Math 5047 – Geometry/Topology III (Fall 2022)
Section information
- Class time and location: Monday-Wednesday-Friday from 3:00PM to 3:50PM in Seigle Hall L004
- Office hours: Monday-Wednesday from 4:00PM to 5:00PM, Friday from 11:00AM to 1:00PM (shared)
Subject
This third semester in the Geometry/Topology qualifying sequence is dedicated to differential geometry, with a focus on Riemannian Geometry.
Text
I plan to follow
- Riemannian Geometry by Manfredo Perdigão do Carmo, Birkhäuser, second printing, 1993.
Topics we hope to cover.
We will cover as much of do Carmo’s textbook as time permits. The more fundamental topics will be covered in detail while others may be surveyed is less detail.
- Review of differentiable manifolds
- Tangent and cotangent bundles
- Vector fields
- Immersions and embeddings
- Orientation
- Examples (including an overview of Lie groups and Lie algebras)
- Riemannian metrics
- Definition and examples
- Connections
- Affine connections
- Parallel transport
- Riemannian connections
- Geodesics and the geodesic flow
- Variational characterization of geodesics
- Curvature
- The curvature tensor
- Sectional curvature
- Jacobi fields
- The Jacobi equation
- Conjugate points
- Isometric immersions
- The second fundamental form
- The equations of Gauss, Ricci, Codazzi
- Complete manifolds (survey of results)
- The Hopf-Rinow theorem
- The Hadamard theorem
- The fundamental group of manifolds of negative curvature
- Spaces of constant curvature (overview)
- Variation of energy
- The formulas for the first and second variations of energy
- The Morse index theorem
Coursework and grades
Coursework will consist of homework and reading assignments, one take-home mid-term test and one in-class final exam. Your final grade is determined as follows: homework 60%, midterm 20%, final exam 20%. The lowest grade you receive on homework will be dropped. Assignments will be handled through Gradescope and grades will be posted on Canvas.
Grades may be curved, but will not be less than the following scale:
A+ | A | A- | B+ | B | B- | C+ | C | C- | D | F |
---|---|---|---|---|---|---|---|---|---|---|
TBA | 90+ | [85,90) | [80,85) | [75,80) | [70,75) | [65,70) | [60,65) | [55,60) | [50,55) | [0,50) |
If you are a graduate student, a letter grade of B is required to pass; if you are an undergraduate taking this class Pass/Fail, you need a C- to pass.
In writing the tests, I will rely strongly on the homework assignments. To feel confident, you should master the topics and exercises covered by the assignments.
Schedule of tests and final
Test | date |
---|---|
MT | October 28 (due date for the take-home test) |
Final | December 15, 06:00PM-08:00PM (same place as classes) |
Recording
I plan to record the in-person lectures using Zoom and make them available in Canvas.
Academic integrity
I will follow the University’s academic integrity policy, which you can read here. Work submitted under your name is expected to be your own. You are permitted, and encouraged, to collaborate on assignments. You may research broadly over the internet and in books when working on assignments, but please indicate your sources. (You won’t lose points for doing this kind of research!)
If you have any concerns or questions about this policy or academic integrity in class, please contact me.
Please include Math 5047 in the subject line of any email message that pertains to this course.
Homework assignments
Weekly homework assignments will be posted on this course web page, in the below links, and the solutions will be posted in Canvas (under “Pages”).
- Homework 01: due 09/11/22
- Homework 02: due 09/18/22
- Homework 03: due 09/25/22
- Homework 04: due 10/02/22
- Homework 05: due 10/16/22
- Homework 06: due 10/23/22
- Homework 07: due 11/13/22 (This is also a mid-term exam. More information in class.)
- Homework 08: due 11/22/22
- Homework 09: due 12/11/22