ)(Y1, . . . ,Yk−1) = θ(X ,Y1, . . . ,Yk−1)

if k ≥ 1, where Y1, . . . ,Yk−1 are smooth vector fields.

(b) Lie derivative of differential forms. Let X be a smooth vector field on a smooth manifold M . Recall that to

X one can associate its (local) flow Φt such that for any given p ∈ M , Φt (p) is the integral curve of X with
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initial condition Φ0(p) = 0, defined for some open interval in t containing 0. In other words, γ(t ) =Φt (p)

satisfies the initial value problem

γ′(t ) = Xγ(t ), γ(0) = p.

From the general theory of differential equations we know that there is a unique solution (over a maximal

interval for t ) and thatΦt defines a local flow of diffeomorphisms: Φt+s =Φt◦Φs whenever the composition

makes sense. In addition, Φ0 is the identity diffeomorphism. (Under certain conditions, e.g., when the

manifold is compact, we know that Φt is a diffeomorphism of M for all t ∈ R. In such cases we say that Φt

defines a flow on M .) If θ is a differential form on M , it makes sense (for t sufficiently close to 0) to define

the pullbackΦ∗
t θ. The Lie derivative of θ with respect to X at p ∈ M is defined by

(LX θ)p := lim
t→0

(Φ∗
t θ)p −θp

t
= d

d t
(Φ∗

t θ)p

∣∣∣∣
t=0

.

A similar definition applies to vector fields if we define Φ∗
t Y := (Φ−t )∗Y , where Y is a smooth vector field

on M . (With a little thought, it is not difficult to figure out how to define the Lie derivative for a general

tensor field. We may return to this later.)

10. Interior multiplication as a signed derivation. Show that iX satisfies the following signed product rule:

iX (θ∧η) = iX θ∧η+ (−1)kθ∧ iX η

where θ is a k-form and η is an arbitrary differential form. (This is a pointwise operation; there are no derivatives

actually involved. Note: You can find the proof of this fact in John Lee’s “Introduction to Smooth Manifolds,”

second edition, Lemma 14.13, page 358. You can get a pdf of this text from the Olin library. )

11. Properties of the Lie derivative

(a) Show that if f is a smooth function on M (a 0-form) then LX f = X f .

(b) Show that LX commutes with the exterior derivative: LX d = dLX .

(c) Show that if θ1,θ2 are arbitrary smooth forms,

LX (θ1 ∧θ2) =LX θ1 ∧θ2 +θ1 ∧LX θ2

(d) Show that

LX Y = [X ,Y ].

I suggest the following approach: first recall that if Y is a vector field on a manifold M and F : M → N is a

smooth map into another manifold N , then the derivative map F∗,p : Tp M → TF (p)N satisfies

(F∗,p Yp ) f = Yp ( f ◦F )

where f is any smooth function on N . (Convince yourself of this basic fact!) Let now F be a diffeo-

morphism. Then the push-forward of Y under F is defined as the vector field F∗Y on N given at any

q = F (p) ∈ N by

(F∗Y )q = F∗,p Yp .

Now suppose that f and Y are vector fields on N . It follows from the above remarks and the definition of
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pull-back of functions (F∗ f = f ◦F ) that

(Y f )(F (p)) = (F−1
∗ Y )p (F∗ f )(p).

Now let F =Φt (the local flow of X ) and take derivatives in t at t = 0.

(e) If θ is a differential k-form and X ,Y1, . . . ,Yk are smooth vector fields,

Xθ(Y1, . . . ,Yk ) = (LX θ)(Y1, . . . ,Yk )+θ(LX Y1,Y2, . . . ,Yk )+·· ·+θ(Y1, . . . ,Yk−1,LX Yk ).

As a suggestion, you may begin by observing that if F : M → N is a diffeomorphism between smooth man-

ifolds, θ a k-form on N and Y1, . . . ,Yk vector fields on N , then

(θ(Y1, . . . ,Yk ))◦F = (F∗θ)
((

F−1)
∗ Y1, . . . ,

(
F−1)

∗ Yk
)

.

Now let N = M , set F =Φt the local flow of X , and take the derivative in t on both sides of the equation.

(f) Show that for any smooth form θ and smooth vector field X ,

LX θ = (diX + iX d)θ.

Here are some potentially useful remarks: From the general properties of the exterior derivative (See the

beginning of A.5, page 299 of Tu’s text), if θ is a k-form and ω is a general smooth form, then

d(θ∧ω) = dθ∧ω+ (−1)kθ∧dω.

Using the previous problem concerning the interior product, show that the operation MX = diX + iX d

satisfies

MX (θ∧ω) =MX θ∧ω+θ∧MXω.

We need to show that MX =LX . From the previous remark, it suffices to show this equality of operations

on smooth functions and 1-forms of the type f d g . Now, both LX and MX commute with d so, in fact, it

suffices to check that the operations are the same on functions.

(g) Show that if θ is a differential 1-form and X1, X2 are smooth vector fields, then

dθ(X1, X2) = X1θ(X2)−X2θ(X1)−θ([X1, X2]).

Suggestion: express this identity in terms of the exterior derivative, the Lie derivative, and the interior

product.

(h) Show that if θ is a smooth 2-form and X1, X2, X3 are smooth vector fields, then

dθ(X1, X2, X3) = X1θ(X2, X3)−X2θ(X1, X3)+X3θ(X1, X2)−θ([X1, X2], X3)+θ([X1, X3], X2)−θ([X2, X3], X1).

Suggestion: follow the same pattern of proof as the previous problem.
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